
M. E. van Biene-Hershey et al. (eds.), Integrity and Internal Control in Information Systems
©IFIP International Federation for Information Processing 2000

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35501-6_14

http://dx.doi.org/10.1007/978-0-387-35501-6_14

160 Integrity and Internal Control in Information Systems

Reality, however, shows that such mechanisms for enforcing organizational
security policies are often not adequately used. There are various reasons for
this. First, security policies are often not known or not well specified, mak­
ing it difficult or even impossible to translate them into appropriate security
mechanisms. This observation holds for both general security policies as well
as policies tailored to individual database users and applications. Second, and
more importantly, security policies do not sufficiently guard data stored in a
database system against "privileged users". (Carter and Katz 1996) revealed
that in computer systems the primary security threat comes from insider
abuse rather than from intrusion. This observation results in the fact that
much more emphasis has to be placed on internal control mechanisms of sys­
tems, such as audit log analysis.

Security models as described in, e.g., (Wood et al. 1979, Denning et al.
1986, Jajodia and Sandhu 1990, Smith and Winslett 1992), to prevent misuse
(Misuse includes both insider abuse and intrusion.) are insufficient to pro­
tect the information stored in database systems because of the increase in the
size of data to achieve a fine grain control. More importantly, these models as­
sume that security policies of an organization are known, which, as mentioned
before, is often not the case. Misuse detection systems (MDSs)* are a cost­
effective compromise to establish and assure a certain degree of security in a
system. Nevertheless, concepts for misuse detection in database systems have
not been adequately addressed by existing MDSs which neither consider the
structure and semantics nor the fine granularity of data in database systems.

In this paper we propose a misuse detection system tailored to relational
database systems. The system called DEMIDS (DEtection of Misuse in Data­
base Systems) provides a rich set of tools to derive user profiles from audit
logs. Such profiles describe the typical behavior (access patterns) of users in
the system by specifying the typical values offeatures that are audited in audit
logs. The profiles derived are used to detect misuse behavior. Although it can
be used to detect both intrusion and insider abuse, DEMIDS places empha­
sis on the detection of malicious behavior by legitimate users who abuse their
privileges. Hence the system is particularly useful for internal control. Our sys­
tem can complement misuse detection at the operating system layer because
intrusion attempts that MDSs fail to detect at the operating system layer may
be detected as anomalous events at the database system layer. Further, the
profiles derived can serve as a valuable tool for security re-engineering of an
organization by helping security officers (SSO) to define/refine security poli­
cies and to verify existing security policies, if there are any. Finally, profiles
can be used to implement respective enforcing mechanisms in the database
systems using, e.g., triggers, assignment of privileges, or roles.

Essential to the proposed approach is that, given a database schema and

*Intrusion Detection System IDS is often used instead of MDS. However, the term IDS is
confusing under the author's definition of intrusion and misuse. Since most systems detect
both intrusion and insider abuses, we will adopt the terminology MDS.

DEMIDS: a misuse detection system for database systems 161

associated applications, the access patterns of users will form some work­

ing scopes comprising certain sets of attributes that are usually referenced

together with some values in a query. The idea of working scopes is concep­

tually captured by the concept of frequent itemsets which are sets of features

with certain values. Based on the data structure and semantics (integrity con­

straints) encoded in the data dictionary and the user behavior reflected in the

audit logs, DEMIDS defines a notion of distance measure which measures the

closeness of a set of attributes with respect to the working scopes. Distance

measures are used to guide the search for frequent itemsets in the audit logs
by a novel data mining approach that takes advantage of the efficient data

processing functionality of database management systems. Misuse, such as

tampering with the integrity of data, then can be detected by comparing the

derived profiles against the security policies specified or against new informa­

tion (audit data) gathered about users.

1.1 Related Work

The security goals of database systems are availability, confidentiality and
integrity (Castano et al. 1995). Mandatory and discretionary access con­

trol models have been proposed for general computer systems to achieve

these goals (Bell and LaPadula 1973, Biba 1977, Dion 1981, Harrison et

al. 1976). Nevertheless, these mechanisms typically operate on the file and

command/process level of operating systems, which is too coarse for the finer

level of granularity of data in database systems.

There are various extensions of these security models to database systems.

(Denning et al. 1986, Jajodia and Sandhu 1990, Smith and Winslett 1992) ex­

tend the concept of mandatory access control in relational database systems

by allowing polyinstantiation of data at the tuple level. (Wood et al. 1979) pro­

vides a mapping between access control in a DBS to that at operating system

level. These mechanisms are essentially based on the general mandatory access

control models and hence suffer the same limitation of being only applicable

to an organization with known security policies. Further, polyinstantiations

come at the cost of increasing the number of tuples in the database.

Detection mechanisms are employed to complement the shortcomings of

prevention mechanisms (Javitz and Valdez 1991, Vaccaro and Liepins 1989,

Heberlein et al. 1990, Staniford-Chen et al. 1996, Forrest et al. 1996, Lee and

Stolfo 1998). Nevertheless, concepts for misuse detection in database systems

have not been adequately addressed by existing approaches to misuse detec­

tion systems. These systems typically reside on the operating system and/or

network which work with files and system commands. The mapping between

files in operating systems to relations and attributes in database systems is

not exact and hence cannot closely reflect the user behavior. Moreover, audit­

ing the user behavior at these layers is unsuited for misuse detection at the

DBS level because the semantics and structure of the data are not reflected in

162 Integrity and Internal Control in Information Systems

such audit logs. Unlike previous MDSs, such domain knowledge is considered
by DEMIDS to derive user profiles.

