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Abstract— In this paper we develop a framework for com-
petition of future operators likely to operate in a mixed
commons/property-rights regime under the regulation of a spec-
trum policy server (SPS). The operators dynamically compete
for customers as well as portions of available spectrum. The
operators are charged by the SPS for the amount of bandwidth
they use in their services. Through demand responsive pricing,
the operators try to come up with convincing service offers
for the customers, while trying to maximize their profits. We
first consider a single-user system as an illustrative example.
We formulate the competition between the operators as a non-
cooperative game and propose an SPS-based iterative bidding
scheme that results in a Nash equilibrium of the game. Numerical
results suggest that, competition increases the user’s (customer’s)
acceptance probability of the offered service, while reducing the
profits achieved by the operators. It is also observed that as
the cost of unit bandwidth increases relative to the cost of unit
infrastructure (fixed cost), the operator with superior technology
(higher fixed cost) becomes more competitive. We then extend
the framework to a multiuser setting where the operators are
competing for a number of users at once. We propose an SPS-
based bandwidth allocation scheme in which the SPS optimally
allocates bandwidth portions for each user-operator session to
maximize its overall expected revenue resulting from the operator
payments. Comparison of the performance of this scheme to
one in which the bandwidth is equally shared between the user-
operator pairs reveals that such an SPS-based scheme improves
the user acceptance probabilities and the bandwidth utilization
in multiuser systems.

I. INTRODUCTION

The emergence of innovative communication technologies
operating in the unlicensed bands has started an ongoing
debate regarding the efficiency of spectrum utilization and its
relationship to usage policies enforced by the US FCC [1].

The US FCC regulates the available spectrum by allocating
portions of it for predefined purposes. Nearly 75% of the UHF
Band (300 MHz - 3 GHz) is allocated as command and control
bands in which spectrum access is under strict govermental
control. Also, 7% is dedicated to usage under a property-rights
regime, in which the licensed cellular and PCS services are
offered. Only 4% is allocated as unlicensed bands, i.e., the
commons regime [2].

Such an allocation is typically long term and leads to the
underutilization of spectrum. For example, [3] reports that
even during the high demand period of a political convention

such as the one held between August 31 and September 1
of 2004 in New York City, only about 13% of the spectrum
opportunities were utilized.

Among the proposed alternative spectrum management
policies, the mixed commons/property-rights overseen by a
regulator seems to be a realistic approach for the near future
[4]. In light of this, it seems prudent to expect that future
communication systems will likely consist of heterogenous
devices/technologies, dynamically sharing the locally available
bandwidth under the supervision, or assistance of a local
authority. The dynamic allocation of spectrum will most likely
be on a much shorter time scale as opposed to current long
term licences, which typically expire after 10 years [1].

The mixed commons/property-rights approach raises the is-
sue of enabling architectures for coordinated spectrum access.
In [5], this issue is addressed via the introduction of a (spec-
trum policy server) SPS. The SPS is a server that performs
the centralized allocation of available spectrum, in a specified
geographical region (locality). It mediates spectrum sharing
among communicating devices, and also monitors the relevant
spectrum. Reference [6] proposes a similar framework for co-
ordinating dynamic spectrum access among service providers.
The proposed scheme relies on a per-domain spectrum broker
that controls the allocation of spectrum among the spectrum
requesting operators.

In this paper, we develop a framework that can be used
as a model for competition among future operators likely to
operate in a mixed commons/property-rights regime, under the
regulation of an SPS. We consider the case of operators dy-
namically competing for the spectrum as well as the potential
customers. Portions of spectrum are devoted to any operator
that provides service to a user. The operators in return pay
the SPS for their usage of the spectrum. The operators try to
attract customers through demand responsive pricing [7], [8].
They have differing service spectral efficiencies r [bps/Hz],
and offer a rate R [bps] as well as a total price P [$]. The
customer’s response to each offer is modelled through an
acceptance probability A (R,P ) which reflects its willingness
to buy the offered service at the asked price. Each offer invokes
an expected profit for the operator making the offer. This profit
is related to the associated A (R,P ) as well as the price asked
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P , the related fixed costs (independent of the offered rate R)
and variable costs that depend on the actual spectrum usage.
The operators compete with each other in order to ensure that
the user accepts their service offer with the highest probability.
We formulate the operator competition as a non-cooperative
game and propose an SPS-centered iterative bidding scheme
that achieves a Nash equilibrium of the operator game.

