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Reality, however, shows that such mechanisms for enforcing organizational 
security policies are often not adequately used. There are various reasons for 
this. First, security policies are often not known or not well specified, mak­
ing it difficult or even impossible to translate them into appropriate security 
mechanisms. This observation holds for both general security policies as well 
as policies tailored to individual database users and applications. Second, and 
more importantly, security policies do not sufficiently guard data stored in a 
database system against "privileged users". (Carter and Katz 1996) revealed 
that in computer systems the primary security threat comes from insider 
abuse rather than from intrusion. This observation results in the fact that 
much more emphasis has to be placed on internal control mechanisms of sys­
tems, such as audit log analysis. 

Security models as described in, e.g., (Wood et al. 1979, Denning et al. 
1986, Jajodia and Sandhu 1990, Smith and Winslett 1992), to prevent misuse 
(Misuse includes both insider abuse and intrusion.) are insufficient to pro­
tect the information stored in database systems because of the increase in the 
size of data to achieve a fine grain control. More importantly, these models as­
sume that security policies of an organization are known, which, as mentioned 
before, is often not the case. Misuse detection systems (MDSs)* are a cost­
effective compromise to establish and assure a certain degree of security in a 
system. Nevertheless, concepts for misuse detection in database systems have 
not been adequately addressed by existing MDSs which neither consider the 
structure and semantics nor the fine granularity of data in database systems. 

In this paper we propose a misuse detection system tailored to relational 
database systems. The system called DEMIDS (DEtection of Misuse in Data­
base Systems) provides a rich set of tools to derive user profiles from audit 
logs. Such profiles describe the typical behavior (access patterns) of users in 
the system by specifying the typical values offeatures that are audited in audit 
logs. The profiles derived are used to detect misuse behavior. Although it can 
be used to detect both intrusion and insider abuse, DEMIDS places empha­
sis on the detection of malicious behavior by legitimate users who abuse their 
privileges. Hence the system is particularly useful for internal control. Our sys­
tem can complement misuse detection at the operating system layer because 
intrusion attempts that MDSs fail to detect at the operating system layer may 
be detected as anomalous events at the database system layer. Further, the 
profiles derived can serve as a valuable tool for security re-engineering of an 
organization by helping security officers (SSO) to define/refine security poli­
cies and to verify existing security policies, if there are any. Finally, profiles 
can be used to implement respective enforcing mechanisms in the database 
systems using, e.g., triggers, assignment of privileges, or roles. 

Essential to the proposed approach is that, given a database schema and 

*Intrusion Detection System IDS is often used instead of MDS. However, the term IDS is 
confusing under the author's definition of intrusion and misuse. Since most systems detect 
both intrusion and insider abuses, we will adopt the terminology MDS. 
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associated applications, the access patterns of users will form some work­

ing scopes comprising certain sets of attributes that are usually referenced 

together with some values in a query. The idea of working scopes is concep­

tually captured by the concept of frequent itemsets which are sets of features 

with certain values. Based on the data structure and semantics (integrity con­

straints) encoded in the data dictionary and the user behavior reflected in the 

audit logs, DEMIDS defines a notion of distance measure which measures the 

closeness of a set of attributes with respect to the working scopes. Distance 

measures are used to guide the search for frequent itemsets in the audit logs 
by a novel data mining approach that takes advantage of the efficient data 

processing functionality of database management systems. Misuse, such as 

tampering with the integrity of data, then can be detected by comparing the 

derived profiles against the security policies specified or against new informa­

tion (audit data) gathered about users. 

1.1 Related Work 

The security goals of database systems are availability, confidentiality and 
integrity (Castano et al. 1995). Mandatory and discretionary access con­

trol models have been proposed for general computer systems to achieve 

these goals (Bell and LaPadula 1973, Biba 1977, Dion 1981, Harrison et 

al. 1976). Nevertheless, these mechanisms typically operate on the file and 

command/process level of operating systems, which is too coarse for the finer 

level of granularity of data in database systems. 

There are various extensions of these security models to database systems. 

(Denning et al. 1986, Jajodia and Sandhu 1990, Smith and Winslett 1992) ex­

tend the concept of mandatory access control in relational database systems 

by allowing polyinstantiation of data at the tuple level. (Wood et al. 1979) pro­

vides a mapping between access control in a DBS to that at operating system 

level. These mechanisms are essentially based on the general mandatory access 

control models and hence suffer the same limitation of being only applicable 

to an organization with known security policies. Further, polyinstantiations 

come at the cost of increasing the number of tuples in the database. 

Detection mechanisms are employed to complement the shortcomings of 

prevention mechanisms (Javitz and Valdez 1991, Vaccaro and Liepins 1989, 

Heberlein et al. 1990, Staniford-Chen et al. 1996, Forrest et al. 1996, Lee and 

Stolfo 1998). Nevertheless, concepts for misuse detection in database systems 

have not been adequately addressed by existing approaches to misuse detec­

tion systems. These systems typically reside on the operating system and/or 

network which work with files and system commands. The mapping between 

files in operating systems to relations and attributes in database systems is 

not exact and hence cannot closely reflect the user behavior. Moreover, audit­

ing the user behavior at these layers is unsuited for misuse detection at the 

DBS level because the semantics and structure of the data are not reflected in 
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such audit logs. Unlike previous MDSs, such domain knowledge is considered 
by DEMIDS to derive user profiles. 