1.2 Terminology

In the rest of the paper we adopt the relational database model as the un­
derlying data model for DEMIDS. We assume a given database schema S =
(R, IC) where R is a set of relation schemas and IC is a set of semantic in­
tegrity constraints that have to be satisfied by every instance of the database
schema. A relation schema R E R with attributes A1, ... , An is denoted by
R = (A1 , ... , An). We denote the attributes associated with a relation schema
R by attr(R), and the attributes of all relations in the schema S by attr(S).
The value of attribute Ai of tuple t from an instance of a relation schema R
is denoted by t.Ai.

The integrity constraints considered in this paper include primary and for­
eign key constraints imposed on relations in R. We furthermore assume that
associated with the database is a set of applications. A database application
is considered to be a sequence of (parameterized) SQL queries. Users interact
with the database system through a set of operations which are either issued
by applications on behalf of the users, or directly by users in form of free form
SQL queries, in particular database modifications as they are typically issued
by, e.g., database administrators.

1.3 Organization of the Paper

The rest of the paper is organized as follows: In Section 2, we discuss the archi­
tecture of DEMIDS, in particular its coupling with a given database system.
In Section 3, we introduce the notions of distance measure and frequent item­
sets to capture the working scopes of users. In Section 4, we present a Profiler
using a novel data mining algorithm to discover profiles for users based on the
ideas of distance measure and frequent itemsets. In Section 5, the advantages
of the Profiler are discussed and its application to some scenarios is given.
We conclude the paper in Section 6 with a summary and overview of future
research.

2 ARCHITECTURE

The proposed misuse detection system DEMIDS is tightly coupled to an ex­
isting database system in that DEMIDS utilizes certain functionality of the
system such as auditing and query processing. DEMIDS consists of four com­
ponents (Figure 1): (1) Auditor (2) Data Processor (3) Profiler and (4) De­
tector.

DEMIDS: a misuse detection systemfordatabase ystems 163

The Auditor is responsible for collecting the audit data of users by audit­

ing their queries through the auditing functionality of the DBMS. A set of

interesting features to audit is selected by the SSO, depending on the security
policies to establish or verify. For example, if a security policy states that

access to a set of sensitive attributes should be monitored, a set of interesting

features would be the set of attributes (names) referenced in the queries. If
fabrication of data is the concern, new and old values of attributes in update,
insert and delete queries should be audited. In general, we do not assume sce­
narios where "everything" is audited. The features that have to be audited are
selected by the SSO. In practice, features are selected depending on whether
the behavior and access patterns of particular users are of interest or whether

the usage of certain applications by certain users is of interest.

D Component

0 Data Storage

E ::;. Data Flow

SuspisionLevel

Figure 1 Components of DEMIDS's Architecture

D

B

s

Monitored features are recorded in audit logs. In order for the auditing and
log management not to become a bottleneck of the database system and as­

sociated applications, it is possible to periodically purge audit logs to another

database system which then is used by the other components of DEMIDS.

164 Integrity and Internal Control in Information Systems

The Data Processor is responsible for preprocessing the raw data in the

audit logs, such as handling missing values, converting the raw data into

appropriate data structures and types for the Profiler. More importantly, it

groups the raw audit data into audit sessions. This is a critical step because

the way audit data are aggregated into audit sessions determines what profiles

are generated. For instance, the data can be grouped according to users or

roles (a role being a collection of privileges) adopted by the users (Sandhu et

al. 1996). User profiles are generated in the former case and role profiles in

the latter.

During the training stage, which is typically supervised by the SSO, the

Profiler generates a profile for each audit session. The Profiler consults the

repository of domain knowledge, such as the database schema, to guide its

search for profiles that satisfy certain interesting measures, for example, a

sufficient support. It is assumed that during the training stage, users do not

perform malicious behavior to train the Profiler and that there are enough

data collected to represent their typical behavior. For instance, in an office

system, the training stage can include office hours during weekdays (since most

business operations are performed during office hours of weekdays) and the

first and last few days of a month (to cover monthly operations). In systems

where users have well defined job descriptions, user behavior is fairly stable

and the training stage can last for a shorter period of time, for instance, only

a few days.

During the monitoring stage, the Detector computes a score to determine

if user activities are suspicious. This can be achieved by comparing the new

information (audit records) about user activities against the corresponding

profiles derived during the training stage. Another way is to compare the user

profiles against the security policies. Both the profiles and security policies in

DEMIDS are specified in a rule based format. Comparison of the profiles and

policies can be based on the number of new rules, missing rules and rules with

the same precondition but different consequents.

3 APPROACH

In this section we describe the main idea behind the concept of working scopes

for users. We then define the notion of distance measure to capture the degree

of "closeness" of a set of attributes in a given database schema with respect to

the working scopes. This is followed by a description of the concept of frequent

itemsets which employs distance measure to represent the working scopes of

users. The idea of frequent itemsets forms the basis for deriving user profiles.