Specifically, the user, upon entering the system gets con-
nected to the SPS1. The SPS first collects user specific infor-
mation such as its location and acceptance probability profile.
It then mediates a bidding process between the operators to
determine the one that could offer service to the user. Each
operator adjusts its service offer in order to maximize its
expected profit in the presence of competition. If the user
accepts the service offer of the winning operator, the required
portion of the spectrum is allocated to the operator for the
duration of the session. We believe this reflects operation in a
mixed commons/property-rights regime.

In the last section of the paper, we extend this framework
to include the cases where the operators are competing for a
number of users at once. We develop a simple extension of the
single-user scheme where the SPS mediates bidding processes
for many users simultaneously in parallel. We then propose
an SPS-based bandwidth allocation scheme where the SPS
optimally partitions the total available bandwidth among the
different sessions in order to maximize its expected revenue.

II. MODEL

We consider a limited geographical region for which spec-
trum management is under the control of a local SPS. Two
operators, Operator 1 and Operator 2, provide services to a
user within the specified region. Each operator has a number of
base stations throughout the region. For the sake of simplicity,
we limit our discussions to a single user. The multiuser
case will be addressed later in text. The SPS keeps track of
the vacant spectrum WA that would be available for usage
of Operator 1 or Operator 2. We assume that the available
bandwidth WA is finite. Here, WA could be exclusively or
partially devoted to an operator, for it to offer service to the
user. The allocation would be valid for the whole duration
of the session established between the specified user and the
operator. In this paper we assume that all sessions established
between the user and the operators are of fixed duration. Thus
the time parameter is not included in our formulations. We
consider an “interference free” system in which the spectrum
allocations are valid throughout the region and no two sessions
can occupy the same frequency band, i.e., at each point in the
frequency spectrum, there is at most one user-operator pair
communicating at a time. In the following, we describe in
detail the user acceptance model and the operator profit model
that will govern the competitive spectrum allocation.

1This initial connection can be considered to be analogous to the operation
of either domain name server (DNS) or dynamic host configuration protocol
(DHCP) in internet engineering.

A. Users’ Acceptance Model

In demand responsive pricing [7], [8], it is important to
take into account the users’ responses to the pricing strategy
of the operator. From the user point of view, the service offer
made by the operator is acceptable only if the price asked is
reasonable.

Specifically, this consideration is addressed by introducing
an acceptance probability A (u, P ) where u is the utility of
the user and P is the associated price.

Intuitively, the acceptance probability A (u, P ) should have
the following qualitative properties. It should be an increasing
function of u for a fixed P while decreasing in P for fixed u.
Mathematically, these properties are formulated as:

∂A

∂u
≥ 0,

∂A

∂P
≤ 0,

∀P > 0, limu→0 A (u, P ) = 0,
limu→∞ A (u, P ) = 1, (1)

∀u > 0, limP→0 A (u, P ) = 1,
limP→∞ A (u, P ) = 0.

While there are several candidate choices for the function
A (u, P ), we will follow [7], [8] and choose

A (u, P ) = 1 − e−CuµP−ε

(2)

where µ is the utility sensitivity of the user, ε is the price
sensitivity, and C is an appropriate constant. Note that the
acceptance probability function can be differentiated among
users through the above parameters. The above acceptance
model is similar to the Cobb-Douglas demand curves that are
used in economics [9].