1.2 Terminology 

In the rest of the paper we adopt the relational database model as the un­
derlying data model for DEMIDS. We assume a given database schema S = 
(R, IC) where R is a set of relation schemas and IC is a set of semantic in­
tegrity constraints that have to be satisfied by every instance of the database 
schema. A relation schema R E R with attributes A1, ... , An is denoted by 
R = (A1 , ... , An). We denote the attributes associated with a relation schema 
R by attr(R), and the attributes of all relations in the schema S by attr(S). 
The value of attribute Ai of tuple t from an instance of a relation schema R 
is denoted by t.Ai. 

The integrity constraints considered in this paper include primary and for­
eign key constraints imposed on relations in R. We furthermore assume that 
associated with the database is a set of applications. A database application 
is considered to be a sequence of (parameterized) SQL queries. Users interact 
with the database system through a set of operations which are either issued 
by applications on behalf of the users, or directly by users in form of free form 
SQL queries, in particular database modifications as they are typically issued 
by, e.g., database administrators. 

1.3 Organization of the Paper 

The rest of the paper is organized as follows: In Section 2, we discuss the archi­
tecture of DEMIDS, in particular its coupling with a given database system. 
In Section 3, we introduce the notions of distance measure and frequent item­
sets to capture the working scopes of users. In Section 4, we present a Profiler 
using a novel data mining algorithm to discover profiles for users based on the 
ideas of distance measure and frequent itemsets. In Section 5, the advantages 
of the Profiler are discussed and its application to some scenarios is given. 
We conclude the paper in Section 6 with a summary and overview of future 
research. 

2 ARCHITECTURE 

The proposed misuse detection system DEMIDS is tightly coupled to an ex­
isting database system in that DEMIDS utilizes certain functionality of the 
system such as auditing and query processing. DEMIDS consists of four com­
ponents (Figure 1): (1) Auditor (2) Data Processor (3) Profiler and (4) De­
tector. 
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The Auditor is responsible for collecting the audit data of users by audit­

ing their queries through the auditing functionality of the DBMS. A set of 

interesting features to audit is selected by the SSO, depending on the security 
policies to establish or verify. For example, if a security policy states that 

access to a set of sensitive attributes should be monitored, a set of interesting 

features would be the set of attributes (names) referenced in the queries. If 
fabrication of data is the concern, new and old values of attributes in update, 
insert and delete queries should be audited. In general, we do not assume sce­
narios where "everything" is audited. The features that have to be audited are 
selected by the SSO. In practice, features are selected depending on whether 
the behavior and access patterns of particular users are of interest or whether 

the usage of certain applications by certain users is of interest. 

D Component 

0 Data Storage 

E ::;. Data Flow 

SuspisionLevel 

Figure 1 Components of DEMIDS's Architecture 

D 

B 
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Monitored features are recorded in audit logs. In order for the auditing and 
log management not to become a bottleneck of the database system and as­

sociated applications, it is possible to periodically purge audit logs to another 

database system which then is used by the other components of DEMIDS. 



164 Integrity and Internal Control in Information Systems 

The Data Processor is responsible for preprocessing the raw data in the 

audit logs, such as handling missing values, converting the raw data into 

appropriate data structures and types for the Profiler. More importantly, it 

groups the raw audit data into audit sessions. This is a critical step because 

the way audit data are aggregated into audit sessions determines what profiles 

are generated. For instance, the data can be grouped according to users or 

roles (a role being a collection of privileges) adopted by the users (Sandhu et 

al. 1996). User profiles are generated in the former case and role profiles in 

the latter. 

During the training stage, which is typically supervised by the SSO, the 

Profiler generates a profile for each audit session. The Profiler consults the 

repository of domain knowledge, such as the database schema, to guide its 

search for profiles that satisfy certain interesting measures, for example, a 

sufficient support. It is assumed that during the training stage, users do not 

perform malicious behavior to train the Profiler and that there are enough 

data collected to represent their typical behavior. For instance, in an office 

system, the training stage can include office hours during weekdays (since most 

business operations are performed during office hours of weekdays) and the 

first and last few days of a month (to cover monthly operations). In systems 

where users have well defined job descriptions, user behavior is fairly stable 

and the training stage can last for a shorter period of time, for instance, only 

a few days. 

During the monitoring stage, the Detector computes a score to determine 

if user activities are suspicious. This can be achieved by comparing the new 

information (audit records) about user activities against the corresponding 

profiles derived during the training stage. Another way is to compare the user 

profiles against the security policies. Both the profiles and security policies in 

DEMIDS are specified in a rule based format. Comparison of the profiles and 

policies can be based on the number of new rules, missing rules and rules with 

the same precondition but different consequents. 

3 APPROACH 

In this section we describe the main idea behind the concept of working scopes 

for users. We then define the notion of distance measure to capture the degree 

of "closeness" of a set of attributes in a given database schema with respect to 

the working scopes. This is followed by a description of the concept of frequent 

itemsets which employs distance measure to represent the working scopes of 

users. The idea of frequent itemsets forms the basis for deriving user profiles. 

