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Abstract: In recent years, environmental concerns about climate change and global warming have
encouraged countries to increase investment in renewable energies. As the penetration of renewable
power goes up, the intermittency of the power system increases. To counterbalance the power fluctu-
ations, demand-side flexibility is a workable solution. This paper reviews the flexibility potentials
of demand sectors, including residential, industrial, commercial, and agricultural, to facilitate the
integration of renewables into power systems. In the residential sector, home energy management
systems and heat pumps exhibit great flexibility potential. The former can unlock the flexibility of
household devices, e.g., wet appliances and lighting systems. The latter integrates the joint heat–
power flexibility of heating systems into power grids. In the industrial sector, heavy industries, e.g.,
cement manufacturing plants, metal smelting, and oil refinery plants, are surveyed. It is discussed
how energy-intensive plants can provide flexibility for energy systems. In the commercial sector,
supermarket refrigerators, hotels/restaurants, and commercial parking lots of electric vehicles are
pointed out. Large-scale parking lots of electric vehicles can be considered as great electrical storage
not only to provide flexibility for the upstream network but also to supply the local commercial
sector, e.g., shopping stores. In the agricultural sector, irrigation pumps, on-farm solar sites, and
variable-frequency-drive water pumps are shown as flexible demands. The flexibility potentials of
livestock farms are also surveyed.

Keywords: flexibility potential; demand-side flexibility; demand response; renewable energy

1. Introduction

Recently, the environmental concerns about climate change have increased notice-
ably [1]. To overcome global warming, the EU Commission committed to emit at least 55%
less greenhouse gas emissions by 2030 and become climate-neutral by 2050. To decarbonize
the energy systems, one solution is to increase renewable power penetration, e.g., solar
and wind, in energy systems [2]. By increasing the penetration of renewable energies, the
intermittency of power systems increases considerably. To counterbalance the renewable
power intermittency, demand-side flexibility is a practical solution. Flexibility potentials
of electrical consumers can be unlocked in response to power system requirements when
a power shortage occurs on the supply side [3] or system reliability is jeopardized due
to unforeseen failure. Demand-side flexibility is discussed in different sectors, including
residential [4], industrial [5], commercial [6], and agricultural sectors [7]. Therefore, it
needs expert knowledge to unlock, aggregate, and finally integrate flexibility potentials
into power systems. It is evident that the knowledge of demand flexibility for heavy
industry, e.g., an oil refinery plant, is quite different from Home Energy Management
Systems (HEMSs). As a result, the flexibility potentials should be discussed in each sector
individually.

In the residential sector, the HEMS is a smart control panel to manage the energy con-
sumption of household appliances [8]. The flexibility of household appliances is discussed
for wet appliances [9], electric water heaters [10], refrigerators [11], and ovens [12]. Heat
pumps are flexible demands not only to decarbonize the residential heating systems but
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also to increase energy efficiency [13]. The private parking of Electric Vehicles (EVs) with
charging stations is addressed to increase the flexibility potential of households [14].

In the industrial sector, heavy and light industries can provide demand flexibility for
power systems. Industries, especially heavy industries, are energy-intensive plants that in-
tegrate demand flexibility of the industrial processes as well as the self-generation facilities,
e.g., gas turbines and diesel engines, into energy systems. In cement manufacturing plants,
some processes, e.g., crushers, can be exploited during off-peak hours [15]. Therefore, they
can provide peak shaving and/or valley filling for the power system. Moreover, the raw
and cement mills can provide power flexibility at short advance notice without causing
an interruption to the production line. In the steel, metal, and aluminum industries, the
operation of smelting pots can be scheduled during off-peak hours [16]. Generally, the
smelting pots are operated in discrete processes; therefore, the next round of pots’ opera-
tion can be shifted or delayed in response to power system requirements. In oil refinery
industries, the energy demand mainly includes electricity, heat, and steam [17]. Therefore,
self-generation facilities, e.g., gas turbines and heat boilers, provide flexibility for the gas
and power networks.

In the commercial sector, supermarket refrigerators [18] and ice bank storage are
practical solutions. The flexibility potentials of retail and strip malls, restaurants, and
hotels are discussed in the research study [19]. Recently, by increasing the penetration
of EVs, public parking lots with smart charging stations are considered a great electrical
storage plant to charge/discharge electrical energy from/to power grids when the upstream
network encounters excess/deficit of electrical power [20].

