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ABSTRACT 

Recent studies have proposed that traditional security technology – 

involving pattern-matching algorithms that check predefined 

pattern sets of intrusion signatures – should be replaced with 

sophisticated adaptive approaches that combine machine learning 

and behavioural analytics. However, machine learning is 

performance driven, and the high computational cost is 

incompatible with the limited computing power, memory capacity 

and energy resources of portable IoT-enabled devices. The 

convoluted nature of deep-structured machine learning means that 

such models also lack transparency and interpretability. The 

knowledge obtained by interpretable learners is critical in security 

software design. We therefore propose two novel models featuring 

a common Deep Extraction and Mutual Information Selection 

(DEMISe) element which extracts features using a deep-structured 

stacked autoencoder, prior to feature selection based on the amount 

of mutual information (MI) shared between each feature and the 

class label. An entropy-based tree wrapper is used to optimise the 

feature subsets identified by the DEMISe element, yielding the 

DEMISe with Tree Evaluation and Regression Detection 

(DETEReD) model. This affords ‘white box’ insight, and achieves 

a time to build of 603 seconds, a 99.07% detection rate, and 98.04% 

model accuracy. When tested against AWID, the best-referenced 

intrusion detection dataset, the new models achieved a test error 

comparable to or better than state-of-the-art machine-learning 

models, with a lower computational cost and higher levels of 

transparency and interpretability. 
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1 Introduction 

The Internet of Things (IoT) is an expanding network of devices 

that are predicted to become more mainstream as a result of their 

proliferation in the healthcare, retail, manufacturing and 

transportation markets [1,2]. The IoT comprises everyday devices 

with a degree of networked capability such that they provide an 

impression of intelligence [2], but they are neither mobile devices 

nor traditional computers [1]. As the IoT continues to grow, 

concerns have been raised over the potential misuse of IoT 

devices to illicitly obtain sensitive personal information (such as 

location, identity, payment details and health data) or as a means 

to attack far larger interconnected systems [1,2].  

To tackle these security issues, perimeter security comprises 

preventive measures such as firewall, authentication and access 

control. Despite the central role of such measures in computer 

security, recent studies have shown that most computer security 

incidents are caused by insiders, i.e. people who would not be 

blocked by these preventative technologies because they often 

require access with significant privileges to do their daily jobs [3]. 

Prevention, although necessary, is not a complete security 

solution. Intrusion detection systems (IDS) not only complement 

preventive controls as the next line of defence, but also help to 

defend against the various threats to which networks and hosts are 

exposed. This is achieved by the network/host-level detection of 

attacker actions or tools based on misuse or heuristic detection 

techniques [4]. 

Most contemporary IDS techniques are not suitable for the 

IoT because they are not designed to handle the limited computing 
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power, memory capacity and energy resources of portable IoT-

enabled devices. Current IDS platforms involve pattern-matching 

algorithms that check predefined pattern sets consisting of 

intrusion signatures. More importantly, they only detect known 

attacks, so a signature must be created for every attack, and novel 

attacks cannot be detected. Recent studies have proposed that 

traditional security technology should be replaced with more 

sophisticated adaptive approaches that combine machine learning 

and behavioural analytics while minimising the use of computing 

power and energy. 

Machine-learning systems are typically performance driven, 

and most non-parametric and model-free approaches therefore 

place high demands on computational resources to find global 

optima. Designing more accurate machine-learning algorithms to 

satisfy the market needs is therefore likely to increase the 

computational costs and energy demands even further.  

Deep-learning algorithms are becoming more widespread, 

as seen in convolutional neural networks (CNNs) that combine 

feature extraction and classification. Deep-learning methods use 

feature engineering to achieve a better predictive performance 

than is possible using a single neural network model. However, 

these are computationally demanding resources especially when 

dealing with large-scale or highly-dimensional data. For example, 

CNNs gradually extract local features from high-resolution 

feature maps and then combine these features into more abstract 

feature maps of lower resolution [5]. This is realised by 

alternating convolution and subsampling layers. The last few 

layers in the CNN use fully connected multi-layered perceptron-

based neural network classifiers to produce the abstracted results. 

Assuming Q input feature maps and R output feature maps, and a 

feature map size of M × N, the convolutional kernel size is K × L 

and the computation in the convolution layer can be represented in 

a nested-loop description, as shown below.  

 

 
 

The array X contains the input feature maps, and the array Y 

contains the output feature maps, which are initialised to zeros. 

