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Abstract—We consider the problem of demand-side energy
management, where each household is equipped with a smart
meter that is able to schedule home appliances online. The goal
is to minimize the overall cost under a real-time pricing scheme.
While previous works have introduced centralized approaches in
which the scheduling algorithm has full observability, we propose
the formulation of a smart grid environment as a Markov game.
Each household is a decentralized agent with partial observabil-
ity, which allows scalability and privacy-preservation in a realistic
setting. The grid operator produces a price signal that varies
with the energy demand. We propose an extension to a multi-
agent, deep actor-critic algorithm to address partial observability
and the perceived non-stationarity of the environment from the
agent’s viewpoint. This algorithm learns a centralized critic that
coordinates training of decentralized agents. Our approach thus
uses centralized learning but decentralized execution. Simulation
results show that our online deep reinforcement learning method
can reduce both the peak-to-average ratio of total energy con-
sumed and the cost of electricity for all households based purely
on instantaneous observations and a price signal.

Index Terms—Reinforcement learning, smart grid, deep learn-
ing, multi-agent systems, task scheduling

I. INTRODUCTION

In the past decade, Demand-Side Management (DSM) with
price-based demand response has been widely considered to
be an efficient method of incentivizing users to collectively
achieve better grid welfare [1]. In a typical DSM scenario, an
independent utility operator manipulates the aggregate energy
demand by adopting a time-varying pricing scheme that is
announced to users on a rolling basis. In response to the
pricing scheme, the users voluntarily schedule or shift their
appliance loads with the aim of minimizing their individual
costs (see the example in [2]). Typical objectives can be to
minimize energy consumption, costs, peak load demand [2]–
[8] or maximize the utility of certain actors [9]–[11].
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Under the framework of automatic price-demand schedul-
ing, a variety of problem formulations have been previously
proposed. The DSM problem can be formulated under a cen-
tralized or decentralized framework. It can also be categorized
under a planning-based framework or an online framework
that allow users to react to time-variant features. Examples of
centralized planning include casting DSM as an optimization
problem [7], [9], while an example of a centralized online
approach is the scheduling problem proposed by [8]. However,
a shortcoming of these methods is their inability to account for
unknown parameters or stochasticity in the DSM system such
as random task arrivals and real-time pricing. An alternative
method is to model the system dynamics as a Markov Decision
Process (MDP) with partially observability [12]. Instead of
planning on the premise of a known system model, strategies
can be learned through reinforcement learning [3], [4].

In this paper, we propose a Markov game-based framework
that allows household energy users within a microgrid to
manage their energy consumption both decentrally and online
via their smart meters. Our second contribution is an extension
of a deep actor-critic algorithm to train these smart meter-
enabled household agents to minimize the cost of energy
under real-time pricing. (We shall also refer to households as
’agents’ in the reinforcement learning context from hereon.)
Our proposed approach offers two main advantages. The main
advantage of decentrally-controlled energy-managing smart
meters is that, after the training phase, each household agent
is able to act independently in the execution phase, without
requiring specific information about other households — each
household agent will not be able to observe the number or
nature of devices operated by other households, the amount of
energy they individually consume, and when they consume this
energy. This allows for privacy-preservation and scalability
in the execution phase. The main advantage of the online
strategy-learning framework is that each household agent can
respond appropriately to fluctuations brought about by stochas-
tic processes within the microgrid system. We introduce details
of the system model in Section III.

Our aforementioned aim addresses two key challenges.
Firstly, the model of the microgrid system and its pricing
methodology is not available to each household. Secondly, the
limitation in the observation available to each household and
the lack of visibility regarding the strategy of other households
creates the local impression of a non-stationary environment.

To overcome the first mentioned key challenge, we propose978-1-5386-4633-5/18/$31.00 ©2018 IEEE



a model-free policy-based reinforcement learning method in
Section IV for each household to learn their optimal DSM
strategies. To address the second key challenge, we propose
a centralized critic network which provides information to
guide the learning processes of the households. Experiments
are presented in Section V. By comparing our method to an
offline method that plans consumption based on a predicted
price schedule [7], we show that our method is better able to
handle the uncertainties associated with real-time pricing.