3.1 Working Scopes

We conjecture that a user typically will not access all attributes and data in

a schema and databases, respectively. Attributes used in a query are typically

DEMIDS: a misuse detection systemfordatabase systems 165

related through primary and foreign key dependencies among the relations in a
schema using join conditions. Therefore, the access patterns of users will form
some working scopes which are sets of attributes that are usually referenced
together with some values. A profile captures the idea of working scopes by
specifying the typical values of sets of features in an audit session.

Example 1 We use a sample database schema shown in Figure 2 as a working
example.

Figure 2 Sample Database Schema

This database schema can easily be derived from the information recorded
in the data dictionary. Let the set of features in audit sessions be the type

of the query operation, the set of attributes referenced by the query, the

relation referenced by the insert and delete query, the old and new values of
the attributes. In this paper we will adopt the convention of using queryType

to denote the query operation, R.A=l the fact that attribute R.A is referenced
in the query, R.A=O the fact that R.A is not referenced, relation the name of

the relation referenced, R.AVal the (old) value of R.A, and R.AnewVal the new
value of R.A if the query is a data modification query. Suppose user Teller

is responsible for entering transactions by issuing database modifications of
the type:

insert into transaction values (TID, amount, debitSID, creditS/D)

where TID,amount,debitSID,creditSID are variables. The working scope
of Teller then would be:

W Srener = { queryType= 'insert', relation= 'transaction'}.

166 Integrity and Internal Control in Information Systems

3.2 Distance Measure

Working scopes of users consist of attributes that are closely related in the
database schema and are often referenced together in database retrieval and
modification statements. To capture the idea of "closeness" of attributes in a
database schema, we introduce the notion of distance measure which is used
to guide the Profiler in discovering profiles from audit sessions.

Considering a given database schema S, attributes are structurally close
if they either belong to the same relation or can be related by exploiting (a
sequence of) foreign key dependencies. This aspect is reflected by the schema
distance function.

ShortestDist(R, S) computes the shortest distance between two relations
R and S in the database schema based on primary and foreign keys by which
R and S can be related.

Definition 2 (Schema Distance Function)
Assume a database schema S with a set R of relation schemas. Given two
attributes Ai E R, Aj E S where R, S E R, the pairwise schema distance
between Ai and Aj, denoted by PSDist(Ai, Aj), is defined as

PSDist(A- A-) ·- ShortestDist(R, S)
" 3 .- max{ShortestDist(Rk, Rt) IRk, Rt E R}

Given a set of attributes A = { A1 , ... , An} attr(S), the schema distance
function is defined as

SchemaDist(A) := max{PSDist(Ai,Aj) I Ai,Aj E A}

•
We normalize the distance measure by the maximum shortest distance be­

tween any pair Rk, Rt of relations in the database schema so that the value
of distance measure falls in the range of 0 to 1. The nearer the value of the
distance measure to 0, the closer is the set of attributes. Attributes of the
same relation have the schema distance 0.

Two attributes being schematically close does not necessarily imply that
they are semantically close. Since we would like to derive a profile for each
audit session, the access patterns of the attributes in audit sessions should be
considered in the distance measure as well. In order to capture this aspect, we
define an access affinity function which considers the dynamic access patterns
on the attributes.

Definition 3 (Access Affinity Function)
Given a set A= { A1 , ... , An} attr(S) of attributes contained in a database
schema S. The access affinity of A in an audit session, denoted by Aj j(A),
is defined as

DEMIDS: a misuse detection system for database systems 167

Af !(A) := AAC(A)
max{AAC(Aiw·· ,Aim) j {Aip··· attr(S)}

where AAC(A1 , ... , An) is the total number of audit records in the session

such that all attributes A1 , ... , An appear in each audit record. •

Based on the schema distance function and access affinity, we are now able

to define a distance measure between a set of attributes that takes both struc­

tural and access properties of the attributes involved into account.

Definition 4 (Distance Measure)

Given a set A= {A1 , ... attr(S). The distance measure of the at­

tributes in A, denoted by Dist(A), is defined as

Dist(A) := SW eight* SchemaDist(A) + (1- SW eight)* (1- Af f(A))

•
We normalize the distance measure by choosing SWeight E 1). Since

the domain of SchemaDist and Af f is 1), Dist E 1). SWeight is a

value that has to be specified by the SSO prior to the auditing and is used to

weigh the schema distance component. The higher the value for SW eight, the

more important is the schematic property in computing the distance measure,

and vice versa. If users often access attributes of relations that are related by

some foreign key dependencies, then SW eight can be set to a higher value.

Example 5 We use the sample database schema shown in Figure 2 to demon­

strate how the notion of distance measure reflects the working scopes of users.

Let us consider a Teller who often issues the following query as part of his

daily routine:

select SavingsAC.SID

from SavingsAC s, opens o, Customer c

where s.SID=o.SID A o.CID=c.CID A c.custName='John Smith'

The corresponding working scope is S1 = {s.SID=1, o.SID=1, c.SID=1,

c.custName=1, c.custNameVal= 'John Smith'}.