3.1 Working Scopes 

We conjecture that a user typically will not access all attributes and data in 

a schema and databases, respectively. Attributes used in a query are typically 
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related through primary and foreign key dependencies among the relations in a 
schema using join conditions. Therefore, the access patterns of users will form 
some working scopes which are sets of attributes that are usually referenced 
together with some values. A profile captures the idea of working scopes by 
specifying the typical values of sets of features in an audit session. 

Example 1 We use a sample database schema shown in Figure 2 as a working 
example. 

Figure 2 Sample Database Schema 

This database schema can easily be derived from the information recorded 
in the data dictionary. Let the set of features in audit sessions be the type 

of the query operation, the set of attributes referenced by the query, the 

relation referenced by the insert and delete query, the old and new values of 
the attributes. In this paper we will adopt the convention of using queryType 

to denote the query operation, R.A=l the fact that attribute R.A is referenced 
in the query, R.A=O the fact that R.A is not referenced, relation the name of 

the relation referenced, R.AVal the (old) value of R.A, and R.AnewVal the new 
value of R.A if the query is a data modification query. Suppose user Teller 

is responsible for entering transactions by issuing database modifications of 
the type: 

insert into transaction values (TID, amount, debitSID, creditS/D) 

where TID,amount,debitSID,creditSID are variables. The working scope 
of Teller then would be: 

W Srener = { queryType= 'insert', relation= 'transaction'}. 
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3.2 Distance Measure 

Working scopes of users consist of attributes that are closely related in the 
database schema and are often referenced together in database retrieval and 
modification statements. To capture the idea of "closeness" of attributes in a 
database schema, we introduce the notion of distance measure which is used 
to guide the Profiler in discovering profiles from audit sessions. 

Considering a given database schema S, attributes are structurally close 
if they either belong to the same relation or can be related by exploiting (a 
sequence of) foreign key dependencies. This aspect is reflected by the schema 
distance function. 

ShortestDist(R, S) computes the shortest distance between two relations 
R and S in the database schema based on primary and foreign keys by which 
R and S can be related. 

Definition 2 (Schema Distance Function) 
Assume a database schema S with a set R of relation schemas. Given two 
attributes Ai E R, Aj E S where R, S E R, the pairwise schema distance 
between Ai and Aj, denoted by PSDist(Ai, Aj), is defined as 

PSDist(A- A-) ·- ShortestDist(R, S) 
" 3 .- max{ShortestDist(Rk, Rt) IRk, Rt E R} 

Given a set of attributes A = { A1 , ... , An} attr(S), the schema distance 
function is defined as 

SchemaDist(A) := max{PSDist(Ai,Aj) I Ai,Aj E A} 

• 
We normalize the distance measure by the maximum shortest distance be­

tween any pair Rk, Rt of relations in the database schema so that the value 
of distance measure falls in the range of 0 to 1. The nearer the value of the 
distance measure to 0, the closer is the set of attributes. Attributes of the 
same relation have the schema distance 0. 

Two attributes being schematically close does not necessarily imply that 
they are semantically close. Since we would like to derive a profile for each 
audit session, the access patterns of the attributes in audit sessions should be 
considered in the distance measure as well. In order to capture this aspect, we 
define an access affinity function which considers the dynamic access patterns 
on the attributes. 

Definition 3 (Access Affinity Function) 
Given a set A= { A1 , ... , An} attr(S) of attributes contained in a database 
schema S. The access affinity of A in an audit session, denoted by Aj j(A), 
is defined as 
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Af !(A) := AAC(A) 
max{AAC(Aiw·· ,Aim) j {Aip··· attr(S)} 

where AAC(A1 , ... , An) is the total number of audit records in the session 

such that all attributes A1 , ... , An appear in each audit record. • 

Based on the schema distance function and access affinity, we are now able 

to define a distance measure between a set of attributes that takes both struc­

tural and access properties of the attributes involved into account. 

Definition 4 (Distance Measure) 

Given a set A= {A1 , ... attr(S). The distance measure of the at­

tributes in A, denoted by Dist(A), is defined as 

Dist(A) := SW eight* SchemaDist(A) + (1- SW eight)* (1- Af f(A)) 

• 
We normalize the distance measure by choosing SWeight E 1). Since 

the domain of SchemaDist and Af f is 1), Dist E 1). SWeight is a 

value that has to be specified by the SSO prior to the auditing and is used to 

weigh the schema distance component. The higher the value for SW eight, the 

more important is the schematic property in computing the distance measure, 

and vice versa. If users often access attributes of relations that are related by 

some foreign key dependencies, then SW eight can be set to a higher value. 

Example 5 We use the sample database schema shown in Figure 2 to demon­

strate how the notion of distance measure reflects the working scopes of users. 

Let us consider a Teller who often issues the following query as part of his 

daily routine: 

select SavingsAC.SID 

from SavingsAC s, opens o, Customer c 

where s.SID=o.SID A o.CID=c.CID A c.custName='John Smith' 

The corresponding working scope is S1 = {s.SID=1, o.SID=1, c.SID=1, 

c.custName=1, c.custNameVal= 'John Smith'}. 