In this paper, for simplicity, we ignore the role of transmit
power in the user utility and instead parameterize u as a
function of offered rate R only2. The specific model for
the utility function chosen here is one that obeys a law of
diminishing returns such as [7]–[9]:

u (R) =
(R/K)ζ

1 + (R/K)ζ
(3)

where K and ζ are parameters that determine the exact shape
of the above sigmoid function. Note that the above expression
gives normalized utility values in the interval [0, 1) with the
rate R = K yielding a utility of 1/2.

As u (R) is a function of R, we simplify the notation by
representing the acceptance probability as A (R,P ) in the rest
of the paper.

In Fig. 1, we show the acceptance probability as a function
of the offered rate R and price P . It is an illustration for the
following choice of parameters: K = 5×106, ζ = 10, C = 1,
ε = 4, µ = 4. As expected, the acceptance probability is
decreasing with price. We also note the effect of diminishing
returns. Specifically, even for a low price, if the user is offered

2It is possible to consider the role of transmit power in the user utility as
has been done in [10].
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rates in excess of 5 Mbps its acceptance probability will not
increase in this example.
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Fig. 1. The acceptance probability for K = 5 × 106, ζ = 10, C = 1,
ε = 4, µ = 4.

B. Operator Profit Model

From the operator’s point of view, the service is worth
providing only if the achievable revenue is high enough
to compensate for the costs associated with providing the
service. The two operators considered in the model, Operator
1 and Operator 2, are able to provide spectral efficiencies of
ri [bps/Hz] to a specified user, where i ∈ {1, 2} is the index
denoting the operator. The spectral efficiency may depend on
various parameters like the technology used by the operator,
the density of the base stations belonging to the operator in the
considered geographical region, and the location of the user.
For a specific rate offered Ri, the bandwidth required Wi (Ri)
by the operator is inversely proportional to the spectrum
efficieny: Wi (Ri) = Ri/ri.

For the offered rate Ri and price Pi, the profit Qi (Ri, Pi)
can be expressed as:

Qi (Ri, Pi) = Pi − Fi − ViRi/ri (4)

where Fi [$] is the fixed cost incurred by the operator, and
Vi [$/Hz] is the price per unit bandwidth that the SPS charges
Operator i. The last term denotes the usage-based variable
cost for the operator. Note that in most cases, the fixed cost
Fi is implicitly related to the efficiency ri. One would expect
operators with higher fixed cost to be able to sustain greater
efficiencies resulting from superior infrastructure [11].

Considering the user’s acceptance probability, the expected
profit for Operator i is

Qi (Ri, Pi) = A (Ri, Pi) Qi (Ri, Pi) . (5)

Note that for fixed ri, the acceptance probability A (Ri, Pi)
is increasing in Ri and decreasing in Pi while the profit
Qi (Ri, Pi) is decreasing in Ri and increasing in Pi.

C. Operator Interaction as a Non Cooperative Game

The user response to an offer (R,P ) is modelled as in (2). If
two offers (R1, P1) and (R2, P2) are made by Operators 1 and
2 respectively, the offer for which A (R,P ) is lower is ignored
by the user. The other offer is then accepted with the associated
acceptance probability. When the offers made invoke equal
acceptance probabilities, A (R1, P1) = A (R2, P2), we assume
that each offer is equally likely to be accepted.

In the context of operators competing for resources and
the user preference, the game can be represented by G =
[N, {Si} , βi] where N = {1, 2} is the index set of the players
(operators), Si is the strategy space available to Operator i,
and βi (.) is the resulting expected profit associated with the
operator with index i. The strategy space Si for Operator
i consists of all (R,P ) pairs which satisfy the bandwidth
constraint:

Si =
{
∀ (R,P ) | Fi + ViRi/ri ≤ P ≤ Pmax,

0 ≤ R ≤ WA × ri.

}
(6)

where Pmax is the maximum price the operator is permitted to
charge. We further impose the constraint that the profits are
necessarily nonnegative.