II. RELATED WORK AND PRELIMINARIES

A number of previous works have applied reinforcement
learning to train decision-making entities in smart grid settings
[5], [10], [11], [13]. These studies applied tabular value-based
reinforcement learning algorithms to optimize energy costs.
Consequently, these methods were limited to processing only
discretized state and action spaces.

Recently, there have also been studies that have introduced
methods utilizing deep neural networks for multi-agent re-
inforcement learning, albeit to different classes of problems
[14]–[16]. These newly introduced methods are extensions of
the now-canonical deep Q-network (DQN) algorithm for the
multi-agent environment: they utilize a central value-function
approximator to share information. However, as explained in
section IV, a value-based reinforcement learning algorithm
would not suit the problem we introduce in this paper because
we consider a reward function that cannot be fully described
by only the current state and action.

In this paper, we propose a policy-based algorithm based on
the Proximal Policy Optimization (PPO) algorithm [17] for a
multi-agent framework. We consider the partially observable
Markov game framework [18], which is an extension of the
Markov Decision Process (MDP) for multi-agent systems. A
Markov game for N agents can be mathematically described
by a tuple 〈N ,S, {An}n∈N , {On}n∈N , T , {rn}n∈N 〉, where
N is the set of individual agents, n is the agent index, and S
describes set of all possible overall states of all agents in the
environment.

At each discrete time step k, each agent n is able to make
an observation on ∈ On of its own state. Based on this
observation, each agent takes an action that is chosen using
a stochastic policy πθn : On 7→ An, where An is the set of
all possible actions for agent index n. The environment then
determines each agent’s reward as a function of the state and
each agent’s action, such that rn(k) : S×A1×· · ·×An 7→ R.
It moves on to the next state according to its state transition
model T : S ×A1 × · · · × An → S ′.

III. SYSTEM MODEL

We consider a DSM problem in a microgrid of N house-
holds that each have M household appliances. Each household
is equipped with a smart meter that is capable of controlling all
household appliances. The problem that we present is a more
advanced form of the demand-side scheduling problem than
that presented in [7] where each household has no advanced
knowledge of upcoming tasks. We primarily consider inter-
active background appliances. These appliances are actively

turned on by the household, but the actual time of operation
poses a less immediate impact to the user. The appliances that
we consider in each household can be, for example, washing
machines, clothes dryers, storage water heaters, dish washers
or refrigerators.

Each household’s local operational state can be expressed as
sn = [x>n , t

>
n , l
>
n ,q

>
n ]
>. It consists of an indicator of whether

each household appliance (super-scripted index) is turned on
or off xn = [x1n, . . . , x

M
n ]>, the length of time before the

next task can commence tn = [t1n, . . . , t
M
n ]>, the number of

tasks queued for each appliance qn = [q1n, . . . , q
M
n ]>, and

the lengths of the subsequent tasks each appliance has in
queue ln = [l1n, . . . , l

M
n ]>. The overall state is simply the joint

operational state of all the users: s = [s1, . . . , sN ]. We adopt a
practical assumption that each household can only observe its
own internal state along with the published price at the previ-
ous time step p(k−1), such that on(k) = [sn(k)

>, p(k−1)]>.
The task arrival for each appliance corresponds to the

household’s demand to turn it on, and is based on a four-
week period of actual household data from the Smart* dataset
[19]. We first discretise each day into a set of H time
intervals H = {0, 1, 2, ...,H − 1} of length T , where each
interval corresponds to the time in the simulated system. The
simulation time interval for each time-step in the Markov game
is determined with the following relation:

h(k) = mod (k,H). (1)

Next, we count the number of events in each interval where
the appliances of interest were turned on. This is used to com-
pute an estimate of the probability that each appliance receives
a new task during each time interval, Pr(q′mn = 1|h(k)). The
task arrival for each appliance q′mn at each time interval k is
thus modelled with a Bernoulli distribution. Each task arrival
q′
m
n for a particular appliance m in household n is added to

the queue qmn .
The duration of the next task to be executed is denoted

by lmn . Its value is updated by randomly sampling from an
exponential distribution whenever a new task is generated (i.e.
q′
m
n = 1). The rate parameter λmn for the distribution for each

appliance is assigned to be the reciprocal of the approximate
average duration of tasks in the above-mentioned four-week
period selected from the Smart* dataset [19]. We choose to
keep the task duration constrained to l ∈ [T,∞].