Now consider a random set of attributes S2 = {t.TID, c.CID}. This set of

attributes would not be discovered as the working scope because of its large

distance measure as explained below. The maximum distance between any

pair of relations in the schema is 6, which is the distance between attributes

of relations CreditCard and Transaction. Hence we have:

SchemaDist(S1) = 2/6 = 0.33

SchemaDist(S2) = 4/6 = 0.67

Suppose in the audit session, Teller issues the query in the above example

100 times. Then, Af f(SI) = 100/100 = 1 and Af j(S2) = 0/100 = 0.0.

168 Integrity and Internal Control in Information Systems

Suppose SW eight = 0.5, the distance measures of S1, S2 are then

Dist(Sl) = 0.5 * 0.33 + (1 - 0.5) * (1 - 1.0) = 0.17

Dist(S2) = 0.5 * 0.67 + (1 - 0.5) * (1 - 0.0) = 0.83

The distance measure of S1 is very small because the attributes are closely

related in the database schema and are often referenced together in the

queries. The distance measure for S2 is larger because the attributes are not

only further apart in the database schema, but are also never referenced to­

gether in the above query.

Since S1 has a smaller distance measure, features corresponding to this set

of attributes would likely fall into the same working scope. On the contrary,

since S2 has a greater distance measure, features corresponding to this set of

attributes would not be considered to belong to this working scope.

The working scopes discovered can serve as a valuable tool to establish

security policies. For example, a policy can state that the working scopes of

users in the monitoring stage cannot deviate very much from their working

scopes or the working scopes of users with similar behavior during the training

stage. If a working scope of a user reveals that all the attributes of a relation

are typically referenced together, a policy can be established to state that the

user typically accesses that relation instead of enumerating all of its attributes.

3.3 Frequent Itemsets

We use the concept of frequent itemsets to describe the working scopes of

users. Since the notion of distance measure reflects the dependencies among

relations as well as the access patterns of attributes in working scopes, our

notion of frequent itemsets is enriched by a distance measure component to

capture such knowledge. A frequent itemset is a set of features with values

assigned to them. The set of features is selected by the SSO. For instance,

the timestamps of audit records is an interesting feature if we are interested

in the temporal aspect of user behavior. The sets of attributes referenced by

the queries are interesting too, especially if they belong to relations that are

sensitive. The new and old values of tuples of data modification queries are

important if fabrication of data is concerned. The domain of a feature Fi

is denoted by Domain(Fi)· For instance, if a timestamp is recorded as the

number of seconds elapsed since a particular moment of time, then the domain

of timestamps is real numbers. The domain of useriD can be strings.

Definition 6 (Frequent Itemset)

Given a set offeatures :F = {F1, ... , Fm} audited in an audit session AuditS.

An itemset I for :F is defined as I:= {F1 = !1, ... , Fm = fm}, [sup, dist]. I

is said to be a frequent itemsets in AuditS if

e Fi E :F, 1 :S i :S m

• fi E Domain(Fi), 1 :S i :S m

DEMIDS: a misuse detection system for database systems 169

• sup= support(!, AuditS) ?: supThreshold

• dist = Dist(A1 , ... , An) :S: distThreshold

where

• A1, ... , An are corresponding attributes for features F1, ... , F m,

• supThreshold and distThreshold are user defined parameters, and

• support(!, AuditS) computes the number of audit records in AuditS that

satisfy I.

•
Attributes corresponding to features are those attributes referenced by the

features. For example, if feature R.A records whether attribute A from relation

R is referenced in a query, then the corresponding attribute of the feature

is R.A. If feature relation records which relation is referenced by an insert

query, then the corresponding attributes of the feature are the attributes

of the relation. Some features such as useriD and timestamp do not have

corresponding attributes in the database schema. If the set of features do not

reference any attribute, the distance measure of this frequent itemset can be

defined as zero.

supT hreshold can be expressed in terms of the number of audit records or

in terms of percentage of audit records in the audit session. distThreshold is

within JR[O, 1]. supThreshold and distThreshold are adjusted by the SSO. The

higher the value of supThreshold and the lower the value of distThreshold,

the more selective are the frequent itemsets. If tighter monitoring is desired,

for example, during the training stage, supThreshold and distThreshold

should be adjusted accordingly so that more selective frequent itemsets are

discovered. Therefore, only "very" typical user behavior is described in the

profiles. During the monitoring stage, supThreshold can be lowered while

distT hreshold is raised to discover more frequent itemsets. Mismatch between

the frequent itemsets discovered in monitoring stage and those in the training

stage indicates suspicious activities and can be brought to the attention of

the SSO.

The frequent itemsets of a user in an audit session correspond to the profile

of the user in that audit session. Audit data in the audit logs are grouped into

separate audit sessions according to some properties, such as grouping under

the same useriD. Let Psession be a predicate grouping the audit records in an

audit session and I = { F1 = h, ... , F m = f m} a frequent itemset for the

audit session. Then a corresponding profile statement in rule-based format is

Psession --+ F1 = fi 1\ ··.I\ Fm = fm·

The working scopes of users are sets of attributes that are often referenced

together with certain typical values. Therefore, sets of feature/value pairs can

nicely represent the working scopes of users. It should be mentioned that fre­

quent itemsets are a better representation for working scopes than clusters

since objects in clusters are not tagged with values. Furthermore, it is more

170 Integrity and Internal Control in Information Systems

appropriate to use frequent itemsets to describe working scopes than to use
association rules (Agrawal and Srikant 1994) since there is no causal relation­
ship in the access of attributes in queries. Although the profiles for frequent
itemsets are transformed to rules by the predicate describing the audit session,
the working scopes of users are represented by sets of feature/value pairs.