The resulting expected profit βi of operator i given the
strategy of the opponent operator j is

βi (Ri, Pi, Rj , Pj) =




0 if A (Ri, Pi) < A (Rj , Pj),
1
2 Qi (Ri, Pi) if A (Ri, Pi) = A (Rj , Pj),
Qi (Ri, Pi) if A (Ri, Pi) > A (Rj , Pj).

(7)

The non-cooperative operator game can now be formally
stated as

max
(Ri,Pi)∈Si

βi (Ri, Pi, Rj , Pj) i ∈ {1, 2} (8)

We now state the following theorem regarding the above
game.

Theorem 2.1: At any Nash equilibrium for the game G, at
least one of the operators has zero expected profit.

Proof: By contradiction: Assume there exist the equilib-
rium strategies (R∗

1, P
∗
1 ) and (R∗

2, P
∗
2 ) for which β1 (.) > 0

and β2 (.) > 0. Considering (7), the only way this can
be achieved is to have equality between the achieved ac-
ceptance equalities; A (R∗

1, P
∗
1 ) = A (R∗

2, P
∗
2 ). In this sit-

uation, in accordance with (7), the corresponding payoffs
would be β1 (R∗

1, P
∗
1 ) = 1

2Q1 (R∗
1, P

∗
1 ) and β2 (R∗

2, P
∗
2 ) =

1
2Q2 (R∗

2, P
∗
2 ). Note that the assumption of non-zero profits

implies that 1
2Q1 (R∗

1, P
∗
1 ) > 0 and 1

2Q2 (R∗
2, P

∗
2 ) > 0. Con-

sider Operator 1 without loss of generality. If Operator 1 were
now to deviate from the strategy (R∗

1, P
∗
1 ) to (R∗

1, P
∗
1 − ∆P )

by lowering its price offer by an infinitesimal amount ∆P , then
it follows that A (R∗

1, P
∗
1 − ∆P ) is greater than A (R∗

2, P
∗
2 ).

Further, from (7) it follows that the resulting expected profit for
Operator 1 is Q1 (R∗

1, P
∗
1 − ∆P ). By continuity of the profit

function, it follows that |Q1 (R∗
1, P

∗
1 − ∆P )−Q1 (R∗

1, P
∗
1 ) | <

δ for arbitrarily small δ > 0. We can thus bound the change in
payoff of Operator 1, i.e., Q1 (R∗

1, P
∗
1 − ∆P )− 1

2Q1 (R∗
1, P

∗
1 )
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as 1
2Q1 (R∗

1, P
∗
1 )−δ < Q1 (R∗

1, P
∗
1 − ∆P )− 1

2Q1 (R∗
1, P

∗
1 ) <

1
2Q1 (R∗

1, P
∗
1 ) + δ. Given that 1

2Q1 (R∗
1, P

∗
1 ) > 0 and δ is

arbitrarily small, it follows that the change in payoff for
Operator 1 is strictly positive. Therefore the strategy (R∗

1, P
∗
1 )

can never be the best response of Operator 1. This contradicts
the initial assumption that at equilibrium β1 (.) and β2 (.) are
greater than zero.

III. SPS AS A MEDIATOR IN ITERATIVE BIDDING

In this section we propose an iterative bidding process to
implement the operator game G. The SPS mediates the bidding
process on behalf of the user. Such an SPS based scheme
is more practical as it reduces the amount of overhead and
control information transmission to and from the user.

The scheme is composed of three steps (Fig. 2):

• Step 1: A new user gets connected to the SPS. User spe-
cific information, e.g., A (R,P ), r1, r2, is communicated
to the SPS.

• Step 2: The iterative bidding process between the oper-
ators is undergone and the winning operator is declared
by the SPS.

• Step 3: The winning operator offers the winning bid
(Rwinner, Pwinner). The user decides to accept the service
with probability A (Rwinner, Pwinner).

Note that at the end of Step 1, the SPS has all the relevant
information regarding the user so it can act on the user’s
behalf. Consequently, in Step 2, during the iterative bidding,
only the SPS and the operators are involved. In Step 3, the
user makes the final decision whether or not to take the service
offer of the winning operator.