Now consider a random set of attributes S2 = {t.TID, c.CID}. This set of 

attributes would not be discovered as the working scope because of its large 

distance measure as explained below. The maximum distance between any 

pair of relations in the schema is 6, which is the distance between attributes 

of relations CreditCard and Transaction. Hence we have: 

SchemaDist(S1 ) = 2/6 = 0.33 

SchemaDist(S2) = 4/6 = 0.67 

Suppose in the audit session, Teller issues the query in the above example 

100 times. Then, Af f(SI) = 100/100 = 1 and Af j(S2) = 0/100 = 0.0. 
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Suppose SW eight = 0.5, the distance measures of S1, S2 are then 

Dist(Sl) = 0.5 * 0.33 + (1 - 0.5) * (1 - 1.0) = 0.17 

Dist(S2) = 0.5 * 0.67 + (1 - 0.5) * (1 - 0.0) = 0.83 

The distance measure of S1 is very small because the attributes are closely 

related in the database schema and are often referenced together in the 

queries. The distance measure for S2 is larger because the attributes are not 

only further apart in the database schema, but are also never referenced to­

gether in the above query. 

Since S1 has a smaller distance measure, features corresponding to this set 

of attributes would likely fall into the same working scope. On the contrary, 

since S2 has a greater distance measure, features corresponding to this set of 

attributes would not be considered to belong to this working scope. 

The working scopes discovered can serve as a valuable tool to establish 

security policies. For example, a policy can state that the working scopes of 

users in the monitoring stage cannot deviate very much from their working 

scopes or the working scopes of users with similar behavior during the training 

stage. If a working scope of a user reveals that all the attributes of a relation 

are typically referenced together, a policy can be established to state that the 

user typically accesses that relation instead of enumerating all of its attributes. 

3.3 Frequent Itemsets 

We use the concept of frequent itemsets to describe the working scopes of 

users. Since the notion of distance measure reflects the dependencies among 

relations as well as the access patterns of attributes in working scopes, our 

notion of frequent itemsets is enriched by a distance measure component to 

capture such knowledge. A frequent itemset is a set of features with values 

assigned to them. The set of features is selected by the SSO. For instance, 

the timestamps of audit records is an interesting feature if we are interested 

in the temporal aspect of user behavior. The sets of attributes referenced by 

the queries are interesting too, especially if they belong to relations that are 

sensitive. The new and old values of tuples of data modification queries are 

important if fabrication of data is concerned. The domain of a feature Fi 

is denoted by Domain(Fi)· For instance, if a timestamp is recorded as the 

number of seconds elapsed since a particular moment of time, then the domain 

of timestamps is real numbers. The domain of useriD can be strings. 

Definition 6 (Frequent Itemset) 

Given a set offeatures :F = {F1, ... , Fm} audited in an audit session AuditS. 

An itemset I for :F is defined as I:= {F1 = !1, ... , Fm = fm}, [sup, dist]. I 

is said to be a frequent itemsets in AuditS if 

e Fi E :F, 1 :S i :S m 

• fi E Domain(Fi), 1 :S i :S m 
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• sup= support(!, AuditS) ?: supThreshold 

• dist = Dist(A1 , ... , An) :S: distThreshold 

where 

• A1, ... , An are corresponding attributes for features F1, ... , F m, 

• supThreshold and distThreshold are user defined parameters, and 

• support(!, AuditS) computes the number of audit records in AuditS that 

satisfy I. 

• 
Attributes corresponding to features are those attributes referenced by the 

features. For example, if feature R.A records whether attribute A from relation 

R is referenced in a query, then the corresponding attribute of the feature 

is R.A. If feature relation records which relation is referenced by an insert 

query, then the corresponding attributes of the feature are the attributes 

of the relation. Some features such as useriD and timestamp do not have 

corresponding attributes in the database schema. If the set of features do not 

reference any attribute, the distance measure of this frequent itemset can be 

defined as zero. 

supT hreshold can be expressed in terms of the number of audit records or 

in terms of percentage of audit records in the audit session. distThreshold is 

within JR[O, 1]. supThreshold and distThreshold are adjusted by the SSO. The 

higher the value of supThreshold and the lower the value of distThreshold, 

the more selective are the frequent itemsets. If tighter monitoring is desired, 

for example, during the training stage, supThreshold and distThreshold 

should be adjusted accordingly so that more selective frequent itemsets are 

discovered. Therefore, only "very" typical user behavior is described in the 

profiles. During the monitoring stage, supThreshold can be lowered while 

distT hreshold is raised to discover more frequent itemsets. Mismatch between 

the frequent itemsets discovered in monitoring stage and those in the training 

stage indicates suspicious activities and can be brought to the attention of 

the SSO. 

The frequent itemsets of a user in an audit session correspond to the profile 

of the user in that audit session. Audit data in the audit logs are grouped into 

separate audit sessions according to some properties, such as grouping under 

the same useriD. Let Psession be a predicate grouping the audit records in an 

audit session and I = { F1 = h, ... , F m = f m} a frequent itemset for the 

audit session. Then a corresponding profile statement in rule-based format is 

Psession --+ F1 = fi 1\ ··.I\ Fm = fm· 

The working scopes of users are sets of attributes that are often referenced 

together with certain typical values. Therefore, sets of feature/value pairs can 

nicely represent the working scopes of users. It should be mentioned that fre­

quent itemsets are a better representation for working scopes than clusters 

since objects in clusters are not tagged with values. Furthermore, it is more 
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appropriate to use frequent itemsets to describe working scopes than to use 
association rules (Agrawal and Srikant 1994) since there is no causal relation­
ship in the access of attributes in queries. Although the profiles for frequent 
itemsets are transformed to rules by the predicate describing the audit session, 
the working scopes of users are represented by sets of feature/value pairs. 