Frequent itemsets that are subsets of other frequent itemsets represent the
same working scopes. Therefore, we are interested in discovering maximal
frequent itemsets that cover the maximum number of feature/value pairs.

Definition 7 (Maximal Frequent Itemset)
Given a set I= { I1 , ... , In} of frequent itemsets in an audit session AuditS.
A frequent itemset I E I is a maximal frequent itemset in AuditS if there is
no other frequent itemset I' E I such that I C I'. •

Example 8 Suppose we have a set of frequent itemsets I={ I, I'} in an audit
session AuditS where

I= {queryType='select', t.amount=l, t.creditSID=l }
I'= {queryType='select', t.amount=l, t.creditSID=l, t.debitSID=l,

c.custName=l }

I is not a maximal frequent itemset in I for AuditS because I' is a superset
of I. I' is a maximal frequent itemset in I in AuditS.

Frequent itemsets are evaluated by some interesting measures, such as max­
imality. It is important that all frequent itemsets satisfying this measure are
discovered. Therefore, we introduce the notion of completeness.

Definition 9 (Completeness)

A set of frequent itemsets I is complete for an audit
contains all maximal frequent itemset in AuditS.

session AuditS if I

•
We described our conjecture on the access patterns of users which form some

working scopes, and discussed how we can represent these working scopes by
distance measures and frequent itemsets. We have also introduced the notion
of maximality and completeness to evaluate the frequent itemsets discovered
by the Profiler. In the next section, a data mining algorithm to discover all
maximal frequent itemsets from audit logs is presented.

4 FREQUENT ITEMSETS PROFILER

In this section we present a data mining algorithm for the Profiler to discover
frequent itemsets from an audit session. Our algorithm is tightly integrated
with the database system by storing the data in tables and by using SQL
queries to take advantage of the query processing capabilities of the DBMS.

We first describe the data structures and input to the Profiler before pre­
senting the algorithm. We establish several criteria for an evaluation of a
Profiler and show that those criteria are satisfied by the proposed Profiler.

DEMIDS: a misuse detection system for database systems 171

4.1 Data Structures

We assume that data about audit sessions are stored in a table called Session=
(TID, feature, fvalue). Each audit record is assigned a unique tuple identifier
TID. feature and fvalue store the feature/value pair of an audit record.

We use the tables F = (F II D, A, AV al) and FMaster = (F II D, sup, dist)
to store the itemsets. Each itemset is assigned a unique tuple identifier FIID.
A, AV al correspond to the feature/value pair of an itemset. sup, dist are the
support and distance measure of the itemsets. We use a separate table FMaster
to store the support and distance measure of itemsets because it is not desir­
able to repeat them for each item in an itemset.

The table Lk = (FIID, sup, dist, A1, A1 Val, ... , Ak, Ak Val) stores the
itemsets {A1 = A1 .Val, ... , Ak = Ak.Val} with sup 2:: supThreshold and
distance dist. Tables L1 , ... ,Ln (where n is the total number of attributes
in the database schema) are used to discover all itemsets with a sufficient
support. Lk is derived from Lk-l and hence we only need to use two tables,
namely LNEW and LOLD. The table statltems = (A) is a temporary table
which stores a set of attributes.

Example 10 Assume table Session stores the following two audit records:

TID=l:

queryType='select', t.TID=1, t.amount=1, t.debitSID=1, t.creditSID=O
TID=2:

queryType='select', t.TID=1, t.amount=O, t.debitSID=O, t.creditSID=1

Tables F and FMaster store the itemsets (c = Customer, cc = CreditCard):

{queryType='select', t.TID=1, t.amount=1, t.debitSID=1} [100, 0.1),
{queryType='select', c.incomeVal= 1000, cc.CCID=1} [50, 0.2)

Table Session Table F

TID Feature Fvalue FIID A A Val

1 queryType 'select' 4-1 queryType 'select'
1 t.TID 1 4-1 t.TID 1
1 t.amount 1 4-1 t.amount 1
1 t.debitSID 1 4-1 t.debitSID 1
1 t.creditSID 0

3-1 queryType 'select'
1 queryType 'select' 3-1 c.incomeVal 1000
1 t.TID 1 3-1 cc.CCID 1
1 t.amount 0
1 t.debitSID 0
1 t.creditSID 1

172 Integrity and Internal Control in Information Systems

Table FMaster

FIID sup dist

4-1 100 0.1

3-1 50 0.2

In the current prototype of DEMIDS, we use the OracleS server (Oracle

1997) as our underlying DBMS to store and process the audit data.

4.2 Algorithm

The algorithm to discover maximal frequent itemsets of size k in an audit

session is divided into five steps:

Step 1: Derive table LNEW from LOLD.