A. Iterative Bidding

In the iterative bidding process, the operators make offers
in each iteration. The strategy of each operator is to make

Operator 1 Operator 2

Spectrum
Policy
Server

Step 2-Iterative 
bidding process ,
winner

declared

Step 1-User specific information
is communicated to the SPS

Step 3-User evaluates
the offer of the winner

Fig. 2. SPS as a mediator.

the offer such that A (R,P ) associated with its offer is
greater than the one associated with its opponent’s offer while
simultaneously maximizing the resulting expected profit.

The iterative bidding is initialized by allowing the operators
to choose their service offers without consideration of the
opponent strategy.

It is clear from the structure of βi (.) in (7) that the iteration
process is terminated when a zero value for expected profit is
declared by at least one operator. The opportunity to offer
service to the user is then given to the operator that wins. The
winning operator uses its most recent bid (Rwinner, Pwinner), as
a service offering to the user. Note that from Theorem 2.1,
the iterative bidding process by definition should converge to
a Nash equilibrium of the game G. If both operators declare
zero expected profit at the same iteration, both are dismissed.
This degenerate situation can happen when both operators have
identical fixed costs and the user is located in a geographical
location where the spectral efficiencies of both operators are
identical. Such an operating point is also a Nash equilibrium.
In such a case, we assume that the SPS randomly selects one
of them to offer service.

It is assumed that the offers made to any user are final
and the operators can not update any offers they have made
to a specific user after the competition is over. The winning
operator is obliged to provide the transmission rates they have
offered. This is considered as part of the regulations enforced
on the operators.

IV. NUMERICAL RESULTS FOR SINGLE USER SYSTEMS

In this section, we present numerical results that correspond
to a linear geographical region with two operators. The system
and the base station locations are depicted in Fig. 3. We
assume that both operators use the same technology, with the
only difference being in the infrastructure density. Operator 1
has two base stations while Operator 2 only one. Consequently,
we assume the associated fixed cost for Operator 1 will be
twice the fixed cost of Operator 2, i.e., F1 = 2F2. Note that
the fixed cost per base station is the same. We also assume that
the SPS will be charging both operators at the same variable
cost rate V [$/Hz].

The spectral efficiency between base station k and the user’s
mobile terminal is determined as

rk = log2

[
1 +

Ps

No

(
dk

L/4

)−2
]

, (9)

where Ps is the signal power, No is the AWGN variance, dk is
the distance between the base station k and the terminal, and
L is the total length of the linear region in Fig. 3 (L = 1000
m). We set Ps = 2No, which guarantees a SNR = 3 dB at
the distance of L/4 = 250 m from the base station. Note that
Operator 1 always selects a base station that provides higher
spectral efficiency to serve the user (i.e., the base station that
is closer to the user’s mobile terminal).

The available bandwidth is WA = 10 MHz, and the user
acceptance probability and the corresponding parameters are
selected as in Fig. 1. We characterize the cost structure with
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Operator 2 Operator 1
(BTS 2)

250 5000 1000  [m]750

Fig. 3. Geographical region with two operators.

the ratio η = V/F between the variable cost V [$/Hz] versus
the fixed cost per base station F = F1/2 = F2 [$]. Lower
values of η correspond to the spectrum being less expensive
than the infrastructure. Furthermore the absolute values for F
and V are selected such that F +V WA = 2 $, while F1 = 2F
and F2 = F .

In Fig. 4 we present the expected profit versus the location
of the user within the linear region for η = 1×10−6. The solid
lines correspond to the case when only one of the operators is
present. In that case the operator is offering the price and rate
such that its expected profit is maximized without a competitor
being present. The dashed line corresponds to the case when
both operators are present and do compete for the user (as
described in the previous sections). From these results, we
note that the case with no competition provides an upper
bound on expected profit for the case with competition. The
corresponding acceptance probability is presented in Fig. 5.