Frequent itemsets that are subsets of other frequent itemsets represent the 
same working scopes. Therefore, we are interested in discovering maximal 
frequent itemsets that cover the maximum number of feature/value pairs. 

Definition 7 (Maximal Frequent Itemset) 
Given a set I= { I1 , ... , In} of frequent itemsets in an audit session AuditS. 
A frequent itemset I E I is a maximal frequent itemset in AuditS if there is 
no other frequent itemset I' E I such that I C I'. • 

Example 8 Suppose we have a set of frequent itemsets I={ I, I'} in an audit 
session AuditS where 

I= {queryType='select', t.amount=l, t.creditSID=l } 
I'= {queryType='select', t.amount=l, t.creditSID=l, t.debitSID=l, 

c.custName=l } 

I is not a maximal frequent itemset in I for AuditS because I' is a superset 
of I. I' is a maximal frequent itemset in I in AuditS. 

Frequent itemsets are evaluated by some interesting measures, such as max­
imality. It is important that all frequent itemsets satisfying this measure are 
discovered. Therefore, we introduce the notion of completeness. 

Definition 9 (Completeness) 

A set of frequent itemsets I is complete for an audit 
contains all maximal frequent itemset in AuditS. 

session AuditS if I 

• 
We described our conjecture on the access patterns of users which form some 

working scopes, and discussed how we can represent these working scopes by 
distance measures and frequent itemsets. We have also introduced the notion 
of maximality and completeness to evaluate the frequent itemsets discovered 
by the Profiler. In the next section, a data mining algorithm to discover all 
maximal frequent itemsets from audit logs is presented. 

4 FREQUENT ITEMSETS PROFILER 

In this section we present a data mining algorithm for the Profiler to discover 
frequent itemsets from an audit session. Our algorithm is tightly integrated 
with the database system by storing the data in tables and by using SQL 
queries to take advantage of the query processing capabilities of the DBMS. 

We first describe the data structures and input to the Profiler before pre­
senting the algorithm. We establish several criteria for an evaluation of a 
Profiler and show that those criteria are satisfied by the proposed Profiler. 
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4.1 Data Structures 

We assume that data about audit sessions are stored in a table called Session= 
(TID, feature, fvalue). Each audit record is assigned a unique tuple identifier 
TID. feature and fvalue store the feature/value pair of an audit record. 

We use the tables F = (F II D, A, AV al) and FMaster = (F II D, sup, dist) 
to store the itemsets. Each itemset is assigned a unique tuple identifier FIID. 
A, AV al correspond to the feature/value pair of an itemset. sup, dist are the 
support and distance measure of the itemsets. We use a separate table FMaster 
to store the support and distance measure of itemsets because it is not desir­
able to repeat them for each item in an itemset. 

The table Lk = (FIID, sup, dist, A1, A1 Val, ... , Ak, Ak Val) stores the 
itemsets {A1 = A1 .Val, ... , Ak = Ak.Val} with sup 2:: supThreshold and 
distance dist. Tables L1 , ... ,Ln (where n is the total number of attributes 
in the database schema) are used to discover all itemsets with a sufficient 
support. Lk is derived from Lk-l and hence we only need to use two tables, 
namely LNEW and LOLD. The table statltems = (A) is a temporary table 
which stores a set of attributes. 

Example 10 Assume table Session stores the following two audit records: 

TID=l: 

queryType='select', t.TID=1, t.amount=1, t.debitSID=1, t.creditSID=O 
TID=2: 

queryType='select', t.TID=1, t.amount=O, t.debitSID=O, t.creditSID=1 

Tables F and FMaster store the itemsets (c = Customer, cc = CreditCard): 

{queryType='select', t.TID=1, t.amount=1, t.debitSID=1} [100, 0.1), 
{queryType='select', c.incomeVal= 1000, cc.CCID=1} [50, 0.2) 

Table Session Table F 

TID Feature Fvalue FIID A A Val 

1 queryType 'select' 4-1 queryType 'select' 
1 t.TID 1 4-1 t.TID 1 
1 t.amount 1 4-1 t.amount 1 
1 t.debitSID 1 4-1 t.debitSID 1 
1 t.creditSID 0 

3-1 queryType 'select' 
1 queryType 'select' 3-1 c.incomeVal 1000 
1 t.TID 1 3-1 cc.CCID 1 
1 t.amount 0 
1 t.debitSID 0 
1 t.creditSID 1 
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Table FMaster 

FIID sup dist 

4-1 100 0.1 

3-1 50 0.2 

In the current prototype of DEMIDS, we use the OracleS server (Oracle 

1997) as our underlying DBMS to store and process the audit data. 

4.2 Algorithm 

The algorithm to discover maximal frequent itemsets of size k in an audit 

session is divided into five steps: 

Step 1: Derive table LNEW from LOLD. 

Step 2: Compute distance measure for itemsets in LNEW. 