Step 2: Compute distance measure for itemsets in LNEW.

Step 3: Prune frequent itemsets in LNEW with distance measure> distThreshold.

Step 4: Insert frequent itemsets into F.

Step 5: Delete non-maximal frequent itemsets from F. Update FMaster

accordingly.

Step 1 (Initialization)

swap LNEW with LOLD

LNEW f- 0
(Generate LNEW from LOLD)

insert into LNEW

select 'NA', count(unique R1.TID) as sup, -1,

com.A1, com.A1 Val, ... com.Ak, com.Ak Val

from (select one.A1 as A1, one.A1Val as A1Val, ...

one.Ak-1 as Ak-1, one.Ak-1 Val as Ak-1 Val,

two.Ak-1 as Ak, two.Ak-1 Val as Ak Val

from LOLD one, LOLD two

where one.A1 =two.A1 1\ . ..

1\ one.Ak-2=two.Ak-2

1\ one.Ak-1 < two.Ak-d com,
(select *from Session) R1, ... ,

(select * from Session) Rk

where R1.TID=R2.TID 1\ ... I\ Rk-1·TID=Rk.TID

1\ R1.feature=com.A1 1\ R1.fvalue=com.A1 Vall\ ...

1\ Rk.feature=com:Ak 1\ Rk.fvalue=com.Ak Val

1\ sup >= supThreshold

DEMIDS: a misuse detection system for database systems

Step 2 {Enumerate all itemsets in LNEW)

fiid = 0;

for each tuple tin (select * from LNEW)

delete from statltems

for (int i=l;i k;i++)

insert into stat!tems values(t.Ai)

distance= select max(getDistance(one.A,two.A))

from stat!tems one, stat!tems two

where one.A two.A

fiid = fiid + 1

update LNEW set FIID=fiid, dist=distance

where (A1 = t.A1 1\ ... 1\ An Val = t.An Val)

173

getDistance: attr(S) x attr(S) -+JR. is a function that computes the distance

measure between two attributes.

Step 3

{Delete itemsets that are not frequent itemsets)

delete from LNEW where dist > distThreshold

Step 4

for (int i=l;i k;i++)

insert into F select FIID, Ai, Ai Val from LNEW

Step 5

delete from F

where FIID=any

(select one.FIID from F one,F two

where one.FIID < two.FIID and one.A=two.A and one.AVal=two.AVal

group by one.FIID, two.FIID

having count(one.FIID)= (select count(*) from F

where FIID=one.FIID))

insert into FMaster

select FIID, sup, dist from LNEW where FIID in (select FIID from F)

4.3 Analysis

Let I be the set of itemsets discovered by the algorithm for an audit session

AuditS. We claim that the algorithm is correct, i.e. all itemsets in I are

frequent itemsets, that the itemsets discovered are maximal, and that I is

complete in AuditS.

174 Integrity and Internal Control in Information Systems

Theorem 11 (Correctness)

All itemsets in I are frequent itemsets. That is, for each itemset I E I, the

following two conditions hold

1. support(!, AuditS) 2:: supThreshold, and

2. Dist(I) distThreshold. •
As shown in (Agrawal and Srikant 1994), itemsets of size k with high enough

support can be discovered from table Lk-l because subsets of itemsets with

support 2:: supThreshold also have support 2:: supThreshold. Therefore, all

itemsets with high enough support are inserted into Fin Step 1. Since itemsets

are inserted into F in Step 1 only, they satisfy condition (a). Itemsets that

are not tight enough, i.e. with a too large distance measure, are pruned in

Step 3. Once an itemset is deleted, it is never inserted again. Thus, they also

satisfy condition (b).

Theorem 12 (Maximality)

All itemsets in I are maximal frequent itemsets in AuditS, that is, there are

no two itemset I, I' E I such that I =/; I' and I C I'. •

This property holds because all itemsets that are not maximal are pruned

in Step 5 of the algorithm. Once an itemset is deleted, it is never inserted

again. Hence all itemsets left are maximal.

•
Theorem 14 (Completeness)

The set I of itemsets is complete in AuditS, that is, I comprises all maximal

frequent itemset from AuditS. •

The set of itemsets discovered is complete in the audit session because, as

aforementioned, all candidate itemsets with high enough support are inserted

into Fin Step (1), and an itemset is deleted from F only if it is not a frequent

itemset (Step 3) or if it is not maximal (Step 4).

5 DISCUSSION

5.1 Comparison

Our Profiler is a novel approach for deriving user profiles. (Agrawal and

Srikant 1994) proposed the concept of association rules to represent profiles

of users. Algorithms based on association rules attempt to discover the causal

relationships among items in transactions (which, in our case would be audit

sessions). However, association rules are inappropriate to represent working

scopes of users in database systems because there is no such causal relationship

in the access patterns of attributes in a query. Post-processing is necessary to

DEMIDS: a misuse detection system for database systems 175

prune those association rules that represent the same working scope. Unlike

association rules algorithms, the Profiler avoids discovering redundant rules

that represent the same working scope since frequent itemsets are sets of

feature/value pairs.