In the agricultural sector, the water irrigation pump is the dominant electrical de-
mand [21]. In the open-air farms, the solar-based irrigation system can be operated to meet
the crops’ needs when the peak demand of the power system coincides with the peak crop
evapotranspiration [22]. In the greenhouse farms, the operation of the cooling and heating
system exhibits great flexibility potential [23]. In livestock farms, the application of heat
pumps can provide power flexibility [24].

The abovementioned survey shows that there are many flexibility opportunities in
different demand sectors. This paper aims to elaborate on the flexibility potentials of the
demand sectors, including residential, industrial, commercial, and agricultural. Figure 1
describes a schematic diagram of flexibility potentials for demand sectors. As the figure
reveals, the four major demand sectors are classified into subsectors. The subsectors are
explained in separate sections in the paper. Despite the demand sector classification, the
applications of demand flexibility in power systems can be stated as follows:

(1) Frequency control [25,26];
(2) Up-/down-power regulation [27];
(3) Voltage support [28];
(4) Reserve market support (spinning, non-spinning) [29];
(5) Power congestion mitigation [30];
(6) Peak shaving and/or valley filling [31];
(7) Energy system decarbonization [32];
(8) Renewable power integration [33].

The rest of the paper is organized as follows. In Section 2, the general insight of power
flexibility is described for demand sectors. Section 3 explains the flexibility potential of the
residential sector. The Demand Response (DR) opportunities of industrial processes are
surveyed in Section 4. In Section 5, the commercial sector is discussed. The agricultural
sector and possible flexible demands are stated in Section 6. Section 7 explains the necessity
of intermediary demand response aggregators, challenges, and future insights. Finally,
Section 8 concludes the study.
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Figure 1. Classification of demand flexibility for four different sectors: residential [34], industrial [35],
agricultural [36], and commercial [37].

2. Demand Flexibility

Demand flexibility refers to the ability of electrical consumption to change/shift/adjust/
curtail the electricity consumption in response to an external request, e.g., electricity price,
financial incentives, and technical requirements [38]. Therefore, the flexible demands re-
spond to Demand Response Programs (DRPs) to provide benefits for the demand side
and/or the supply side [39]. Demand response studies encounter great sources of uncer-
tainties about renewable power generation, electricity price, demand participation, and
load level. To hedge against the uncertainties, stochastic programming and robust opti-
mization are addressed widely. In stochastic programming, uncertain variables can be
modeled as different scenarios with special probability distribution functions [40]. In robust
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optimization, demand flexibility is evaluated over the most important uncertain variable.
In this approach, the uncertain variable is defined by upper and lower thresholds, while no
probability function is stated [41].

From the benefits point of view, the DRPs can be observed from the demand- and
supply-side separately. Regarding the demand side, the consumers can take advantage
of reduced electricity bills and financial incentives in the form of bill deduction, financial
rewards, and low electricity prices directly [42]. Moreover, as the penetration of DRPs
increases on the demand side, the reliability of power systems and distribution grids
increases [43]. As a result, the consumers take advantage of more stable power grids with
lower outage probability, as an indirect advantage [44]. To implement DRPs, the consumers
respond to two types of programs: (i) price-based programs [45] and (ii) incentive-based
programs [46]. In the former, the demand flexibility is unlocked in response to the electricity
price. Different energy pricing schemes are used in power systems to encourage consumers
to actively respond to energy price variations. Among them, Time-of-Use (TOU) [47],
Critical Peak Pricing (CPP) [48], and dynamic pricing [49] are widely used. In the latter,
some financial incentives are offered to consumers to persuade them to contribute to DRPs.

On the supply side, DRPs and flexible demands provide two types of power sys-
tem support, including global and local support [50]. In the former, the whole power
system benefits from the demand flexibility. In the literature, many global benefits are
addressed in power systems worldwide. Frequency control [51], power regulation [52], flex-
ibility reserve [53], peak shaving/valley filling [54], decarbonizing the power systems [55],
optimization of power system operation cost [56], facilitation of renewable power integra-
tion [57], enhancement of power system reliability [58], and reduction of investment cost
in power systems are the most important global support. In the local support, the local
distribution network takes the advantage of the flexible demands. Mitigation of power
congestion [59,60], voltage support [61], power loss minimization [62], and power quality
improvement [63] are the key local support. Volt–Var energy management approach is
addressed in distribution systems to improve voltage profile and Var injection in demand
sectors [34]. It is worth mentioning that although most electrical consumers are supplied
by low- and medium-voltage distribution grids, some large power consumers, e.g., heavy
industries, are connected to transmission networks directly. Therefore, the local power
system support conveys local benefits for both the distribution and transmission networks.