The array W contains the weights in the convolution kernels. The 

computational workload in the convolution layer only is in the 

order of O(R · Q · M · N · K · L), whereas the computational 

workload in the following subsampling layer is in the order of 

O(Q · M · N). At the output of each layer, an activation function is 

applied to each vector in the feature maps to mimic neuron 

activation. 

More importantly, the convoluted and complex nature of 

deep-structured machine learning can make the models difficult to 

                                                             
1Within this research we define lightweight as IoT devices which utilise some of the 

smallest microcontrollers available on the market, for example, the D1000 Intel Quark 

microcontroller with a 32MHz clock speed and 8KB of RAM.  

interrogate and interpret, hence generally described as a ‘black 

box’. In intrusion detection algorithm design, interpretability is a 

critical determinant of the practical utility of the resulting IDS. 

This not only ensures that the model is aligned with the problem 

addressed by the intrusion detection algorithm, but also allows the 

knowledge obtained by the interpretable learners to be used in 

other security software designs. Model interpretability is of 

tremendous importance to confirm that the model is performing 

its task as expected, thus creating trust with end-users. 

Nowadays, there is a greater need to develop new 

lightweight and interpretable machine-learning models to cope 

with future demands that are in line with similar IoT-related 

initiatives. Efficient and interpretable modelling is important for 

cybersecurity, specifically intrusion detection problems that affect 

many industries. Accordingly, we here propose two machine-

learning intrusion detection models for IoT devices which utilise a 

common Deep Extraction and Mutual Information Selection 

(DEMISe) element. Within the DEMISe element of the models, 

additional features are extracted using a two-layer deep-structured 

stacked autoencoder (SAE), and are then combined with the 

original features and ranked according to the amount of mutual 

information (MI) they share with the class label (normal or 

attack), using a MI theoretic feature selection filter. For resource-

constrained IoT devices in which redundant features have already 

been identified, and MI ranking alone is sufficient to achieve an 

acceptable IDS performance, we propose the DEMISe model 

combined with a Radial Basis Function Classifier (DEMISe-

RBFC). However, given that rank-based feature selection filters 

do not utilise machine learning to identify optimal feature subsets 

[6], a solely rank-based feature selection approach might select a 

feature subset that still retains some unnecessary dimensionality. 

Therefore, the proposed DEMISe-RBFC utilises a ‘black box’ 

classifier to afford a level of resilience to this additional 

dimensionality.  

Recognising this limitation, we also propose the DEMISe 

with Tree Evaluation and Regression Detection (DETEReD) 

model, which utilises a C4.8 tree-based wrapper in a novel 

manner to identify optimal feature subsets among the top 10 

features ranked by the MI theoretic filter. As a result of this subset 

optimisation, a lower complexity ‘white box’ logistic regression 

can be applied in the DETEReD model for instance classification, 

thus affording a deeper insight into the model’s learning process. 

In terms of this paper’s contribution, we will: 

 

• Show MI theoretic feature selection can be effective on its 

own, but is best employed as a pre-selection filter prior to 

wrapper-based feature subset selection. 

• Build upon current architectural descriptions [7,8,9] to show 

that a machine-learning IDS has the potential to be 

lightweight enough to be accommodated within an IoT 

device1. 
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• Build upon earlier work [10] to show the utility of features 

extracted using a deep SAE, which in conjunction with 

lightweight MI theoretic feature selection, is able to train a 

model that outperforms those proposed elsewhere [11,12]. 

 

The remainder of this paper is structured as follows. Section 

2 introduces the DEMISe-RBFC and DETEReD models and 

justifies them in more detail, outlining the three key training 

methods. Section 3 analyses and evaluates the performance of the 

models, and Section 4 concludes our findings and recommends 

some areas of further work. 