The use of the described probabilistic models for generation
of task arrivals and task lengths enable us to capture the
variation in household energy demand throughout the course
of an average day while preserving stochasticity in energy
demand at each household.

We consider that each household’s scheduler is synchro-
nized to operate with the same discrete time steps of length
T . At the start of a time step, should there be a task that has
newly arrived into an empty queue (qmn = 1), the naive strategy
of inaction would have the task start immediately such that
tmn = 0. This corresponds with the conventional day-to-day
scenario where a household appliance turns on immediately
when the user demands so. However, in this paper we consider
a setting where each household has an intelligent scheduler



that is capable of acting by delaying each appliance’s starting
time by a continuous time period amn ∈ [0, T ]. The joint action
of all users is thus: a = [a1, . . . ,aN ]>.

Once an appliance has started executing a task from its
queue, qmn is shortened accordingly. We consider that the
appliance is uninterruptible and operates with a constant power
consumption Pmn . If an appliance is in operation for any length
of time during a given time step, we consider its operational
state to be xmn = 1. Otherwise, xmn = 0.

Let dmn (k) denote the length of time that an appliance m is
in operation during time step k for household n. The energy
consumption of a household En(k) during time step k is thus:

En(k) =

M∑
m=1

dmn (k)Pmn . (2)

On the grid side, we consider a dynamic energy price p(k)
that is a linear function of the Peak-Average-Ratio [1], [7] of
the energy consumption in the previous κ time steps:

p(k) =

κT max
k−κ+1≤k

N∑
n=1

En(k)

N∑
n=1

En(k)

. (3)

Each household receives a private reward signal that is a
weighted sum of a cost objective and a soft constraint:

rn(k) = −rc,n(k) + wre,n(k). (4)

The first component of the reward function rc,n is the
monetary cost incurred by each household at the end of each
time step. The negative sign of the term (5) in (4) encourages
the policy to delay energy consumption until the price is
sufficiently low.

rc,n(k) = p(k)× En(k) (5)

The second component of the reward is a soft constraint
re,n tunable by weight w. The soft constraint encourages the
policy to schedule household appliances at a rate that matches
the average rate of task arrival into the queue.

re,n(k) = En(k) (6)

The state transition for all households can be considered
to be Markovian because the transition T to the next overall
system state is dependent on the current state and the actions
of all household agents. In contrast, we recall from (3) and (4)
that the price of energy, and consequently each agent’s reward,
is a function of not only the current state and actions, but also
of the history of previous states. Our pricing-based energy
demand management process is, therefore, a generalization of
the Markov game formulation [18].

IV. SEMI-DISTRIBUTED DEEP REINFORCEMENT
LEARNING FOR TASK SCHEDULING

The DSM microgrid problem that we introduced in the
previous section presents various constraints and difficulties in
solving it: (i) each household can choose its action based only
on its local observation and the last published price, (ii) the

reward function is dependent on the states and actions beyond
the last time step, (iii) the state and observation spaces are
continuous, (iv) the household agents have no communication
channels between them, and (v) a model of the environment is
not available. Constraint (iv) is related to the general problem
of environmental non-stationarity: concurrent training of all
agents would cause the environmental dynamics to constantly
change from the perspective of a single agent, thus violating
Markov assumptions.

Requirements (i) and (ii) and environmental non-stationarity
mean that value-based algorithms such as Q-learning are not
suitable, because these algorithms depend on the Markov
assumption that the state transition and reward functions are
dependent only on the state and action of a single agent at
the last time step. Furthermore, requirement (v) rules out
model-based algorithms. Thus, in this section, we propose
an extension of the actor-critic algorithm Proximal Policy
Optimization (PPO) [17] for the multi-agent setting which we
will refer to as Multi-Agent PPO (MAPPO).

