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Abstract

Several fields have created ontologies for their subdomains. For example, the biological sciences

have developed extensive ontologies such as the Gene Ontology, which is considered a great

success. Ontologies could provide similar advantages to the Modeling and Simulation community.

They provide a way to establish common vocabularies and capture knowledge about a particular

domain with community-wide agreement. Ontologies can support significantly improved

(semantic) search and browsing, integration of heterogeneous information sources, and improved

knowledge discovery capabilities. This paper discusses the design and development of an ontology

for Modeling and Simulation called the Discrete-event Modeling Ontology (DeMO), and it

presents prototype applications that demonstrate various uses and benefits that such an ontology

may provide to the Modeling and Simulation community.
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1. Introduction

Most software designs reflect a commitment to a particular view of reality that shapes and

directs their implementation by developers. In the early 1960s, Lackner1 recognized that

Discrete-event Simulation (DES) software conformed to this pattern when he noted that

programming languages developed for the purpose of creating DES systems tended to

support specific views of reality. A few years later, Kiviat's2 discussion of simulation

programming languages (SPLs) led to a basic taxonomy for DES that includes the three

classical world views: event scheduling (ES), activity scanning (AS), and process interaction

(PI). The concepts associated with a particular world view were designed into a SPL and

were implicitly adopted by the simulations developed using the language. In the years since

Kiviat's discussion of the classical world views, several taxonomies, formalisms, and

modeling techniques for Modeling and Simulation (M&S) have been developed.

Unfortunately, the field of M&S suffers the same problem as other disciplines of computing

in that taxonomies exist on paper, but there is no efficient way to connect what one group is
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doing in one area to another group in a different area, for example, groups doing Petri Nets

(PNs)3 and Event Graphs (EGs)4 are not efficiently connected. If machine-readable links

between the concepts used by various formalisms existed, they could be used in databases,

query engines, and human–computer interaction models. In addition, the organization of

such knowledge would help increase interoperability, integration, and reuse of simulation

artifacts. Emerging Semantic Web technologies provide an avenue for organizing M&S

knowledge as described above.

The M&S community has benefited through the use of current Web technologies, and

emerging Web technologies have the potential to provide even greater benefit. Web-based

simulation5–8 was an early example of Web technology use for M&S. It began with the idea

that the Web could have a profound impact on how users interact with simulation. Much of

this initial work focused on providing an infrastructure to support Web-based simulation. In

more recent years, the emergence of the Extensible Markup Language (XML) began to shift

the focus of researchers toward the development of simulations using XML-based

applications and schemas.9–11 XML is designed to facilitate document exchange and can

make use of a schema language, such as XML Schema, to provide a structure and some

level of standardization of semantics for a group of related documents. It enables Web

documents to carry more meaningful tags than are available in Hypertext Markup Language

(HTML), and it allows the documents to carry some semantics. Unfortunately, XML alone

cannot provide semantics that are rich enough to achieve many of the M&S community's

goals, that is, model discovery, interoperability, integration, and reuse.

The next generation of the Web, known as the Semantic Web,12 promises to provide

machine-readable and meaningful descriptions of Web resources in order to improve

discovery, integration, and use/reuse of such resources. The M&S community may reap

significant benefits through the use of Semantic Web technology.13 One of the most

important contributions of the Semantic Web for M&S is the creation of ontologies for

specific domains. According to Gruber,14 ontologies are structured descriptions that

categorize concepts and relationships among concepts within a particular knowledge

domain. Ontologies are, like taxonomies, used to classify entities within a domain, but they

hold several advantages over traditional taxonomies in that they allow the entities to have

properties and relationships. They also allow types of things within a particular domain to be

defined as classes, and the meaning of a class is captured via its position within subclass-of/

is-a hierarchy as well as by its properties, relationships, and restrictions. Because ontologies

are meant to define a domain and to be shared by many, the most useful ontologies are

created by expert groups. The use of ontologies in M&S has recently emerged as a growing

area of research interest as evidenced by the creation of the Discrete-event Modeling

Ontology (DeMO),15 the evaluation of the Command and Control Information Exchange

Data Model (C2IEDM) as an interoperability enabling ontology,16 the development of the

Process Interaction Modeling Ontology for Discrete-event Simulations (PIMODES),17 the

development of the Component Simulation and Modeling Ontology (COSMO),18 the use of

domain ontologies in agent-supported interoperability of simulations,19 and the use of the

Discrete-event Systems Specification (DEVS) formalism20 as an ontology for M&S.21 At

this point it may be useful to review some of these recent efforts to use ontologies in the

support of M&S.