2 Methodology 

Based on a selection of the 11 criteria proposed earlier [13], we 

selected the Aegean Wi-Fi Impersonation Attack Detection 

(AWID) dataset containing real traces of 802.11 traffic obtained 

from a dedicated WEP protected Wi-Fi network as the most 

representative dataset for the IoT environment, and thus the most 

appropriate dataset for model training and evaluation. We selected 

the reduced CLS portion of the AWID dataset because it serves as 

a useful starting point for preliminary research [12], and affords a 

baseline against which the DEMISe-RBFC and DETEReD 

models can be compared with the state-of-the-art Deep Feature 

Extraction and Selection (D-FES) method [10], and other methods 

using the same reduced CLS portion [11,12]. We pursued the 

‘divide and conquer’ approach for DEMISe-RBFC and 

DETEReD model development, focusing only on the detection of 

impersonation attacks. Although flooding and injection attack 

signatures are also available within the AWID-CLS dataset, 

impersonation attacks were our focus as Hirte, Honeypot and 

EvilTwin impersonation attacks have previously been identified 

as the most severe threats to a network [12] and have been the 

focus of earlier research [10,11]. As a result, selecting 

impersonation attacks as the focus of our work allowed us to 

directly compare the performance of our model to others, a key 

weakness within the current body of machine-learning-based IoT 

IDS research. During pre-processing, the values for each instance 

within the dataset were normalised between zero and one to 

prevent bias in the machine learner towards features with the 

largest value ranges [14], and the entire dataset was balanced 

50:50 in terms of the normal and impersonation attack instances2. 

 Although a balanced dataset is not representative of a real-

world network environment, balancing sacrifices some accuracy 

in terms of detecting the more prevalent class (in this case the 

normal traffic) in order to achieve greater detection accuracy for 

the minority class (i.e. the attack instances) [14]. Fig. 1 shows the 

high-level architecture of the DEMISe-RBFC model, and Fig. 2 

shows the high-level architecture of the DETEReD model. The 

key elements of both models are now discussed in further detail. 

                                                             
2The balanced training dataset contained 48,522 normal and impersonation attack 

instances, with the testing dataset containing 20,079 normal and impersonation attack 

instances. 

2.1 Deep Structured Stacked Autoencoder 

Based Feature Extraction  

Although features can be extracted by principal component 

analysis (PCA), an autoencoder has a significant advantage 

over PCA in terms of its ability to utilise a non-linear 

activation (or transfer) function such as the sigmoid function 

(1) on an input variable x [14,15]. 

 

𝑓(𝑥) = 1
1 − 𝑒*+ 

 

(1) 

 

An autoencoder is an unsupervised greedy learning 

algorithm within artificial neural network (ANN) family, but 

unlike many other ANNs, an autoencoder has an encoder-

decoder architecture that attempts to learn a compressed 

approximation of the training data, such that it can efficiently 

predict the correct output for any given input [15]. 
 

 

Figure. 1:  High-level architecture of the DEMISe-RBFC 

model showing the core DEMISe element for feature 

extraction and selection, the Radial Basis Function Classifier, 

and the pre-processing stages. 

Within an ANN such as an autoencoder, a neuron is a 

computational unit that takes an input x1,x2,…xn, and outputs a 

hypothesis hW,b(x), where the parameters W and b represent the 

weights and biases within the network that the learning algorithm 

adjusts to fit the training data [15]. Fig. 3 shows an autoencoder 
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with only 50 neurons within its encoder layer to represent the 

original input of 154 features. As a result, each neuron within the 

encoder layer can be considered a newly constructed (or 

extracted) feature. Having learnt this compressed representation of 

the data, the decoder layer then attempts to use the learning within 

the encoder layer to reconstruct an output that resembles the 

original input as closely as possible, i.e. hW,b(x) » x. 

Mathematically the autoencoder can be expressed in terms 

of an input vector x being mapped by the encoder to another 

vector z (2), 

 

𝑧 = ℎ(./012.3)4𝑊(./012.3)𝑥 + 𝑏(./012.3)8 (2) 

 

prior to the decoder layer attempting to map the vector z 

back to an estimate of the original input vector 𝑥9 (3). 

 

𝑥9 = ℎ(2.012.3)4𝑊(2.012.3)𝑧 + 𝑏(2.012.3)8 (3) 

 

 

Figure. 2:  High-level architecture of the DETEReD model 

showing the core DEMISe element for feature extraction and 

selection, the C4.8 tree wrapper, the logistic regression, and 

the pre-processing stages. 

The autoencoder achieves mapping by backpropagation, 

whereby from the outset of training hW,b(x) is set to » x, thus 

forcing the autoencoder to learn a function that satisfies this 

constraint [15]. However, because autoencoders are greedy 

algorithms, they have the potential to discard features too early 

that could still be needed to accurately determine the correct target 

class for a given instance [10,16]. By learning a compressed 

representation of the feature space, the autoencoder algorithm 

assumes that achieving locally optimised weights and biases at 

each neuron will deliver the best overall performance [17]. To 

overcome this drawback, we used a stacked autoencoder (SAE) 

within Matlab for feature extraction. A SAE is a deep-learning 

implementation of an autoencoder, in which the learning achieved 

by the encoder layer of the first autoencoder is used to train the 

second autoencoder and so on. As a result, the SAE architecture 

allows the number of hidden neurons within the encoder layer to 

be gradually refined, thus reducing the greediness of the algorithm 

during its search (Fig. 4). 