Another related approach, the clustering approach (Everitt 1973), discovers

sets of objects, so-called clusters, that are close under a certain distance mea­

sure. However, the set of objects discovered are not tagged with values and

hence clusters cannot represent typical values of features in working scopes.

In addition, most clustering algorithms are not scalable to the size of data.

Unlike clustering algorithms, the Profiler discovers frequent itemsets by using

the data processing capability of the DBMS and hence is scalable to the size

of audit data. The algorithm to discover frequent itemsets exhibits similar

features as hierarchical clustering algorithm, which is illustrated by Corollary

13. Hierarchical clustering algorithms continuously merge smaller sets of ob­

jects (i.e. non-maximal frequent itemsets) into larger clusters step by step.

Our algorithm takes advantage of the data processing power of DBMS by

pruning non-maximal frequent itemsets in one delete query in Step 5.

More importantly, we use the notion of distance measure to capture the

domain knowledge encoded in a database schema, and to guide the search

of interesting frequent itemsets. For example, consecutive queries may cor­

respond to similar tasks and therefore can be aggregated. Consecutive audit

records of the same query type within a certain time window can be aggre­

gated into one audit record. The notion of distance measure then would be

useful in identifying sets of attributes that correspond to the working scopes

of users for these queries.

5. 2 Scenarios

Here we give two example scenarios to illustrate the effectiveness of the Pro­

filer. We use the example described in Section 3.1. Suppose user Teller issues

the insert query often enough during the training stage. A corresponding fre­

quent itemset discovered for Teller would be:

IN or mal = { queryType= 'insert'' relation= 'transaction'}

Scenario 1: In the first scenario, suppose in an audit session Teller misuses

his privileges to steal credit card information about customers by issuing the

query

select cc.CCID, cc.expDate, c.custName

from CreditCard cc, owns o, Customer c

where c.CID = o.CID and o.CCID = cc.CCID

A corresponding frequent itemset discovered by DEMIDS would be

IMisusel = { queryType='select', c.custName=1, c.CID=1, cc.CCID=1,

cc.expDate=1, o.CID=1, o.CCID=1}

176 Integrity and Internal Control in lnfonnation Systems

This change of interest of Teller at the schema level is illustrated by the dif­

ference between the set of attributes occurring in the frequent itemset !Misuse!

and that in IN or mal· Differences between the frequent itemsets of the training
and monitoring stages can be measured based on difference in the number of

missing features, the number of new features and the number of features with

different values in the frequent itemsets of the training and monitoring stages.

It is worth mentioning that supThreshold can be set to a higher level during

the training stage so that only frequent itemsets corresponding to typical user

behavior are discovered. In case user Teller only issues the misuse query

infrequently and the detection of such an abuse is required, the threshold can

be lowered during the monitoring stage to detect those infrequent queries.

Mismatch of this outlier behavior against the typical behavior detected by
the Detector can be brought to the attention of the SSO.

Scenario 2: The second scenario involves a finer level of granularity of misuse.

Suppose Teller does not change the set of attributes he usually references.

He tries to transfer money from other accounts to his account 'badAccount'

illegally by issuing the following query very often in an audit session:

insert into transaction values (TID, amount, debitSID, 'badAccount')

where TID, amount, debitS I D are variables.

A frequent itemset discovered by the Profiler can be:

1Misuse2 = {queryType='insert', relation ='transaction',
transaction.creditSIDnew Val= 'badAccount '}

Frequent itemset IMisuse2 consists of the same set of attributes as frequent
itemset !Normal· But there is an additional piece of information - the credit

account is often badAccount. This represents a change of interest of Teller

at the tuple level, which again can trigger alarm.

6 CONCLUSIONS AND FUTURE WORK

In this paper we have presented the concepts and architecture underlying

DEMIDS, a misuse detection system for relational database systems. DEMIDS

provides security officers a means to derive user profiles from audit logs record­

ing various features of accesses to the databases system through users and

applications. The derived user profiles describe the typical user behavior in

terms of typical access patterns against certain information structures (rela­

tions, attributes, and data) of a database. Derived profiles provide security

officers with a means not only to verify /refine existing security policies, but

also to establish security policies as part of the security re-engineering of a

given database system.

In particular, DEMIDS considers the data structure and semantics specified

in the database schema through the notion of distance measure. Such domain

knowledge is used to guide the Profiler to search for frequent itemsets which

can effectively represent the working scopes of users. The Profiler is capable

DEMIDS: a misuse detection system for database systems 177

of discovering all those maxl.mal frequent itemsets in audit sessions by taking

advantage of the query processing power of the DBMS. We have illustrated

the effectiveness of the Profiler in detecting misuse by some scenarios.

We have conducted an evaluation of the Profiler based on synthesized data.

We are in the process of acquiring medical and financial data (as well as

underlying database schemas and associated applications) to conduct further

analysis. We would also like to conduct analytical analysis on the performance

of the Profiler. Effectiveness of the Detector can be evaluated by asking a user

knowing the security policies to attempt to defeat the system by acquiring a

treasure buried in the database.

One of our future research directions is to investigate other means to define

the notion of distance measure, such as defining distance measures among

attribute values, and using a different formulation other than the linear rela­

tionships in foreign key dependencies.