Lacy and Gerber22 proposed that ontologies developed using the Web Ontology Language

(OWL)23 be used as data interchange formats (DIFs) to support simulation interoperability.

They called attention to the fact that XML is often used as a DIF but that it is somewhat

deficient. The parties involved in the data interchange must have an understanding of the

meaning of the data contained in the DIF, and since XML does not contain explicit

semantics, developers who understand the meaning of the data in the XML document are
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required to program the simulations, which exchange data via the DIF to conform to the

implicit meaning of the data. Lacy later followed through with his suggestion to use OWL

ontologies as DIFs by developing the PIMODES ontology, which serves as an

implementation independent DIF for DES models that are described using the PI world

view. PI simulation models developed using particular simulation software packages may be

transformed to, or from, PIMODES instance data files in order to exchange the models with

other simulation software packages.

Tolk and Muguria24 discuss the idea that in order to achieve meaningful interoperability

among M&S applications, interoperability of conceptual models must be considered, and

they introduce the Levels of Conceptual Interoperability Model (LCIM). The LCIM

describes various levels of conceptual interoper-ability where the level of conceptual

understanding between interoperating systems increases as the level of conceptual

interoperability in the LCIM increases. The model has undergone gradual enhancements25,26

since its inception, and the current version contains seven levels ranging from level 0, where

systems have no interoperability, to level 6, where a complete understanding of the concepts

used by target and source conceptual models is sharable between the models. Level 3, ‘The

Semantic Level’, specifies that the meaning of exchanged data is shared between systems by

means of common reference models. This level introduces the need for the type hierarchies

for the various interconnected systems to communicate via conformance or mediation. Level

4, ‘The Pragmatic Level’, takes the concept of typing further by specifying that the context

as well as the meaning of the exchanged data is shared between systems. This requires that

the common reference models used by the systems have ontologies that are able to supply

sufficient ontological information about the data being exchanged. Tolk16 later proposes a

method for evaluating an ontology for completeness, and he applies the method to the

C2IEDM to evaluate its fitness to serve as an interoperability enabling ontology for military

command and control systems. The proposed method benefits the M&S community in that it

is useful for evaluating data models to assess their fitness as interoperability enabling

ontologies.

Yilmaz and Paspuleti19 propose a meta-level framework in which agents are used to

coordinate the exchange of data and services among simulations. The agents within the

framework are intended to facilitate agent-mediated interoperation of simulations. Their

strategy proposes four types of agents: (1) a facilitator agent acts as a controller and

delegates requests to other agents that perform specific tasks associated with simulation

interoperation; (2) a mediation agent uses a common reference model to convert data

exchanged between simulations that use different encoding standards; (3) brokering between

producer and consumer simulations is achieved via a broker agent, which uses various

brokering protocols that are able to take the constraints of specific simulations into account;

and (4) a matchmaker agent uses measures of conceptual distance between concepts

(Concept-level Matchmaking), the effort needed to align the properties of concepts

(Attribute-based Matchmaking), and the structural similarity between concepts (Concept-

based Matchmaking) in order to allow providers and requesters to exchange information and

services. Concept-level matchmaking is of particular interest in the study of how ontologies

are being used to support M&S, since it uses domain ontologies to measure the distance

between the concepts requested by a simulation and the concepts available via the

framework.