Furthermore, to construct and extract useful features from 

the SAE, sparsity must be encouraged within each layer. To 

achieve this, a cost function is included to penalise any neuron 

which activates more frequently than the average number of 

activations across all of the neurons within the network [15]. If m 

is the number of training instances (in this case 48,522), 

𝑎;(./012.3) is the activation of the jth neuron within the 

autoencoder’s encoder layer, and the average number of 

activations of the jth neuron across the training set is r<= , where r<=  

is described as shown below (4). 

𝜌9; =	 1𝑚AB𝑎;(./012.3)4𝑥(C)8D
E

CFG
 

 

(4) 

 

 
Figure. 3:  Autoencoder architecture, where X is an input 

feature, N is a neuron within the encoder layer, and D is a 

neuron within the decoder layer. 
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Figure. 4:  Stacked autoencoder architecture, where N1 is a 

neuron within the first autoencoder’s encoder layer, N2 is a 

neuron within the second autoencoder’s encoder layer, and D 

is a neuron within the decoder layer. 

As a result, a sparsely trained autoencoder aims to satisfy 

the constraint that r<= = 	𝜌, where r is known as the sparsity 

parameter. For our SAE, the commonly used Kullback-Leibler 

(KL) divergence was used as the sparsity penalty function 

(WHIJ3HCKL) because it takes the value of zero when r<= = 	𝜌 as 

shown below (5). 

 

ΩHIJ3HCKL =		 A 𝜌 log Q𝜌𝜌9CR + (1
S.T31/H(UVWXYZ[)

CFG
− 𝜌) log Q1 − 𝜌1 − 𝜌9CR 

 

(5) 

 

For the DEMISe element of the model, we selected a SAE 

architecture of 154:100:50, which was previously shown to be 

effective for the generation of a compressed representation of the 

same reduced CLS AWID dataset [10]. Therefore, the first 

encoder layer learns a 100-neuron representation of the original 

154 features, from which the second encoder layer learns a 50-

neuron representation.  

2.2 Mutual Information Theoretic Feature 

Selection 

Within the common DEMISe element of the DEMISe-RBFC and 

DETEReD models, the 154 original and 50 newly extracted 

features are ranked and filtered based upon the amount of MI they 

share with the class label. Although filter methods for feature 

selection can deliver a sub-optional subset of features for 

classifier training [18], they present the most lightweight option 

for feature selection within an already resource-constrained IoT 

device. The DEMISe-RBFC model therefore employs a ‘black 

box’ Radial Basis Classifier to overcome the adverse effect of 

potentially suboptimal feature subsets being used for model 

training. To afford greater insight into the learning process, the 

DETEReD model also uses a C4.8 tree wrapper alongside the MI 

theoretic filter to optimise the feature subset. Although wrapper 

methods are more computationally expensive than filter methods 

because they use a iterative-learning-process to identify optimal 

feature subsets [18], the computational complexity of the wrapper 

is reduced because only the 10 features sharing the greatest 

amount of MI with the class label are considered, rather than all 

204 (154 original plus 50 extracted features). Given that the MI 

theoretic filter will already have identified deterministic features 

of the class label, the lightweight optimisation afforded by the 

wrapper enables the use of a lower-complexity ‘white box’ 

logistic regression algorithm for instance classification, thereby 

providing additional valuable insight for the software security 

expert. 

Although embedded methods that undertake feature 

selection as part of the learning process [6] were also considered 

for the feature selection element of the model, they are unable to 

afford the same level of insight in terms of feature importance and 

are slower and therefore more computationally expensive than 

filter-based methods [18].  

Filter-based methods perform feature selection 

independently of the machine learner, thus, the feature selection 

uses heuristics centred on the inherent properties of the data to 

score and rank features [6]. Although many different measures 

and techniques are cited in the IDS literature for feature selection 

filters, we used MI in our model as the measure to score and rank 

the 204 features because promising results have been achieved by 

others using this approach [19,20,21]. MI was proposed by 

Shannon [22] as part of his information theory, which included 

the concept of entropy: the idea that random signals such as 

speech have an irreducible complexity, below which no further 

compression is possible [23]. The entropy H of a random variable 

x with a probability mass function p(x) can therefore be defined as 

shown below (6): 

 

𝐻(𝑥) = 	−A𝑝(𝑥) log^ 𝑝(𝑥)
+∈`

 (6) 

 

where 𝑋 is a set of all possible outcomes of 𝑥.  