Step 3: Prune frequent itemsets in LNEW with distance measure> distThreshold. 

Step 4: Insert frequent itemsets into F. 

Step 5: Delete non-maximal frequent itemsets from F. Update FMaster 

accordingly. 

Step 1 (Initialization) 

swap LNEW with LOLD 

LNEW f- 0 
(Generate LNEW from LOLD ) 

insert into LNEW 

select 'NA', count(unique R1.TID) as sup, -1, 

com.A1, com.A1 Val, ... com.Ak, com.Ak Val 

from (select one.A1 as A1, one.A1Val as A1Val, ... 

one.Ak-1 as Ak-1, one.Ak-1 Val as Ak-1 Val, 

two.Ak-1 as Ak, two.Ak-1 Val as Ak Val 

from LOLD one, LOLD two 

where one.A1 =two.A1 1\ . .. 

1\ one.Ak-2=two.Ak-2 

1\ one.Ak-1 < two.Ak-d com, 
(select *from Session) R1, ... , 

(select * from Session) Rk 

where R1.TID=R2.TID 1\ ... I\ Rk-1·TID=Rk.TID 

1\ R1.feature=com.A1 1\ R1.fvalue=com.A1 Vall\ ... 

1\ Rk.feature=com:Ak 1\ Rk.fvalue=com.Ak Val 

1\ sup >= supThreshold 
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Step 2 {Enumerate all itemsets in LNEW) 

fiid = 0; 

for each tuple tin (select * from LNEW) 

delete from statltems 

for (int i=l;i k;i++) 

insert into stat!tems values(t.Ai) 

distance= select max(getDistance(one.A,two.A)) 

from stat!tems one, stat!tems two 

where one.A two.A 

fiid = fiid + 1 

update LNEW set FIID=fiid, dist=distance 

where (A1 = t.A1 1\ ... 1\ An Val = t.An Val) 
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getDistance: attr(S) x attr(S) -+JR. is a function that computes the distance 

measure between two attributes. 

Step 3 

{Delete itemsets that are not frequent itemsets) 

delete from LNEW where dist > distThreshold 

Step 4 

for (int i=l;i k;i++) 

insert into F select FIID, Ai, Ai Val from LNEW 

Step 5 

delete from F 

where FIID=any 

(select one.FIID from F one,F two 

where one.FIID < two.FIID and one.A=two.A and one.AVal=two.AVal 

group by one.FIID, two.FIID 

having count(one.FIID)= (select count(*) from F 

where FIID=one.FIID)) 

insert into FMaster 

select FIID, sup, dist from LNEW where FIID in (select FIID from F) 

4.3 Analysis 

Let I be the set of itemsets discovered by the algorithm for an audit session 

AuditS. We claim that the algorithm is correct, i.e. all itemsets in I are 

frequent itemsets, that the itemsets discovered are maximal, and that I is 

complete in AuditS. 
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Theorem 11 (Correctness) 

All itemsets in I are frequent itemsets. That is, for each itemset I E I, the 

following two conditions hold 

1. support(!, AuditS) 2:: supThreshold, and 

2. Dist(I) distThreshold. • 
As shown in (Agrawal and Srikant 1994), itemsets of size k with high enough 

support can be discovered from table Lk-l because subsets of itemsets with 

support 2:: supThreshold also have support 2:: supThreshold. Therefore, all 

itemsets with high enough support are inserted into Fin Step 1. Since itemsets 

are inserted into F in Step 1 only, they satisfy condition (a). Itemsets that 

are not tight enough, i.e. with a too large distance measure, are pruned in 

Step 3. Once an itemset is deleted, it is never inserted again. Thus, they also 

satisfy condition (b). 

Theorem 12 (Maximality) 

All itemsets in I are maximal frequent itemsets in AuditS, that is, there are 

no two itemset I, I' E I such that I =/; I' and I C I'. • 

This property holds because all itemsets that are not maximal are pruned 

in Step 5 of the algorithm. Once an itemset is deleted, it is never inserted 

again. Hence all itemsets left are maximal. 

• 
Theorem 14 (Completeness) 

The set I of itemsets is complete in AuditS, that is, I comprises all maximal 

frequent itemset from AuditS. • 

The set of itemsets discovered is complete in the audit session because, as 

aforementioned, all candidate itemsets with high enough support are inserted 

into Fin Step (1), and an itemset is deleted from F only if it is not a frequent 

itemset (Step 3) or if it is not maximal (Step 4). 

5 DISCUSSION 

5.1 Comparison 

Our Profiler is a novel approach for deriving user profiles. (Agrawal and 

Srikant 1994) proposed the concept of association rules to represent profiles 

of users. Algorithms based on association rules attempt to discover the causal 

relationships among items in transactions (which, in our case would be audit 

sessions). However, association rules are inappropriate to represent working 

scopes of users in database systems because there is no such causal relationship 

in the access patterns of attributes in a query. Post-processing is necessary to 
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prune those association rules that represent the same working scope. Unlike 

association rules algorithms, the Profiler avoids discovering redundant rules 

that represent the same working scope since frequent itemsets are sets of 

feature/value pairs. 

Another related approach, the clustering approach (Everitt 1973), discovers 

sets of objects, so-called clusters, that are close under a certain distance mea­

sure. However, the set of objects discovered are not tagged with values and 

hence clusters cannot represent typical values of features in working scopes. 