COSMO18 describes simulation components and compositions. It was developed to work in

conjunction with the Composable Discrete-event Simulation System (CODES), which is a

hierarchical component framework intended to support component-based M&S. The

components used by CODES are given semantically enriched descriptions using COSMO

ontology classes. These descriptions are used by CODES when performing component
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discovery and in determining whether components are semantically compatible with one

another. According to Teo and Szabo,18 ‘two components are semantically compatible if the

data exchanged between them is correct and meaningful and their behaviors are aligned’.

Zeigler et al.20 present a conceptual framework that may serve as a foundation ontology for

development in the M&S domain. In this framework entities and relationships among them

are described using systems theory. The computational implementation of the framework is

known as DEVS and it can be used for modeling discrete-event systems. Zeigler and

Hammonds27 introduce a methodology that makes use of DEVS and the System Entity

Structure (SES) to perform what they refer to as M&S-based Data Engineering. The

methodology generates ontologies that will be referenced by producers and consumers of

information for purposes of exchanging meaningful information. The ontologies generated

via this methodology go beyond the Semantic Level of the LCIM by introducing pragmatics,

but they do not claim to reach the Conceptual Interoperability Level. Systems which

reference an ontology that contains pragmatics gain access to not only the meaning of

information, but also how it is intended to be used.

Miller et al.15 propose the creation of a general DES ontology (DeMO), which represents the

domain of discrete-event modeling. DeMO describes the classic DES world views as well as

a variety of DES formalisms and modeling techniques that conform to the world views. It

has also been used by Silver et al.28,29 to support the Ontology-driven Simulation (ODS)30

of PI and PN models. DeMO style of ODS allows conceptual models represented as

instances of domain ontology classes to be transformed into instances of DeMO classes that

represent the same concepts using a particular DES formalism. A category-specific code

generator may then be used to transform a conceptual model represented using DeMO class

instances into an executable simulation model.

In this paper, we look at the development of DeMO and propose several additional ways that

it may be used to benefit the discipline of M&S. The remainder of this paper is structured as

follows. In Section 2, we consider languages for defining ontologies suitable for the

Semantic Web. Section 3 takes a brief look at existing taxonomies for M&S and DES

frameworks, discusses the basic taxonomy upon which DeMO is built, and then describes

the structure of the ontology. Applications and benefits of DeMO are discussed in Section 4,

and the paper is wrapped up with conclusions and future work in Section 5.

2. Ontologies for the Semantic Web

Although ontology languages, such as the Knowledge Interchange Format, were developed

in the 1990s, the Semantic Web initiative has reinvigorated efforts to create a new ontology

language that has wider appeal. The Knowledge Interchange Format has the expressive

power of First Order Logic (FOL), which enables complex concepts to be precisely

described. The truth value of any FOL expression can be effectively proved (FOL is sound),

but it is not possible to generate all true statements (FOL is incomplete), thus FOL is said to

be semi-decidable.31,32 For the Semantic Web, some researchers feel that a decidable

language would be more appropriate, since limiting the language expressivity will improve

its computability/tractability. OWL was designed with this expressivity/complexity trade-off

in mind. In order to facilitate this trade-off, it comes in three flavors: OWL Lite, OWL DL

(Description Logic), and OWL Full, with the first two being decidable. Work is also

underway on the next generation of OWL, OWL 2.33 OWL 2 will update the capabilities of

OWL to enhance its expressive power, extend its support of datatypes and annotations,

provide metamodeling capabilities, and allow the use of database style keys. OWL 2 will

also introduce three new language profiles, OWL 2 EL (EL refers to the EL family of

description logics, which is limited to existential quantification and intersection of
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concepts), OWL 2 QL (Query Language), and OWL 2 RL (Rule Language), intended to

ease the task of ontology implementation. Each of the profiles imposes limits upon OWL 2,

allowing it to best support specific types of ontologies. OWL 2 EL is based on the

lightweight description logic EL++,34 and it is best suited for ontologies that contain large

numbers of classes and/or properties, while OWL 2 QL allows queries to be written in a

standard relational query language and is intended to support ontologies that contain large

amounts of data. OWL 2 RL can implement reasoning using a standard rule language and is

well suited for ontologies that will require reasoning to be performed efficiently.