The concept of entropy gives rise to: i) conditional entropy 

 

𝐻(𝑥|𝑦) = 	−A A 𝑝(𝑥, 𝑦)
L∈e

log^[𝑝(𝑥|𝑦)]+∈`
 

(7) 

 

where the entropy H of a random variable x is conditional upon 

the knowledge of another random variable y; and ii) mutual 

information 
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𝐼(𝑥; 𝑦) = 	∑ 𝑝(𝑥, 𝑦) log^ I(+,L)
I(+)I(L) = 𝐻(𝑥) −+,L	

𝐻(𝑥|𝑦),  
 

(8) 

 

denoting the amount of information gained about y as a result of 

knowing x [18,22]. In terms of our MI theoretic feature selection 

filter, the random variables x and y can be flexibly used to 

represent features and class labels. For example, x can be used to 

denote a feature within the dataset, and y can be invoked to denote 

as a class label, i.e., how likely the machine learner is to correctly 

predict the class label for any given instance as a result of learning 

a given feature.  

Computing the expressions (6)–(8) requires knowledge of 

probability measures 𝑝(𝑥), 𝑝(𝑦) and 𝑝(𝑥, 𝑦). Since these 

quantities are frequently unknown a priori for any given datasets, 

we invoke a widely-used histogram-based approach [26–28] to 

estimate the probability distribution. Generally histogramming is 

known to introduce estimation bias due to sensitivity to bin size 

[23,26–29]. We follow the procedures of discretization via 

supervised binning [30,31] to minimise this bias and obtain more 

accurate estimation of MI values.  

Rank-based MI theoretic feature selection is inherently 

based on the assumption that classifier performance is linked to 

the amount of MI shared between the class label and a feature, i.e. 

the greater the number of high-ranking features selected for 

classifier training, the better the classifiers perform in terms of 

correctly identifying the class label for any given instance. 

However, this approach ignores the potential for more optimal 

subsets to exist, comprising features that are not sequentially 

ranked in terms of their MI values. In other words, the DEMISe 

element of the model assumes that features sequentially ranked 

1,2,3,4,5 will train a better performing classifier than (for 

example) features ranked 1,3,7,32,91. In practice this is likely 

invalid due to the false assumption that each feature contains 

different and complementary information about the class label. 

Nevertheless, for the ultra-lightweight DEMISe-RBFC model, this 

approach should still identify features that can be used to train an 

IoT IDS model that achieves a ‘good enough’ detection 

performance within highly resource-constrained devices. On the 

other hand, the DETEReD model addresses the weak assumption 

made by the DEMISe element’s MI theoretic feature selection by 

including the C4.8 tree wrapper. 

A review of the IDS literature indicates that a feature 

selection filter as a pre-selection stage prior to wrapper subset 

optimisation is a novel approach to reduce dimensionality within 

resource-constrained devices. Although various wrapper 

algorithms including ANNs and support vector machines (SVMs) 

were considered for the DETEReD model, the C4.8 was selected 

because of it is less complex and thus has a lower impact on 

computational resources. Furthermore, the DEMISe element 

within the DETEReD model will already have identified 

potentially important features, so the additional complexity 

associated with SVMs and ANNs is unnecessarily resource-

intensive. For DEMISe-RBFC model training, we selected up to 

20 of the highest-ranking features in terms of the MI they share 

with the class label, which is 10% of all features. The state-of-the-

art D-FES method which also uses deep feature extraction and 

selection, achieves strong detection performance with a similar 

number of selected features [10]. However, for the C4.8 wrapper 

in the DETEReD model, we only seek to identify optimal subsets 

among the top 10 features identified by the DEMISe element to 

minimise the time to build and the resource burden.  