In addition, most clustering algorithms are not scalable to the size of data. 

Unlike clustering algorithms, the Profiler discovers frequent itemsets by using 

the data processing capability of the DBMS and hence is scalable to the size 

of audit data. The algorithm to discover frequent itemsets exhibits similar 

features as hierarchical clustering algorithm, which is illustrated by Corollary 

13. Hierarchical clustering algorithms continuously merge smaller sets of ob­

jects (i.e. non-maximal frequent itemsets) into larger clusters step by step. 

Our algorithm takes advantage of the data processing power of DBMS by 

pruning non-maximal frequent itemsets in one delete query in Step 5. 

More importantly, we use the notion of distance measure to capture the 

domain knowledge encoded in a database schema, and to guide the search 

of interesting frequent itemsets. For example, consecutive queries may cor­

respond to similar tasks and therefore can be aggregated. Consecutive audit 

records of the same query type within a certain time window can be aggre­

gated into one audit record. The notion of distance measure then would be 

useful in identifying sets of attributes that correspond to the working scopes 

of users for these queries. 

5. 2 Scenarios 

Here we give two example scenarios to illustrate the effectiveness of the Pro­

filer. We use the example described in Section 3.1. Suppose user Teller issues 

the insert query often enough during the training stage. A corresponding fre­

quent itemset discovered for Teller would be: 

IN or mal = { queryType= 'insert'' relation= 'transaction'} 

Scenario 1: In the first scenario, suppose in an audit session Teller misuses 

his privileges to steal credit card information about customers by issuing the 

query 

select cc.CCID, cc.expDate, c.custName 

from CreditCard cc, owns o, Customer c 

where c.CID = o.CID and o.CCID = cc.CCID 

A corresponding frequent itemset discovered by DEMIDS would be 

IMisusel = { queryType='select', c.custName=1, c.CID=1, cc.CCID=1, 

cc.expDate=1, o.CID=1, o.CCID=1} 
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This change of interest of Teller at the schema level is illustrated by the dif­

ference between the set of attributes occurring in the frequent itemset !Misuse! 

and that in IN or mal· Differences between the frequent itemsets of the training 
and monitoring stages can be measured based on difference in the number of 

missing features, the number of new features and the number of features with 

different values in the frequent itemsets of the training and monitoring stages. 

It is worth mentioning that supThreshold can be set to a higher level during 

the training stage so that only frequent itemsets corresponding to typical user 

behavior are discovered. In case user Teller only issues the misuse query 

infrequently and the detection of such an abuse is required, the threshold can 

be lowered during the monitoring stage to detect those infrequent queries. 

Mismatch of this outlier behavior against the typical behavior detected by 
the Detector can be brought to the attention of the SSO. 

Scenario 2: The second scenario involves a finer level of granularity of misuse. 

Suppose Teller does not change the set of attributes he usually references. 

He tries to transfer money from other accounts to his account 'badAccount' 

illegally by issuing the following query very often in an audit session: 

insert into transaction values (TID, amount, debitSID, 'badAccount') 

where TID, amount, debitS I D are variables. 

A frequent itemset discovered by the Profiler can be: 

1Misuse2 = {queryType='insert', relation ='transaction', 
transaction.creditSIDnew Val= 'badAccount '} 

Frequent itemset IMisuse2 consists of the same set of attributes as frequent 
itemset !Normal· But there is an additional piece of information - the credit 

account is often badAccount. This represents a change of interest of Teller 

at the tuple level, which again can trigger alarm. 

6 CONCLUSIONS AND FUTURE WORK 

In this paper we have presented the concepts and architecture underlying 

DEMIDS, a misuse detection system for relational database systems. DEMIDS 

provides security officers a means to derive user profiles from audit logs record­

ing various features of accesses to the databases system through users and 

applications. The derived user profiles describe the typical user behavior in 

terms of typical access patterns against certain information structures ( rela­

tions, attributes, and data) of a database. Derived profiles provide security 

officers with a means not only to verify /refine existing security policies, but 

also to establish security policies as part of the security re-engineering of a 

given database system. 

In particular, DEMIDS considers the data structure and semantics specified 

in the database schema through the notion of distance measure. Such domain 

knowledge is used to guide the Profiler to search for frequent itemsets which 

can effectively represent the working scopes of users. The Profiler is capable 
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of discovering all those maxl.mal frequent itemsets in audit sessions by taking 

advantage of the query processing power of the DBMS. We have illustrated 

the effectiveness of the Profiler in detecting misuse by some scenarios. 

We have conducted an evaluation of the Profiler based on synthesized data. 

We are in the process of acquiring medical and financial data (as well as 

underlying database schemas and associated applications) to conduct further 

analysis. We would also like to conduct analytical analysis on the performance 

of the Profiler. Effectiveness of the Detector can be evaluated by asking a user 

knowing the security policies to attempt to defeat the system by acquiring a 

treasure buried in the database. 

One of our future research directions is to investigate other means to define 

the notion of distance measure, such as defining distance measures among 

attribute values, and using a different formulation other than the linear rela­

tionships in foreign key dependencies. 