2.1. Structure of the Semantic Web

Before going into more detail about ontologies, we will give a brief overview of the

architecture of the emerging Semantic Web. This will provide a better perspective on the

work presented in this paper. At the XML 2000 Conference, Berners-Lee35 presented his

plan for the Semantic Web Architecture. The architecture consists of five layers, the first of

which is the resource/data layer. The XML language exists in this layer, and it forms the

basic syntax for documenting structured information on the Semantic Web. The next layer,

the meta-data layer, contains the Resource Description Framework (RDF) and RDF Schema

languages, which allow semantics with machine-predictable tags to be added to the data

model. The ontology layer houses the OWL language. OWL is more expressive than RDF in

that it can easily express class relationships and property constraints. This layer serves as the

basis for later logical inference. Above the ontology layer we find the rule/logic layer where

rule languages, such as the Semantic Web Rule Language (SWRL) and the Rule Interchange

Format (RIF), may use information from the ontology layer to make deductions about the

facts and relations not explicitly stated in the ontology. The last layer in the architecture, the

proof/trust layer, is intended to allow automatic agents to send and accept proofs necessary

for interchange. The idea is that with proofs, trust can be built up among a community of

Web users.12 As can be seen in Table 1, each layer of the Semantic Web has an associated

Web language. In the sections below, we will look at the ontology and rule/logic layers of

the architecture, since they are directly related to our topic.

2.2. Ontology Layer – Web Ontology Language

OWL has been approved by the World Wide Web Consortium (W3C) to be the standard

language for expressing Web-accessible ontologies. It incorporates features from and

extends upon RDF and RDF Schema. Compared to RDF Schema, OWL has more features

for describing properties and classes. It allows relations between classes (e.g. disjointness),

richer typing of properties, cardinality of properties, and characteristics of properties (e.g.

symmetry, transitivity).

OWL has three variants: OWL Lite, which has expressiveness similar to RDF Schema,

OWL DL, based on description logics that are computationally complete and decidable, and

OWL Full, which provides additional features but sacrifices decidability.

Our ontology is represented in OWL DL and was developed using Protégé 4.0

(protege.stanford.edu). Protégé is one of the most popular ontology editing tools currently

available (see Denny36 for a survey). OWL DL allows the definition of a class to represent

specific concepts. Classes may: (1) be divided into subclasses; (2) have properties/

relationships; and (3) have instances. Properties/relationships may have certain

characteristics (e.g. transitive, symmetric, functional, inverse, cardinality) and are divided

into basic types: object properties and data properties. As such, OWL shares much in

common with Entity-relationship Modeling and the Unified Modeling Language (UML).

Entity-relationship Modeling is intended for data modeling, UML is intended for software

modeling, and OWL is intended for ontology modeling and knowledge representation
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consistent with the Web infrastructure (for a comparison of UML and OWL see

Evermann37). Ontologies developed using OWL can be used to automatically classify

individuals (class instances) based on the knowledge resident in an ontology, therefore OWL

must provide a way to describe the conditions necessary for membership in a class. OWL

does this by allowing qualifiers to be placed on property-class relationships, which specify

necessary and sufficient conditions.

2.3. Rule/Logic Layer –Semantic Web Rule Language

There are proposals for languages at the Rule/Logic Layer, including SWRL, which go

beyond OWL DL by providing the ability to write rules using a subset of Rule Markup

Language (RuleML). In Protégé, SWRL may be used to create logic rules to be added to

OWL descriptions. This enables more complex predicates to be created and used for more

precise definitions of concepts and relationships that are otherwise beyond OWL's ability to

represent. In addition, SWRL has built-ins for basic arithmetic (e.g. x + y) and comparisons

(e.g. x < y). The rule/logic layer is in its preliminary stages of development, and while

SWRL is currently the dominate rule language used in conjunction with OWL ontologies,

the WC3 effort to standardize RIF38,39 is well under way. RIF provides a collection of rule-

based languages to which other rule-based languages can be mapped in order to allow

systems that use the different languages to share rule sets and other information with one

another. Our use of SWRL to support ODS is discussed in Section 4.2, and we plan to make

more extensive use of the languages associated with Rule/Logic layer in future work with

DeMO.