2.3 White Box and Black Box Classification 

For the linear radial basis function approximation within the 

DEMISe-RBFC model, the Radial Basis Function Classifier 

(RBFC) was selected because, unlike other types of ANN, a radial 

basis function network can learn neuron widths and centres 

independently of the weights [14], offering advantages in terms of 

computational complexity (Fig. 5). Furthermore, an RBFC can 

also express non-linear relationships, which simpler algorithms 

such as the C4.8 and logistic regression cannot. This is 

particularly important given the aforementioned potential failure 

of the solely rank-based MI theoretic feature selection approach 

(adopted within the DEMISe-RBFC model) to identify optimal 

feature subsets. As a result, a higher complexity classifier such as 

the RBFC is required to ensure that model performance is not 

degraded by the presence of additional noise and outliers within 

the data. The RBFC achieves lower complexity than SVMs and 

other ANNs by generalising local representations i.e. a radial 

basis function network represents a ‘prototype’ of the training 

data from which the model draws generalised rules to describe the 

class labels [14].  

 

Figure. 5:  The Radial Basis Function Classifier architecture, 

where X is a top 20 ranked feature based on the amount of MI 

it shares with the class label, and Y is the class prediction 

made by the radial basis function network. 
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For the implementation, the initial centres for the two 

Gaussian radial basis functions were found using simple k-means 

clustering, whereas the weights were found using an 

approximation of the logistic function, thereby improving overall 

performance. For the interpretable regression in the DETEReD 

model, the implementation of a logistic regression in which ridge 

estimators improve the parameter estimates and diminish the error 

made by further predictions [24].  

3 Evaluation and Analysis 

For all aspects of DEMISe-RBFC and DETEReD model training 

and testing, we used a workstation running a Unix-based OS with 

a 3.1 GHz Intel Core i7 CPU and 8 Gb of RAM. In terms of the 

model evaluation metrics, we elected to use the standard measures 

of detection accuracy (Acc) (9), detection rate (DR), which is the 

ratio of the correctly detected attacks to the total number of 

attacks (10), precision, which measures the number of correctly 

identified attacks (11), false alarm rate (FAR), which is the ratio 

of the number of normal instances misclassified as attacks against 

the total number of normal instances (12), false negative rate 

(FNR), which represents the number of undetected attacks (13), 

the harmonic mean between precision and DR (F1) (14), and the 

Matthews correlation coefficient (Mcc), which is the coefficient 

between detected and observed behaviours [10] (15). We also 

measured the CPU time (second) to build for the model because it 

indicates the computational burden associated with model 

training. 

 

𝐴𝑐𝑐 = 	 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

(9) 

 

𝐷𝑅(𝑟𝑒𝑐𝑎𝑙𝑙) = 	 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 

(10) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 

(11) 

 

𝐹𝐴𝑅 =	 𝐹𝑃
𝑇𝑁 + 𝐹𝑃 

(12) 

 

𝐹𝑁𝑅 =	 𝐹𝑁
𝐹𝑁 + 𝑇𝑃 

(13) 

 

𝐹G =	 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 

(14) 

 

𝑀𝑐𝑐
=	 (𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)
|(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁) 

(15) 

 

 

Table I:  Top 20 features based on mutual information values 

Features in order of 

decreasing MI value 

8, 82, 4, 38, 157, 162, 168, 160, 188, 161, 

199, 176, 159, 191, 182, 186, 195, 156, 

158, 165 

3.1 Mutual Information Theoretic Feature 

Selection 

Having extracted the 50 additional features using the deep 

structured SAE, the continuous variables were discretised using 

supervised entropy-based discretisation, with the MI between each 

of the 204 features and the class label calculated as shown above 

(8). Entropy-based discretisation was applied because it affords a 

degree of efficiency within the model given that the entropy of 

each feature is also required to calculate MI. The top 20 features 

are described in Table I in terms of the MI they share with the 

class label identified by the MI theoretic feature selection filter 

within the DEMISe element of both models. 

Of the 204 features ranked by the model, only 83 had a MI 

value > 0, suggesting that 121 features were statistically 

independent of the class label, and thus irrelevant to the 

identification of an impersonation attack within the reduced CLS 

portion of the AWID dataset. This is not an unreasonable 

discovery, given that not all features within a dataset are 

important for attack detection [21]. However, this finding suggests 

that even low-complexity MI theoretic feature selection filters are 

able to reduce dimensionality within modern complex network 

datasets such as AWID. 

Table II:  Optimal number of high-ranking features for 

different classifiers 

The time to build (TTB) for all models includes the 293 s required by the deep-

structured SAE. Abbreviations not used in main text: logistic regression (LR), 

multilayer perceptron (MLP), random forest (RF). 
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Figure. 6:  DEMISe-RBFC model performance when trained 

with the top n selected features, where 20 ³ n £ 1. The 

performance of the DEMISe-RBFC model cannot be predicted 

in advance of training based on the MI shared between each 

feature and the class label. 