Renewable energy can be integrated as large-scale generation units into the supply side
or small-scale Distributed Generation (DG) into the demand side. On the supply side, large-
scale wind farms [64], solar farms [65], geothermal [66], hydropower [67], run-of-river [68],
and biomass [68] are addressed. On the demand side, Roof-top Photovoltaic (RPV) [69]
and micro-wind turbines are used. Despite the type of renewable energy, demand-side
flexibility is a necessity to counterbalance the renewable energy intermittency. It is worth
mentioning that the Renewable DGs (RDGs) may be integrated into stand-alone (off-grid)
or grid-connected demands. In the former, the off-grid RDGs are used for sustainable rural
electrification [70]. In the latter, the RDGs supply the demand sectors to provide global and
local support, e.g., cost reduction, voltage improvement, and power loss reduction [71].

3. Residential Demand Flexibility

Demand flexibility in residential buildings is normally managed by the HEMS [72].
The HEMS can control the energy consumption of household appliances, e.g., washing
machines [73], tumble dryers [74], dishwashers [75], lighting systems [76], and Heat Venti-
lation and Air conditioning (HVAC) [77]. In the literature, the household appliances are
classified into uncontrollable, Thermostatically Controlled Appliances (TCAs) [78], and
Non-Thermostatically Controlled Appliances (NTCAs). The uncontrollable appliances
include audio/video devices, elevators, and emergency lighting systems. No flexibility
is expected from this class of appliances. The TCAs are the key flexibility resource of
residential dwellings. These appliances follow thermal dynamic models to unlock joint
heat-to-power flexibility. They include water heaters [79], refrigerators [80], HVAC, and
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heat pumps. The NTCAs provide lower flexibility in comparison to the TCAs. Non-
emergency lighting systems and wet appliances are the most flexible NTCAs. Some studies
have been conducted to show how the HEMS can optimize the energy consumption of
household appliances in response to electricity price variations [81].

Recently, the penetration of heat pumps has increased in residential dwellings, and
it is expected to replace the traditional heating systems in many regions. In some case
studies, it was proposed that the HEMS controls the operation of HVAC and heat pumps.
However, due to the complexity of heat controllers, the operation of heat pumps is delegated
to sophisticated controllers [82]. The heat controllers unlock the heat flexibility of the
building while meeting the residents’ comfort [83]. The resident comfort bound is normally
defined as a setpoint with lower and upper thresholds. Therefore, the heat controller
aims to maintain the indoor temperature within the comfort bound. The flexibility of heat
pumps stems from the existing gap between the upper and lower thresholds of indoor
temperature. When a power shortage/excess occurs in the electricity market, the heat
controller optimizes the operation of the heat pump and maintains the indoor temperature
close to the lower/upper threshold of the bound [84]. In some studies, the heat controller
is integrated with thermal storage devices [85]. In many studies, water tanks are suggested
as economic thermal storage for residential buildings [86]. Therefore, the heat controllers
integrated with thermal storage can provide much more flexibility potential for upstream
networks. The water tank stores the heat energy when the energy price is low or when the
power system encounters renewable power excess. Consequently, it supplies the demand,
including space heating and Domestic Hot Water (DHW) consumption, when the power
system faces a renewable power shortage and/or the electricity price is high [87].

The energy consumption of the heating system depends on the physical characteristics
of the buildings and weather conditions. For buildings with high-quality materials and
good insulation, the energy efficiency of the building is relatively high [88]. Therefore,
the energy consumption of the building is more robust to weather conditions. Adversely,
in buildings with poor thermal insulation, the energy consumption of the heat pumps is
more sensitive to ambient conditions. As a result, the flexibility potentials of the former
are more than the latter. The heat controllers optimize the energy consumption by solving
the thermal dynamics of the buildings. The thermal dynamics are normally described
by Ordinary Differential Equations (ODEs) [89]. The ODEs of thermal dynamics include
thermal coefficients which are specific to target buildings. Therefore, in order to design a
heat controller, the thermal coefficients should be estimated.