We are also interested in considering other domain knowledge to guide the 

discovery of profiles. Groups of values for features can be replaced by some 

other values of higher level of abstraction. For instance, scores of range 10-20, 

20-50, 50-90, 90-100 can be replaced by 'very low', 'low', 'high', 'very high' 

respectively. Introducing a certain degree of imprecision to the feature values 

helps to reveal regularities in the data. Such classification can be obtained 

from the SSO or can be derived by considering the statistical distribution of 

feature values in an audit session. 

Another interesting research issue is to derive profiles for roles. A user 

may perform different and unrelated tasks during his/her interaction with 

the database system, but roles are more closely tied to the functions or tasks 

performed. Role profiles may give rise to more regular patterns than user 

profiles since functions or tasks operate on data that are related and there is a 

more static set of sequences of operations. The challenge is to identify portions 

of the audit data that correspond to the same _role. If the roles are not known 

to the SSO but users execute scripts on a regular basis to perform routine 

tasks, the scripts would serve to identify the roles the users take. In case 

that the user interacts with the database system through some application 

such as forms and reports, these applications perform well-defined database 

modifications on behalf of the user, and thus can be the basic units to identify 
user roles. 

REFERENCES 

R. Agrawal, R. Srikant (1994): Fast algorithms for mining association rules. 

In J. Bocca, M. Jarke, C. Zaniolo (eds.), Proceedings of the 20th VLDB 

Conference. Morgan Kaufman Publishers, 487-499. 

K. J. Biba (1977): Integrity considerations for secure computer systems. Tech­

nical Report ESD-TR-76-372, MITRE Corp., Redford, MA. 

D. E. Bell, L.J. LaPadula (Nov, 1973): Secure computer systems: mathe­

matical foundations. Technical Report ESD-TR-73-278, MITRE Corp., 



178 Integrity and Internal Control in Information Systems 

Redford, MA. 
S. Castano, M.G. FUgini, G. Martella, P. Samarati (1995): Database Security. 

Addison-Wesley. 
Carter, Katz (Dec, 1996): Computer crime: an emerging challenge for law 

enforcement. FBI Law Enforcement Bulletin, 1-8. 

D.E. Denning et al. (1986): Secure distributed data view: security policy and 

interpretation for class A1 multilevel secure relational database system. 

Technical Report A002, SRI International. 
L.C. Dion {1981): A complete protection model. In Proceedings of the IEEE 

Symposium on Research in Security and Privacy, 49-55. 

B. Everitt (1973): Cluster Analysis. John Wiley & Sons- New York. 

S. Forrest, S. A. Hofmeyr, A. Somayaji, T. A. Longstaff (1996): A sense of self 

for unix processes. In Proceedings of the IEEE Symposium on Research 

in Security and Privacy, 120-128. 
L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, D. Wolber 

(1990): A network security monitor. In Proceedings of the IEEE sympo­

sium on research in security and privacy, 296-304. 
M. A. Harrison, W. L. Ruzzo, J. D. Ullman (Aug, 1976): Protection in oper­

ating systems. Communications of ACM, 19(8):461-471. 
S. Jajodia, R. Sandhu (1990): Polyinstantiation integrity in multilevel rela­

tions. In Proceedings of the IEEE Symposium on Research in Security 

and Privacy, 104-115. 

H. Javitz, A. Valdez (1991): The SRI IDES statistical anomaly detector. In 

Proceedings of the IEEE Symposium on Research in Security and Pri­

vacy, 316-326. 
W. Lee, S. J. Stolfo (1998): Data mining approaches for intrusion detection. In 

Proceedings of the 7th USENIX Security Symposium (SECURITY-98}, 

79-94, Berkeley. Usenix Association. 

OracleS Server Concepts, Release 8.0. (1997) Part No. A54643-01, Oracle 

Corporation, Redwood City, California. 

S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, 

K. Levitt, C. Wee, R. Yip, D. Zerkle (1996): GriDS-A graph based in­

trusion detection system for large networks. In Proceedings of the 19th 

National Information Systems Security Conference. 

R. Sandhu, E. Coyne, H. Feinstein, C. Youman (1996): Role-based access 

control models. IEEE Computer, 29(2):38--47. 

K. Smith, M. Winslett (1992): Entity Modeling in the MLS relational model. 

In Proceedings of the International Conference on Very Large Data 

Bases, Vancouver, British Columbia, Canada. 

H. S. Vaccaro, G. E. Liepins (1989): Detection of anomalous computer session 

activity. In Proceedings of the IEEE Symposium on Research in Security 

and Privacy, 280-289. 

C. Wood, R. C. Summers, E.B. Fernandez (1979): Authorization in multilevel 

database models. Information Systems, 4(2):155-161. 


	DEMIDS: A Misuse DetectionSystem for Database Systems
	1 MOTIVATION
	1.1 Related Work
	1.2 Terminology
	1.3 Organization of the Paper

	2 ARCHITECTURE
	3 APPROACH
	3.1 Working Scopes
	3.2 Distance Measure
	3.3 Frequent Itemsets

	4 FREQUENT ITEMSETS PROFILER
	4.1 Data Structures
	4.2 Algorithm
	4.3 Analysis

	5 DISCUSSION
	5.1 Comparison
	5. 2 Scenarios

	6 CONCLUSIONS AND FUTURE WORK
	REFERENCES