Let π = {π1, π2, ..., πN} be the set of policies, parame-
terized by θ = {θ1, θ2, ..., θN}, for each of the N agents
in the microgrid. Each policy πn(an|sn) is stochastic, in
that it produces and samples from a probability distribution
of actions given the observed state. The objective function
that we seek to maximize is the expected sum of discounted
reward J(θ) = Es∼Prπ,a∼πθ [

∑K
k=i γ

k−irk], where Prπ is the
probability distribution of states under policy set π, and rk is
obtained based on (4). In canonical policy gradient algorithms
such as A2C, gradient ascent is performed to improve the
policy:

∇θnJn(θn) =
Es∼Prπ,an∼πn [∇θn log πn(an|sn)Qπnn (sn,an)] .

(7)

This policy gradient estimate is known to have high vari-
ance. It has been shown that this problem is exacerbated in
multi-agent settings [14]. For this reason, we propose the
implementation of PPO as it limits the size of each policy
update. Additionally, we augment the individually trained actor
networks with a central critic network V̂ π that approximates
the value function for each household V πn based on the overall
system state, thus receiving information for the training of
cooperative actions by individual households. The objective
function we propose is:

L(θn) = Ek

[
min

(
ρk(θn)Â

π
n(k),max

(
1− ε,

min(ρk(θn), 1 + ε)
)
Âπn(k)

)
+ λH(πn)

]
,

(8)

where ρk(θn) =
πn(ak|ok)
πn,old(ak|ok)

, and both ε and λ are hyperpa-

rameters. Âπn(k) is the estimated advantage value, which is
computed using the critic network:

Âπn(s,an) ≈ r(s,an) + γV̂ π(s(k + 1))n − V̂ π(s(k))n. (9)

We fit the critic network, parameterized by φ, with the
following loss function using gradient descent:

L(φ) =
∑
n

∑
k

(
V̂ π(s(k))n − yn(k)

)2
. (10)



Fig. 1: The architecture of a centralized critic neural network.

TABLE I: Time-related hyper-parameters for simulations of
the 32-household microgrid system

Symbol Hyper-parameter Value
T Period of each time step 0.5 hours
- Episode length 240 time steps

- Time steps per iteration of the
training algorithm 5040 time steps

where the target value y(k) = rn(k)+γV̂
π(s(k+1))n. As the

notation suggests, this update is based on the assumption that
the policies of the other agents, and hence their values, remain
the same. In theory, the target value must be re-calculated
every time the critic network is updated. However, in practice,
we take a few gradient steps at each iteration of the algorithm.

The centralized critic-network utilizes a branched neural
network architecture shown in Figure 1. To compute the
estimated state value of a particular household i, Vi, we
provide the following input vector to the centralized critic-
network: [ s>i s>1 s>2 ... s>1 s>i−1 s>i+1 ...s

>
N ]>. The critic network

would thus provide an estimate of the quantity V π(s)i =∑
k Eπθ [r(si,ai)|s1, s2, . . . , si−1, si+1, . . . , sN ].

V. EXPERIMENTS

In this section, we present the settings and environmental
parameters that we use for experimentation, evaluate our
proposed Multi-Agent PPO (MAPPO) algorithm against non-
learning agents and the offline Energy Consumption Scheduler
(ECS) method by [7], examine the effect of augmenting local
observations in proposed system model, and consider the
effects of household agents learning shared policies.

A. System Setup

We present experiments on a simulated system of identical
households, each with 5 household appliances. As mentioned,
their parameters relating to power consumption Pmn , task
arrival rates pmn (k) and lengths of operation λmn are chosen to
be a loose match to data sampled from the Smart* 2017 dataset
[19], and thus resemble typical household usage patterns.

Hyper-parameters relating to the simulation time scales are
shown in Table I. Each experiment is run with a number
of random seeds; the extent of their effect is represented by
shaded areas on the graphs shown.