Furthermore, depending on the user’s location we observe
the following behavior. In Region 1 (denoted as R1 in Fig.
4), the spectral efficiency of Operator 1 is much higher than
that of Operator 2. Consequently Operator 1 is superior in the
given region and can drive its expected profit up to the upper
bound (case of no competition). In Region 2, the superiority
of Operator 1 is diminishing and it is forced to lower its
expected profit and out-compete Operator 2. In Region 3,
Operator 2 is winning the competition (due to higher spectral
efficiency while lowering its expected profit to become more
competitive). In Region 4 the user is very close to the Operator
2 base station and its spectral efficiency is much higher than
that of Operator 1. Now Operator 2 becomes superior in the
given region and can drive its expected profit up to the upper
bound (case of no competition). Beyond L/2, the situation is
symmetric to the discussed regions. Complementary analysis
can be presented for the acceptance probability versus the user
location.

In the following figures, we present the results as functions
of the ratio η = V/F between the variable cost V [$/Hz]
versus the fixed cost per base station F = F1/2 = F2 [$].
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Fig. 4. The expected profit versus the location of the user within the linear
region for η = 1 × 10−6, WA = 10 MHz, and F + V WA = 2 $.
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Fig. 5. The acceptance probability versus the location of the user within the
linear region for η = 1 × 10−6, WA = 10 MHz, and F + V WA = 2 $.

In Fig. 6, we present the expected profit, which is averaged
over all locations of the user for a given ratio η. We assume
a uniform distribution of the user locations. For the lower
values of η, Operator 2, which has lower infrastructure density
and lower total fixed cost, realizes higher expected profit.
When the price of spectrum is increased, Operator 1 realizes
higher expected profit because it is able to offer higher spectral
efficiency (requiring a smaller portion of the spectrum), while
its infrastructure cost is lower in relative terms.

In Fig. 7, we present the acceptance probability, averaged
over all locations, in the case when one of the two operators
is present and in the case when both operators are present and
do compete for the user. Clearly, in the case of competition
between the operators, the acceptance probability is higher.
This points out that the operator competition is beneficial to
the user.
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Fig. 6. The expected profit averaged over all locations versus the ratio
η = V/F between variable cost V $/Hz and fixed cost per base station F $,
for WA = 10 MHz and F + V WA = 2 $.
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Fig. 7. The acceptance probability averaged over all locations versus the
ratio between variable cost V [$/Hz] versus the fixed cost per base station
F [$], for WA = 10 MHz and F + V WA = 2 $.

In Fig. 8, we present the expected profit averaged over
all locations, as a function of the available bandwidth WA.
The ratio between the variable and fixed cost is set to η =
2 × 10−6. Note that for fixed η, the cost of the total
available bandwidth increases relative to the fixed cost with
increasing WA. The absolute values of F and V are again
selected such that F + V WA = 2 $. On average, Operator 2
is able to support lower spectral efficiency (due to the lower
density of its infrastructure) than Operator 1. Consequently,
the competitiveness of Operator 2 is diminishing with WA,
while Operator 1 realizes higher expected profit.

In Fig. 9 we present the acceptance probability averaged
over all locations as a function of the available bandwidth
WA (for η = 2 × 10−6 ). Clearly, the acceptance probability

increases with the available bandwidth, while competition
provides additional gains.
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Fig. 8. The expected profit averaged over all locations versus the available
bandwidth WA for η = 2 × 10−6 and F + V WA = 2 $.
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Fig. 9. The acceptance probability averaged over all locations versus the
available bandwidth WA for η = 2 × 10−6 and F + V WA = 2 $.

V. MULTIUSER SYSTEMS

In this section we consider systems in which two operators
are competing for spectrum and a number N of users with
N > 1. The operators compete for each user individually.
For each user, the SPS mediates the operator competition
in accordance with the approach developed in Sec. III. We
assume that as the result of the competition each user chooses
a single operator as the service provider and further accepts
the service with a certain acceptance probability.