In the literature, three general approaches are addressed to estimate the thermal
dynamics, including white-box [90], gray-box [91], and black-box algorithms [92]. The
white-box approach addresses the physical models of buildings and requires a lot of
input data. The input data may include indoor air temperature, inflow/outflow water
temperature, mass flow, and heat pump power consumption. In some cases, such data
are not available due to the residents’ privacy. In contrast to white-box models, the black-
box approaches are model-free methods that are easy to implement. Artificial neural
networks [93], genetic algorithm [94], and support vector machine [95] have been addressed
recently. Still, they need a large amount of input data to train the machine learning
algorithms. As a result, they are not applicable in case studies with building data scarcity.
The gray-box models address both the physical model of the white-box and statistical
methods of the black-box approaches simultaneously. Therefore, it is the most robust
approach to estimate the thermal dynamic of buildings. This model is compatible with
Model Predictive Control (MPC) theory. MPC has been widely used in recent studies to
unlock the flexibility potential of heat pumps [96]. In [97], Economic MPC (EMPC) was
suggested to optimize the operation of heat pumps in response to electricity market prices.
To provide a general insight, Table 1 explains some key residential flexibility potentials
and applications.
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Table 1. Classification of flexibility application in household electricity consumption.

Household Appliances Flexibility Targets Ref.

Thermostatically Controlled
Appliances

TCAs

Heat Pump

(1) Reduction of energy costs for heating
of household buildings
(2) Reduction of annual emission (CO2)
(3) Reduction of energy consumption for
heating system during peak hours

[98]

Maximizing profit of buildings through trading
flexibility in intraday markets [99]

(1) Minimization of life cycle cost
(2) Reduction of environmental impacts of heat
pumps and district heating

[100]

Improving power system frequency control [101]

Refrigerator

(1) Minimization of household electricity bill
(2) Reduction of peak load [102]

Load shifting of electrical demand using cooling devices [103]

(1) Minimize electricity consumption cost of households
(2) Regulation of peak demand in power systems [104]

(1) Cost saving of smart household appliances
(2) Providing residential load for shifting to help balance
demand and supply

[105]

Electric Water Heater

(1) Minimization of electricity cost under TOU
(2) Satisfying the comfort water temperature within the
predefined bound

[106]

Minimization of cost function under Spanish electricity
price tariff [107]

(1) Minimization of energy cost under day-ahead and
real-time pricing
(2) Maximization of residents’ comfort

[108]

Cost saving for household to remote control electric
water heater [109]

Non-Thermostatically Controlled
Appliances
Non-TCAs

Wet
Appliances

(1) Minimization of energy cost
(2) Maximization of renewable energy demand
(3) Minimization of carbon emission

[110]

Proposing compensation contract to increase flexibility of
wet appliances [111]

Harness energy flexibility of buildings to flatten
demand consumption [112]

Providing load balancing for power system and
minimizing the energy cost [113]

(1) Minimizing energy consumption
(2) Reduction of emission and environmental impacts
(3) Reduction of peak demand

[114]

(1) Flattening of peak demand
(2) Meeting residents’ convenience [115]

Private Parking Vehicle-to-Home (V2H)

(1) Increase energy efficiency of homes
(2) Improvement of energy consumption pattern
(3) Shift of peak demand

[116]

(1) Increase electrification of off-grid smart homes
(2) Reduction of investment cost on the electronification [117]

(1) Reduction of building peak demand
(2) Increase profit of household
(3) Reduction of emission production

[118]

4. Industrial Demand Flexibility

Industries are energy-intensive consumers; therefore, the nominal energy consump-
tion of industrial processes is high in comparison to other demand sectors. If the flexibility
potentials of industrial processes are unlocked, a great value of power flexibility is pro-
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vided for the upstream networks. Industrial processes are divided into interruptible and
uninterruptible processes. The interruptible processes are those which can be turned off/on
without causing damage to the equipment and products. In contrast, the uninterruptible
processes are not allowed to be turned off/on regularly or it results in severe damage to
the installations or feedstocks. In many studies, the uninterruptible processes are capable
of turning up/down the energy consumption on short advance notice without causing any
damage to the production line and product.