For this chosen experimental setup, we run two baseline
performance benchmarks that were non-learning: (i) Firstly,
an agent that assigns delay actions of zero for all time steps.
This represents the default condition in where the household
occupants dictate the exact time that all appliances turn on.

Fig. 2: Training progress for a 32-household microgrid system

Fig. 3: Average aggregate energy consumed by 32-household
microgrid for each time step of the day.

(ii) A second baseline agent randomly samples delay actions
from a uniform distribution with range [0, T ].

The results from the training process are compared in
Figure 2. The y-axes show the average reward gained (left),
and the costs incurred (right) by all households for each day
within each batch of samples. All trained policies demonstrate
a sharp improvement in reward achieved from the onset of
training. The monetary cost decreases with increasing reward,
showing that the reward function is suitably chosen for the
objective of minimizing cost.

In Figure 3, we plot the average total energy consumed by
the entire microgrid system for each time step of the day. Note
that the x-axis shows the time in the simulated environment.
The blue line shows the energy-time consumption history if
all home appliance were to be run immediately on demand; it
reveals peaks in demand in the morning and evening, presum-
ably before and after the homes’ occupants are out to work,
and lows in demand in the night time. The uniform-random-
delay agent dampens these peaks in demand by shifting a
number of tasks into the following time steps (note the lag
in energy consumption compared to the zero-delay agent). In
contrast, the agent trained using reinforcement learning is not
only able to delay the morning peak demand, but also spread
it out across the afternoon. The result is a lower PAR, and
hence a lower monetary cost per unit energy.



Fig. 4: Average aggregate energy consumed by 10-household
microgrid for each time step of the day

Although the morning peak in energy demand is smoothed
out by the MAPPO-trained households, the same effect is less
pronounced for the evening peak. This can be attributed to the
training procedure: the batch of experience gathered in each
iteration of the algorithm began at 00:00 hrs, and terminated
at the end of a 24 hour cycle, providing fewer opportunities
for the agents to learn that the evening demand can be delayed
to the early hours of the subsequent day. Moreover, delaying
tasks on the last cycle of each batch would have led to a lower
value of soft-constraint reward re,n, but an un-materialized
cost improvement (higher rc,n) for the subsequent morning
(because of the midnight cut-off).

The results discussed above are significant for our particular
application because it shows that while each household is
controlled by different policies, all households are able to
learn a cooperative strategy that flattens energy demand and
consequently decrease the average cost for all users. The
ability of the agents to learn in a decentralized manner is
compatible with a microgrid system where there may be
limited bandwidth to both receive and transmit information
centrally. The individual user, or a small cluster of users,
could improve their policy using local computing resources,
while receiving only the output signal from the centralized
critic network. Conversely, if computing resources for neural
network training are only available centrally, update gradients
can be transmitted to individual actor networks and result in
similar performance.

B. Comparison with ECS

We compare our proposed MAPPO based method to the
Energy Consumption Scheduler (ECS) method proposed by
[7]. Instead of making decisions online as with MAPPO, ECS
requires the following information in advance to schedule all
energy consumption for the next day: (i) the mathematical
function used to determine the price of electricity for each time
step, and (ii) the total planned energy consumption for each
household appliance for the entire day, computed as follows:

H−1∑
h=0

Emn =

H−1∑
h=0

(
Pr(q′mn = 1|h)× lmn × Pmn

)
. (11)

TABLE II: Average reward obtained per day in a 10-household
microgrid

Non-learning ECS
w=2.2

MAPPO
Uniform Random Zeros w=0.4 w=2.2

-0.1 -13.8 7.0 -0.1 8.0

For a better comparison, we adapted the experimental setup
to match the method used for ECS in its original paper: we
considered a system of N = 10 households, split each day into
H = 24 equal time intervals, fixed the length of operation
of each task such that lmn = 1/λmn , and used a quadratic
price function (12). We also consider different values of the
multiplier w for the cost constraint in the reward function (4).

pn(k) = b(h)× En(k)2. (12)

In Figure 4, we plot the average aggregate energy consumed
by the microgrid for each time step. Once again, the agents
trained using reinforcement learning are able to flatten the
peaks in energy consumption by spreading demand across
subsequent time steps. The MAPPO agents trained with a
coefficient of w = 2.2 consume almost the same energy
over the entire day as the naive agents with zero delay; this
constitutes a shift in energy demand that results in a decrease
in the cost of energy.