We are also interested in considering other domain knowledge to guide the

discovery of profiles. Groups of values for features can be replaced by some

other values of higher level of abstraction. For instance, scores of range 10-20,

20-50, 50-90, 90-100 can be replaced by 'very low', 'low', 'high', 'very high'

respectively. Introducing a certain degree of imprecision to the feature values

helps to reveal regularities in the data. Such classification can be obtained

from the SSO or can be derived by considering the statistical distribution of

feature values in an audit session.

Another interesting research issue is to derive profiles for roles. A user

may perform different and unrelated tasks during his/her interaction with

the database system, but roles are more closely tied to the functions or tasks

performed. Role profiles may give rise to more regular patterns than user

profiles since functions or tasks operate on data that are related and there is a

more static set of sequences of operations. The challenge is to identify portions

of the audit data that correspond to the same _role. If the roles are not known

to the SSO but users execute scripts on a regular basis to perform routine

tasks, the scripts would serve to identify the roles the users take. In case

that the user interacts with the database system through some application

such as forms and reports, these applications perform well-defined database

modifications on behalf of the user, and thus can be the basic units to identify
user roles.

REFERENCES

R. Agrawal, R. Srikant (1994): Fast algorithms for mining association rules.

In J. Bocca, M. Jarke, C. Zaniolo (eds.), Proceedings of the 20th VLDB

Conference. Morgan Kaufman Publishers, 487-499.

K. J. Biba (1977): Integrity considerations for secure computer systems. Tech­

nical Report ESD-TR-76-372, MITRE Corp., Redford, MA.

D. E. Bell, L.J. LaPadula (Nov, 1973): Secure computer systems: mathe­

matical foundations. Technical Report ESD-TR-73-278, MITRE Corp.,

178 Integrity and Internal Control in Information Systems

Redford, MA.
S. Castano, M.G. FUgini, G. Martella, P. Samarati (1995): Database Security.

Addison-Wesley.
Carter, Katz (Dec, 1996): Computer crime: an emerging challenge for law

enforcement. FBI Law Enforcement Bulletin, 1-8.

D.E. Denning et al. (1986): Secure distributed data view: security policy and

interpretation for class A1 multilevel secure relational database system.

Technical Report A002, SRI International.
L.C. Dion {1981): A complete protection model. In Proceedings of the IEEE

Symposium on Research in Security and Privacy, 49-55.

B. Everitt (1973): Cluster Analysis. John Wiley & Sons- New York.

S. Forrest, S. A. Hofmeyr, A. Somayaji, T. A. Longstaff (1996): A sense of self

for unix processes. In Proceedings of the IEEE Symposium on Research

in Security and Privacy, 120-128.
L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, D. Wolber

(1990): A network security monitor. In Proceedings of the IEEE sympo­

sium on research in security and privacy, 296-304.
M. A. Harrison, W. L. Ruzzo, J. D. Ullman (Aug, 1976): Protection in oper­

ating systems. Communications of ACM, 19(8):461-471.
S. Jajodia, R. Sandhu (1990): Polyinstantiation integrity in multilevel rela­

tions. In Proceedings of the IEEE Symposium on Research in Security

and Privacy, 104-115.

H. Javitz, A. Valdez (1991): The SRI IDES statistical anomaly detector. In

Proceedings of the IEEE Symposium on Research in Security and Pri­

vacy, 316-326.
W. Lee, S. J. Stolfo (1998): Data mining approaches for intrusion detection. In

Proceedings of the 7th USENIX Security Symposium (SECURITY-98},

79-94, Berkeley. Usenix Association.

OracleS Server Concepts, Release 8.0. (1997) Part No. A54643-01, Oracle

Corporation, Redwood City, California.

S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland,

K. Levitt, C. Wee, R. Yip, D. Zerkle (1996): GriDS-A graph based in­

trusion detection system for large networks. In Proceedings of the 19th

National Information Systems Security Conference.

R. Sandhu, E. Coyne, H. Feinstein, C. Youman (1996): Role-based access

control models. IEEE Computer, 29(2):38--47.

K. Smith, M. Winslett (1992): Entity Modeling in the MLS relational model.

In Proceedings of the International Conference on Very Large Data

Bases, Vancouver, British Columbia, Canada.

H. S. Vaccaro, G. E. Liepins (1989): Detection of anomalous computer session

activity. In Proceedings of the IEEE Symposium on Research in Security

and Privacy, 280-289.

C. Wood, R. C. Summers, E.B. Fernandez (1979): Authorization in multilevel

database models. Information Systems, 4(2):155-161.

	DEMIDS: A Misuse DetectionSystem for Database Systems
	1 MOTIVATION
	1.1 Related Work
	1.2 Terminology
	1.3 Organization of the Paper

	2 ARCHITECTURE
	3 APPROACH
	3.1 Working Scopes
	3.2 Distance Measure
	3.3 Frequent Itemsets

	4 FREQUENT ITEMSETS PROFILER
	4.1 Data Structures
	4.2 Algorithm
	4.3 Analysis

	5 DISCUSSION
	5.1 Comparison
	5. 2 Scenarios

	6 CONCLUSIONS AND FUTURE WORK
	REFERENCES