We further assume that the sessions corresponding to the
user-operator pairs are held in nonoverlapping spectrum por-
tions thus leading to interference free transmission. The total
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available bandwidth WA is partitioned among these sessions
by the SPS as will be described later in the text.

It is crucial that the total available bandwidth WA is
sufficient to support all the winning offers. Note that operators,
if not assisted by the SPS, can not keep track of the winning
bids and their bandwidth requirements for each user, and thus
can end up making unrealizable offers.

Thus, in keeping with the spectrum server role of the SPS,
we propose an SPS-based resource allocation scheme in which
the SPS sets the upper limits on bandwidth usage for each
user-operator session. The SPS determines these limits in the
context of an optimization problem where it maximizes its
expected revenue which is the sum of the expected payments
of the operators for their spectrum utilization.

A. SPS-based Resource Allocation Model

In the proposed scheme, the SPS maximizes its expected
revenue RSPS(.,W) with respect to bandwidth allocation
vector W = [W1W2...WN ]T . The operators competing for
user n are subject to the constraint that they must not make
offers that require bandwidths greater than Wn.

The SPS maximizes its expected revenue subject to the
constraint that the total allocated bandwidth does not exceed
the total available bandwidth WA. Consequently, the SPS
optimization problem can be expressed as:

max
W

RSPS (.,W) st.
N∑

n=1

Wn ≤ WA. (10)

Note that the expected revenue RSPS(.,W) is defined as
the sum of the expected bandwidth utilizations of the users
scaled by the variable cost per bandwidth V [$/Hz]. In this
sense, it is a function of the bandwidth allocation vector W
as well as the user locations and the cost parameters in the
system:

RSPS (r1, r2, F1, F2, V,W) =
N∑

n=1

V Af
n (.,W) W f

n (.,W) .

(11)
In the above equation, r1, r2 are the N dimensional spectral
efficiency vectors for Operator 1 and Operator 2, respectively.
Each element of the vectors denote the service spectral effi-
ciency the operators enjoy while providing service to a speci-
fied user. Note that these vectors depend on the exact locations
of the users. F1 and F2 denote the fixed costs of Operator 1
and Operator 2, respectively. Af

n and W f
n refer to the winning

bid acceptance probability and bandwidth usage achieved as
a result of the operator competition over user n. W f

n depends
on the winning rate offer and the winning operator’s spectral
efficiency through the relation W f

n = Rwinner/rwinner.
When maximizing the expected revenue RSPS(.,W) over

W, the SPS performs a centralized optimization whose result
is a vector W∗ that maximizes the total expected revenue.
In order to determine W∗, the SPS performs an exhaustive
search in which it declares all possible Ws one at a time. For
any declared allocation vector W, the operators compete with
each other considering the bandwidth constraints imposed by

the allocation vector, as illustrated in Fig. 10. The SPS then
computes the resulting RSPS(.,W) given the competition
results for each user. It then selects the vector which achieves
the greatest revenue among all Ws as the optimum allocation
vector W∗.

It is interesting to note that the SPS optimization in (10)
is equivalent to the maximization of the expected bandwidth
utilization

∑N
n=1 Af

nW f
n . This demonstrates that a revenue

seeking SPS will actually be maximizing the total bandwidth
utilization in the system.

Note that, besides the expected SPS revenue RSPS(.,W),
the SPS can have a number of different criteria for determining
the optimum bandwidth allocation vector. It could, for instance
maximize the average user acceptance probability, as a social
goal, or it could try to maximize the total expected profits of
the operators.

Spectrum
Policy
Server

User 1 User 2

W

User N

Bidding processes
for each user

Bandwidth
allocation vector 
communicatied to the operators

Operator 1
Operator 2

Fig. 10. SPS mediating iterative bidding processes for N users.