In comparison to the MAPPO agents, ECS produces a flatter
energy demand profile. Because the ECS algorithm receives
information in advance, it is able to schedule appliances
to operate in the early hours of the day to exploit lower
prices. However, since the energy consumption inputs received
by ECS are average values, each household experiences a
mismatch between its actual energy demand and the sched-
ule produced by ECS. Consequently, we compute a reward
according to (4), where the value rc,n is taken to be the actual
energy demand that is fulfilled by the ECS-generated schedule.
The results presented in Table II show that the MAPPO agents
with w = 2.2 achieve an average daily reward that is more
than 10% higher than that achieved by ECS.

The results reveal the MAPPO method’s key advantage,
in that it can be utilized in a fully online scenario without
requiring the price function or the total daily consumption in
advance. It is able to rely on instantaneous observations of
the local state and the price signal to determine how tasks
should be scheduled by delaying them. This online approach
and reliance on mainly locally observable information is more
consistent with the nature of domestic electricity use.

Another advantage of MAPPO is that, in addition to shifting
the demand of energy, we are able to implement energy
reduction by tuning the coefficient w. Figure 4 shows that the
MAPPO agents trained with a smaller coefficient of w = 0.4
exhibit lower energy demand than both the MAPPO agents
with w = 2.2 and the ECS method.

C. Comparison with Methods using Decentralized Critics

Figure 2 also compares our proposed MAPPO algorithm
to a similar PPO-based algorithm with decentralized critics,
and the more traditional Advantage Actor-Critic (A2C) [20]



algorithm. The number of learnable parameters across all the
N decentralized critic networks was chosen to be similar to
that of the centralized critic, on the assumption that this would
result in a similar computation resource requirements. The
results show that all the agents trained with deep reinforcement
learning perform better than the non-learning agents.

Our proposed MAPPO algorithm achieves the most sample-
efficient learning and best performance, while the performance
of the decentralized PPO algorithm is close. This demonstrates
that good performance can be achieved by learning in a
completely decentralized manner. This would be useful in
scenarios where the connectivity of household smart meters
is limited, but local computing power can be utilized.

The A2C algorithm is also able to reach the same level of
performance, although it learns less efficiently with the same
number of samples. Experiments with higher learning rates
showed instabilities that manifested in exploding gradients –
this was in spite of policy-based algorithms such as A2C
being generally known to be more stable than value-based
algorithms. The reason is that, in our proposed microgrid
environment, the updates to the policies for other households
under A2C have a large effect on the overall system dynamics,
possibly worsening the non-stationarity of the environment as
perceived by each household. In contrast, the nature of the
actor network update in the PPO algorithm limits the change
in the actions taken by the updated policy, thus leading to
stable performance increments.

VI. CONCLUSION

In this paper, we proposed and implemented a smart grid en-
vironment, as well as a multi-agent extension of a deep actor-
critic algorithm for training decentralized household agents to
schedule household appliances with the aim of minimizing
the cost of energy under a real-time pricing scheme. Our
approach allows for an online approach to household appliance
scheduling that is privacy-preserving, requiring only the local
observation and a price signal from the previous time step to
act. A joint critic is learned to coordinate training centrally.

Our results show that our proposed algorithm is able to
train agents that achieve a lower cost and flatter energy-time
profile than non-learning agents. Our algorithm also achieves
quicker learning than independent agents trained using the
canonical Advantage Actor-Critic (A2C) algorithm. Crucially,
its ability to respond to stochastic environmental parameters
resulted in increased utility in comparison to an optimization-
based planning method.

Future work can involve the extension of the smart grid
environment to include more features and real-world complex-
ities; we identify two possibilities. Firstly, the architecture of
the microgrid can be expanded to include more energy sources,
which may be operated by producers or households. Secondly,
we may expand the overall grid to include more agents and
more types of agents, such as energy producers and brokers.
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