In modern cement manufacturing plants, crushers are considered interruptible pro-
cesses. Therefore, they can be switched off on short advance notice. Moreover, the operation
of crushers can be scheduled on long advance notice, e.g., 24 h, in the day-ahead mar-
kets [119]. The mills, including raw and cement mills, are critical to keep the production
line in service. Therefore, the flexibility potentials of the mills are lower than crushers [35].
In some studies, it is suggested that the rotational speed of mills can be adjusted within a
very limited bound without causing any interruption. Therefore, the energy consumption
of the mills can be turned up/down to provide power flexibility. In [119], material storage
was suggested to increase the flexibility of cement and raw mills. It proposed constructing
storage for the output of raw and cement mills to supply the feedstock for the next processes
uninterruptedly. In this way, the mills can be switched off/on in response to the flexibility
requirements of the power system. Financial incentives are suggested in some studies to
encourage heavy industries to participate in DRPs when the power system encounters a
severe power shortage [120].

Metal smelting plants comprise different smelting pots. Generally, the smelting pro-
cess is uninterruptible. Therefore, it is not allowed to switch off the melting furnaces once
it is started or severe damage and financial costs are incurred. Although it is impossible
to turn off the running furnaces, it is still possible to turn down/up the power consump-
tion [121]. As a result, the running furnace can provide limited power flexibility. A research
study suggested adjusting the transformers’ tab to unlock the flexibility of the electric arc
furnace [122]. Once the duty of the furnace is completed, the next working round can
be delayed in response to the flexibility requirements of the power system. To meet the
production value constraint of the factory, the energy engineers rotate the operation of the
smelting furnace between different lines.

The oil refinery industries are consumers of power, heat, and steam. The key point is
that most of these industries are supplied partially by self-generation facilities. Therefore,
some part of the required heat and steam is produced by local gas turbines, Combined Heat
and Power (CHP), and boilers. While there is a strong correlation between the generation of
power, heat, and steam, the oil refinery plants are capable of providing energy flexibility for
gas and power networks. In [123], cogeneration facilities and on-site solar generation units
were suggested to increase the flexibility of the industrial plant. A robust optimization
model is proposed to unlock the flexibility of the refinery processes in response to energy
prices [124].

Although some key industries are stated, there are many flexibility potentials in other
industries which need further investigations. Table 2 classifies some flexible industrial
processes with their applications in power systems.

Table 2. Flexibility potentials in some heavy industries.

Industry Key Objective(s) Ref.

Cement Manufacturing
(1) Cost reduction
(2) Emission reduction
(3) Reduction of electricity cost

[125]

Metal Smelting Industry
(1) Providing reserve for electricity market
(2) Minimization of operation cost
(3) Integration of flexibility into capacity market

[126]

Pulp and Paper Providing up-regulation for power markets [127]
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Table 2. Cont.

Industry Key Objective(s) Ref.

Textile Industry Energy- and cost-saving measures in industrial processes [128]

Food/Drink Industry
(1) Reduction of energy consumption
(2) Reduction of emission production
(3) Facilitate use of heat pumps in the industry

[129]

Ceramics Industry
(1) Optimize energy cost
(2) Increase energy efficiency
(3) The industrial DRPs benefit the environment, economy, society

[130]

Chemical Industry (1) Improving grid operation, e.g., reliability, resilience
(2) Making profit in the industry [131]

Oil Refinery Industries Providing industrial load control in smart-grid operation [132]

Glass Manufacturing
(1) Making balance for power and gas
(2) Reduction of energy consumption cost
(3) Reduction of strain on power grids

[133]

Data Centers (1) Facilitate the integration of renewable energies to power grids
(2) Providing peak-load shaving [134]

Industrial Parks and Zones (1) Optimization of investment cost on industrial parks
(2) Prevent imbalance of energy shifting [135]

5. Commercial Demand Flexibility

The commercial demand sector is normally defined as electricity consumption in
non-manufacturing business establishments, e.g., restaurants, hotels, shopping stores,
and warehouses. Recently, by increasing the penetration of EVs, commercial parking
lots with smart charging stations emerged to provide flexibility for the power grid and
offer a benefit for vehicle owners. In contrast to the residential and industrial sectors, the
commercial DRPs are not well defined. Therefore, more studies are needed to investigate
the flexibility opportunities.