B. Numerical Results for Multiuser Systems

In this section we present numerical results regarding a
multiuser setting in the same linear geometry illustrated in
Fig. 3. We consider the case for the variable cost/fixed cost
ratio fixed at η = 2 × 10−6. All other parameters regarding
the cost structure, the total available bandwidth WA and the
calculation of the spectral efficiency are same as in Sec. IV.

In order to keep the exhaustive search tractable, the band-
width is quantized to be made of basic units of 400 kHz wide.
The SPS optimization problem is then solved using a brute
force search method in which all combinations of bandwidth
allocations among users are tested and the one which achieves
the greatest expected revenue for the SPS is chosen as the
optimum allocation.

In the following figures, we compare the proposed SPS-
based allocation scheme to the one in which the available
bandwidth is partitioned equally among all N user-operator
sessions, with each one getting WA/N [Hz.].
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We present the results as functions of the number of users
N , in the system. For each value of N , 100 different realiza-
tions of the user geometry are tested by randomly locating each
user along the linear region, assuming a uniform distribution
of the user locations. The results are then averaged over all
100 different realizations. The presented plots are the curves
referring to the achieved average values.
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Fig. 11. The expected bandwidth utilization averaged over all realizations
versus the number of users in the system N for η = 2 × 10−6.

In Fig. 11, we present the total expected bandwidth uti-
lization as a function of the number of users in the system.
It is observed that the proposed scheme achieves a greater
bandwidth utilization and thus a higher SPS revenue, for all
number of users tested. It is also clear that as the number
of users increases beyond a threshold, the equal bandwidth
partition scheme utilizes the available bandwidth poorly.

In Fig. 12, we present the average values for the mean
acceptance probabilities of the users. The mean acceptance
probabilities for each realization is computed by dividing the
sum of the acceptance probabilities by the number of users.
These mean acceptance probabilities are then averaged over
all the 100 realizations. It is noted that the average acceptance
probability is decreasing in the number of users. Our proposed
scheme achieves a higher average user acceptance probability
as opposed to the equal bandwidth allocation scheme.

In Figs. 13 and 14, we present the total expected bandwidth
utilization and average acceptance probability, respectively,
both as functions of η. Note that the SPS optimization scheme
achieves greater bandwidth utilization and average acceptance
probability for all values of η tested.

VI. CONCLUSIONS

In this paper we developed a framework for compe-
tition of future operators likely to operate in a mixed
commons/property-rights regime under the regulation of a
spectrum policy server (SPS). The operators dynamically com-
pete for customers as well as portions of available spectrum.
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Fig. 12. The average acceptance probability per user averaged over all
realizations versus the number of users in the system N for η = 2 × 10−6.
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Fig. 13. The expected bandwidth utilization in 8 user system versus η =
V/F , for WA = 10 MHz and F + V WA = 2 $.

The operators are charged by the SPS for the amount of band-
width they use in their services. Through demand responsive
pricing, the operators try to come up with convincing service
offers for the customers, while trying to maximize their profits.
We first considered a single-user system as an illustrative
example. We formulated the competition between the oper-
ators as a non-cooperative game and propose an SPS-based
iterative bidding scheme that results in a Nash equilibrium
of the game. Numerical results suggested that, competition
increases the user’s (customer’s) acceptance probability of
the offered service, while reducing the profits achieved by
the operators. It was also observed that as the cost of unit
bandwidth increases relative to the cost of unit infrastructure
(fixed cost), the operator with superior technology (higher
fixed cost) becomes more competitive. We then extended the
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Fig. 14. The average acceptance probability per user in 8 user system versus
η = V/F , for WA = 10 MHz and F + V WA = 2 $.

framework to a multiuser setting where the operators were
competing for a number of users at once. We proposed an
SPS-based bandwidth allocation scheme in which the SPS
optimally allocates bandwidth portions for each user-operator
session to maximize its overall expected revenue resulting
from operator payments. Comparison of the performance of
this scheme to one in which the bandwidth is equally shared
between the user-operator pairs revealed that such an SPS-
based scheme improves the user acceptance probabilities and
the bandwidth utilization in multiuser systems.
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