3.2 DEMISe-RBFC 

For the first round of training and testing, the DEMISe-RBFC 

model was trained using all of the top 20 features shown in Table 

I, and then for each subsequent round the number of selected 

features was reduced by one, with the lowest ranking feature 

being removed from the training subset each time. We took this 

approach in order to test the hypothesis that the classifier 

performance could be predicted using MI ranking alone, whereby 

the greater the number of high-ranking features used for training, 

the stronger the model’s detection performance. Although our 

results indicated that training the model’s RBFC with the top 

seven features identified by rank-based MI theoretic feature 

selection met the objective of achieving a ‘good enough’ detection 

performance (Fig. 6), it was not possible to predict this optimal 

number of high-ranking features in advance.  

This conclusion was considered justified because several 

linear and non-linear classifiers were also tested in lieu of the 

RBFC to ensure the observed behaviour could not be attributed to 

the RBFC algorithm. As shown in Table II, the top seven features 

did not prove to be an optimal combination for any of the 

alternative classifiers. However, MI theoretic feature selection 

yielded a better-performing model than training using all 204 

features and was therefore considered effective (Table III). 

Furthermore, because the optimal subset comprising the top seven 

features included the extracted features 157, 162 and 168, the 

suitability of the deep structured SAE for feature extraction within 

the DEMISe-RBFC model was also confirmed. 

 

 

Table III:  Mutual information theoretic feature selection 

versus no feature selection  

 

The time to build (TTB) for all models includes the 293 s required by the deep-

structured SAE. 

3.3 DETEReD 

Having identified the top 20 features within the DEMISe element 

of the model (Table I), the C4.8 wrapper considered only the top 

10 for subset optimisation, i.e. features 8, 82, 4, 38, 157, 162, 168, 

160, 188 and 161. Among these features, the wrapper identified 

an optimal subset comprising features 4, 8, 82, 160 and 168. 

Because this subset also included extracted features, the suitability 

of the deep structured SAE for feature extraction within the 

DETEReD model was confirmed. 

When trained with this five-feature subset, logistic 

regression achieved the performance shown in Table IV. As 

above, this performance was compared against other classifiers to 

validate the effectiveness of the proposed DETEReD model. 

Accordingly, we found that logistic regression was the best-

performing classifier for the DETEReD model. 

Table IV:  DETEReD model performance with different 

classifiers 

The CPU time to build (TTB) for all models includes the 293 s required by the deep-

structured SAE and the 309 s required by the C4.8 wrapper. Abbreviations not used in 

main text: logistic regression (LR), multilayer perceptron (MLP), random forest (RF). 

3.4 Comparison Against Baselines 

Having trained and tested the DEMISe-RBFC and DETEReD 

models, their suitability was assessed by comparing their 

performance against other published machine-learning-based IDS 

solutions. For the purposes of this comparison, we selected the D-

FES model because it represents the current state-of-the-art in 

terms of combining feature extraction and selection techniques 

within an machine-learning-based IDS [10], as well as two models 

previously used to detect impersonation attacks within the reduced 

CLS portion of the AWID dataset [11,12]. The performance of the 

DEMISe-RBFC and DETEReD models is compared against the 

D-FES model in Table V, and against the models previously 

tested against the CLS portion of the AWID in Table VI. 
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Table V:  DETEReD and DEMISe-RBFC vs D-FES models 

 

D-FES data from [10]. TTB = CPU time to build. 

 

Given that our aim was to develop a lightweight machine-

learning-based IDS solution suitable for the IoT environment, it 

would be unreasonable to expect the DEMISe-RBFC and 

DETEReD models to match the performance of the D-FES 

wrapper methods which consider all 204 features, in contrast to 

the vastly reduced subset considered by the DETEReD model, and 

the solely filter-based method used by the DEMISe-RBFC model. 

Nevertheless, Table V shows that DEMISe-RBFC and DETEReD 

compared well against the D-FES wrapper methods, and 

outperform it when using the DR and F1 classifiers. In terms of 

the CPU time to build, the DETEReD model was 52.29% quicker 

than the fastest D-FES-Corr filter-based method, whereas the 

DEMISe-RBFC model was 76.14% quicker. The lightweight 

nature of the DEMISe-RBFC and DETEReD models was further 

demonstrated by comparison to the best-performing D-FES-SVM, 

with the DETEReD model achieving a 95.01% faster time to 

build. The DEMISe-RBFC and DETEReD models also 

outperformed the earlier models tested on the same dataset [11,12] 

when using the Acc, DR and FAR classifiers, and although these 

previous studies did not provide data for F1 and Mcc, the available 

metrics suggest that the DEMISe-RBFC and DETEReD models 

would also outperform the earlier models using these classifiers. 