Supermarket refrigerators are flexible demands in the commercial sector. The flexibility
potential of supermarket refrigerators stems from the stored energy in the thermal mass of
refrigerated foodstuff [136]. To unlock the flexibility of refrigerators, the study proposed
a novel approach to estimating the food temperature. Based on results, the approach
can increase demand flexibility between 60% and 100% during the first 70 to 150 min.
A comprehensive evaluation was conducted in Germany to investigate the flexibility
potentials of hotels, restaurants, and offices called the service sector [137]. The results
conclude that the flexible appliances of the service sector can provide 22 TWh of theoretical
potential, i.e., approximately equivalent to 35% of the total power consumption of the
service sector. In [138], the demand response potentials of hotels and tourist accommodation
facilities were stated using joint heat-to-power energy flexibility. The study emphasized
that the potentials are independent of tourists’ behaviors and aim to increase the share of
renewables in the sector. The demand response opportunities of refrigerated warehouses
were surveyed [139]. As the study revealed, the duration, the percentage of warehouse
load, and the season are the key factors affecting the flexibility potential of a refrigerated
warehouse. A methodology was proposed in a research study [140] to quantify the demand
flexibility of lighting systems in commercial buildings. The approach uses dynamic daylight
simulation considering stochastic occupancy. Based on the simulation, the average capacity
of lighting curtailment is around 32% of the peak lighting demand.

Recently, the penetration of EVs has been increasing noticeably worldwide. Therefore,
many commercial parking lots are retrofitted with smart charging stations. The parking
lots supply parking space for commercial complexes. The parked EVs function as electrical
storage with a dwell time. Therefore, a significant amount of power storage is available for
the parking operator to integrate into the power system. In this way, the parking operator
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acts as a Demand Response Aggregator (DRA) to optimize the charging/discharging
strategies of the parked EVs. The parking lots can use the storage capacity to supply
the local electrical demand of the commercial complexes, e.g., food court, cinema, and
shopping stores [141]. The parked EVs can discharge to the commercial microgrid when
the electricity price is high and charge from the main grid when the electricity price is
low [142]. Length of dwelling time, number of parked EVs, and consent of EV owners to
participate in DRPs are key factors that impact the flexibility potential of the commercial
parking lots. If the charging/discharging schedule of EVs is coordinated properly, the EV
owners and parking lot operator can make a profit, and the power system operator takes
the advantage of power flexibility.

6. Agricultural Demand Flexibility

Agricultural or farming refers to activities to cultivate plants and breed livestock. The
plant farms are split into open-air farms and greenhouse farms. In the open-air farms, the
water irrigation systems are the most energy-intensive consumption. The water pumps
draw water from underground wells and/or surface water resources. In [143], the water
pool was suggested to increase the flexibility of water irrigation pumps. The study proposed
stochastic energy management to unlock the flexibility potentials of water irrigation pumps
in response to uncertain electricity prices in power systems with high renewable power
penetration. Therefore, the water pumps can store water in the storage pools when an excess
of renewable power occurs (low-price hours). Afterward, the farm can be irrigated by the
stored water during the shortage of renewable power (high-price hours). Moreover, it was
suggested to store water in water tank towers during high renewable power availability.
Consequently, the farms’ sprinklers will be supplied by the stored water via gravity during
low-renewable-power hours. In some studies, photovoltaic irrigation pumps are addressed
as practical solutions to provide flexibility for both the power grid and farms [144].

In countries with tropical or hot weather conditions, the peak demand of the power
grid perfectly coincides with the peak demand of the water irrigation system. The reason is
that the hot weather normally occurs at midday hours when the peak demand of cooling
systems and peak crop evapotranspiration occur concurrently. To overcome the problem, a
research study suggested a robust optimization to draw water from underground reservoirs
to water tank towers in off-peak hours and supply the crops at midday hours without
needing to run energy-intensive pumps [145]. In [146], agricultural DRPs were introduced
to decarbonize power systems. It was suggested to restructure the agricultural sector to
utilize renewable power, including wind and solar, in farms. A review study was conducted
to survey the main challenges and opportunities of DRPs in the agricultural sector [36].
Based on the scoping study, water irrigation capacity, time of water delivery, on-farm crew
availability, and financial incentives are the main barriers to implement DRPs on farms.

In greenhouse farms, the operation of cooling and heating systems can provide power
flexibility [147]. The heat pumps are addressed not only to increase the energy efficiency
of greenhouse farming but also to decrease CO2 emissions. The study concluded that
the heat pump system can provide energy efficiency of 25% to 65% more than traditional
combustion-based systems [148]. Technical assessment is provided to harness geothermal
energy for heating/cooling systems of greenhouse farming in Ecuador [149].

In livestock farms, some flexibility potentials were discussed in recent studies. Poultry,
piggery, and dairy farms are the most important studies in this field. In the research study,
a new term “poultry demand-side management” was suggested to increase the penetration
of solar energies in poultry electricity consumption and decrease dependency on the
main grid [150]. In New Zealand, dairy farms were studied to shift the main electricity
consumption out of peak hours and to provide balance for the power systems [151]. Based
on the results, the power consumption of the irrigation and milking-related processes
contribute to the peak demand of the farm. In [152], it was discussed that piggery waste
can be used to generate electricity. The study reviewed current potentials in Cyprus. The
on-farm electricity generation can provide flexibility for the farm and upstream grid. Air-
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source heat pumps are addressed in pig farms to increase the use of renewable energy,
reduce greenhouse gas emissions, and provide economic benefits for the farm [153].

7. Challenges and Future Insights

In the previous sections, different flexibility potentials of demand sectors were sur-
veyed. It was shown how the industrial processes, commercial sectors, agricultural farms,
and household appliances can provide flexibility for the power systems. Although the
flexibility potential is known in some sectors, more studies are required to investigate new
potentials. Moreover, the flexibility potentials of different sectors should be aggregated and
integrated into power systems. In other words, segregated and unintegrated potentials may
not meet power system requirements. To achieve the aim, intermediary entities emerged
in recent years to play a pivotal role between the supply and demand sides. The entities
are called Demand Response Aggregators (DRAs), Demand Response Providers (DRPs),
and Flexibility Management Systems (FMSs). Although the applications of the mentioned
entities are different in detail, they aim to facilitate the integration of demand flexibilities
into energy systems. Demand response management needs expert knowledge in differ-
ent sectors. Therefore, the coordination mechanism of DRPs between demand sectors is
quite complex. As a result, sophisticated control schemes are required to coordinate DRPs
between demand sectors with different response times and flexibility. Despite the coordi-
nation issues, there are still some barriers to unlocking demand flexibility or motivating
consumers to participate in DRPs. Among them, the most important challenges can be
stated as follows (but not limited to):

(1) Regulatory barriers, e.g., lack of regulation or tax issues for flexible industries;
(2) Financial incentives for flexible consumers;
(3) Lack of motivation and widespread adoption of DRPs;
(4) Technological challenges, e.g., lack of IoT and data storage/processing facilities.

Currently, many research studies and projects are being conducted to increase the
share of Power-to-X (P2X) in energy systems. To provide sustainable energy in the P2X,
more flexibility opportunities are expected for multi-carrier and energy hubs. By increasing
the penetration of renewable hydrogen in future energy systems, the flexibility potentials
of the power network, heat network, mobility sector, and gas network should be unlocked
to counterbalance the renewable energy fluctuations. Therefore, future studies will focus
more on the flexible operation of electrolyzer facilities and demand sectors.

8. Conclusions

In this paper, the flexibility potentials of demand sectors were surveyed. The sectors
included residential, industrial, commercial, and agricultural demands. In the residential
sector, HEMSs can unlock the flexibility potential of household appliances. The TCAs, e.g.,
heat pumps, HVAC, and electric water heaters, exhibit great potentials. The non-TCAs,
including wet appliances, are practical solutions to shift power consumption out of peak
hours. In the industrial sector, many interruptible processes can provide great values of
flexibility for power systems. Among them, cement crushes and mills can be curtailed
with prior notification. The power consumption of smelting furnaces can be adjusted on
short advance notice through transformers’ tabs. In the commercial sector, the flexibility
opportunities of commercial buildings and tourist accommodation facilities, e.g., hotels and
restaurants, were addressed. The refrigerated supermarkets and refrigerated warehouses
are workable solutions to integrate flexibility into power systems. Moreover, by increasing
the penetration of EVs, public parking lots are turning into great electrical storage facilities
to provide power regulation for power systems. In the agricultural sector, open-air farms
take the advantage of flexible water irrigation pumps. Water tank towers are great sources
of energy flexibility not only to provide peak shaving for the power grid but also to decrease
the farms’ operation costs. In greenhouse farming, heat pumps can provide flexibility for
cooling and heating purposes. The livestock farms, dairy farms, poultry, and piggery farms
are capable of shifting power consumption out of peak hours.
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Although the flexibility potentials of demand sectors were described, more studies
should be conducted to coordinate the flexibility potentials of demand sectors in response to
power system requirements. The penetration of power-to-x facilities is increasing in energy
systems worldwide. Therefore, future studies should focus on the flexible interoperation of
hydrogen energy, electrolyzers, and demand sectors.
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