Accordingly, we suggest that the inclusion of deep feature 

extraction in the DEMISe-RBFC and DETEReD models provides 

an advantage in terms of impersonation attack detection within the 

AWID dataset. 

Table VI:  DETERED and DEMISE-RBFC versus Models 

previously tested against the CLS portion of the AWID 

dataset [11,12] 

 

NRA = No results available. 

3.5 Estimating Resource Requirements 

Having demonstrated that the DEMISe-RBFC and DETEReD 

models compete well against the contemporary models in the 

wider IDS literature, we now consider the resource requirements 

of these two models in order to determine their suitability for IoT 

devices. 

To estimate the resource requirements of these two models, 

the 32-bit IEEE 754 binary floating-point standard was selected 

because the representative D1000, D2000 and C1000 Intel Quark 

microcontrollers designed for use within IoT devices utilise a 32-

bit architecture [25]. We used this binary notation standard to 

estimate the resource requirements of both models by expressing 

the coefficients within the DETEReD model’s logistic regression 

and the DEMISe-RBFC radial basis function’s unit centres, bias 

weights, and output weights. Based on these estimates, Table VII 

shows that despite the longer CPU time to build, the white-box 

DETEReD model requires an estimated 24 bytes of memory to 

capture the five weights and one intercept learnt by the logistic 

regression, whereas the black-box DEMISe-RBFC model requires 

84 bytes to capture its more-complex 21 learnt parameters. 

Based on the estimated resource requirements in Table VII 

and the specification for even the smallest D1000 Intel Quark 

microcontroller, the parameters learnt by the DEMISe-RBFC and 

DETEReD models could potentially be accommodated within the 

available non-volatile memory (32 Kb instruction, 4 Kb data) of 

the microcontroller [25], thus confirming that the DEMISe-RBFC 

and DETEReD models are suitable for an machine-learning-based 

IoT IDS. 

Table VII:  Estimated resource requirements for DETEReD 

and DEMISe-RBFC  

 

4 Conclusion and Future Work 

We built upon earlier architectural descriptions [7,8,9] to propose 

two lightweight and accurate models for a machine-learning-

based IDS with potential suitability for the resource-constrained 

and dynamic IoT environment. We found that although MI 

theoretic feature selection is an effective strategy to identify 

features that are important for the correct classification of any 

given instance, it is best employed in a novel manner as a pre-

selection stage prior to wrapper subset evaluation. The 

performance of a classifier could not be predicted based on the MI 

values for each feature alone, so the optimisation of the DEMISe-

RBFC model could prove challenging if re-training were required 

using an unfamiliar dataset, because it may not be valid to assume 

that the top seven features will always train the best performing 
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model. The DETEReD model overcomes this issue by the novel 

application of a C4.8 wrapper which only considers the top 10 

features identified by the MI theoretic filter, thereby reducing the 

computational complexity caused by the wrapper needing to 

consider subsets within all 204 features. The DETEReD model 

can therefore use a simpler classifier such as logistic regression, 

and thus delivers white box insight into the model’s learning 

process. 

The DEMISe-RBFC and DETEReD models also 

demonstrate the utility of deep structured feature extraction using 

a stacked autoencoder, whereby both models use extracted 

features during learning and outperform earlier models [11,12] by 

including this deep feature extraction stage. 

In terms of the state-of-the-art in the wider machine-

learning-based IDS literature, we have shown that our proposed 

DEMISe-RBFC and DETEReD IoT IDS models also outperform 

D-FES filter methods [10], achieving a 76.14% and 52.29% faster 

time to build than even the fastest D-FES-Corr method when 

using the DR and F1 classifiers, respectively. In addition to the 

lower computational cost associated with training the DEMISe-

RBFC and DETEReD models, we also showed that the learning 

achieved by the models could be accommodated within even the 

most resource-constrained devices, requiring just 84 and 24 bytes 

of storage, respectively. 

Finally, in terms of future work, we intend to investigate the 

ability of the DEMISe-RBFC and DETEReD models to detect 

other types of attack that are likely to occur within an IoT 

network, and demonstrate the lightweight nature of the algorithm 

by deploying it within a resource constrained device (e.g. 

Raspberry Pi). 
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