3. Taxonomies for Discrete-event Modeling and DeMO

Models can be classified based on various characteristics: static versus dynamic, time

varying versus time-invariant, continuous state versus discrete-state, time-driven versus

event-driven, descriptive versus prescriptive, and analytic versus numeric.40,41 Surveying

existing taxonomies is a useful way to begin the development of an ontology, hence we first

give a brief review of existing simulation modeling taxonomies and then show how the

existing discrete-event modeling formalisms are represented in DeMO.

3.1. Review of Existing Taxonomies

Given a system evolving over time, a model of it can be viewed simply as an approximation

that captures or mimics the essential features of the system. Commonly, models are

classified according to how they deal with time (static versus dynamic), state (discrete

versus continuous), and randomness (deterministic versus stochastic).

There are two broad types of simulation modeling: continuous simulation and DES. The

distinction is based on whether the state can change continuously (water level in a reservoir)

or at discrete points in time (number of customers in a bank). Continuous changes are often

modeled as differential equations in which both state and time are continuous. DES models

are very popular for modeling many types of real-world systems, such as banks, hospitals,

transportation systems, and computer networks. This paper will focuses on discrete-event

models.

Within discrete-event modeling there are multiple ways to construct taxonomies. The

development/use of SPLs led to the creation of taxonomies for DES. These languages

allowed developers to define models using categories identified with a particular view of

reality. Developers used the views implicit with the SPLs when contemplating a system.1

Kiviat's2 discussion of SPLs led to the basic taxonomy for DES, which includes the three

world views: ES, AS, and PI. This type of taxonomy, in a more general context, which

includes simulation, database, and workflow modeling, was discussed by Miller et al.42 and
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a portion of it is discussed below. Most of the diagrammatic simulation modeling techniques

implicitly or explicitly depict entities (e.g. bank customers) flowing through a system. The

classification/taxonomy below mentions several popular general simulation modeling

techniques partitioned according to their principal world view.

ES – These models focus on the events that occur in a system. When an event occurs, it

instantaneously transforms the state of the system and/or schedules future events. Future

events are scheduled by giving them a time-stamp and then placing them in a future-

event list. Simulation time is advanced by setting the current time to the time-stamp of

the earliest event (imminent event) on the list and processing that event.

• Simulation Event Graph (SEG) – In a SEG, nodes represent events that cause

changes in the system state, while directed edges represent relationships

between events.4 An edge may represent either a scheduling or a canceling

relationship between events. Edges may also have associated conditions, under

which future events will be scheduled (or canceled) and time delays, after

which events will be scheduled (or canceled).

AS – These models focus on activities and their preconditions (triggers). An activity

consists of an event-pair (a start event and an end event). Activities are scheduled when

their preconditions become true. The three-phase (TP) approach may be considered to

be a more efficient variant of AS or a hybrid of AS and ES. Efficiency is gained by

putting unconditional events on a future-event list as in ES and still triggering

conditional events as in AS.

• Activity Cycle Diagrams (ACDs) – ACDs are graphs with two types of nodes

(bipartite graphs), activities and queues (or wait states), where directed arcs

connect either activities to queues or queues to activities.43,44 These diagrams

depict the lifecycles of interacting entities flowing through a system.

• PNs – PNs are graphs with two types of nodes (bipartite graphs), transitions

and places, where the arcs connect either transitions to places or places to

transitions.3,45 A place is a storage area for tokens (entities), while a transition

takes input token(s) to produce output token(s). A transition will fire if there is

a (or are enough) token(s) at each of its input places. In Timed PNs, transitions

have delays associated with them. Continuous PNs allow tokens to be

represented as real values and transitions to fire continuously at a specified

rate, and Hybrid PNs allow some parts of the PN graph to be discrete, as with

traditional PNs, and other parts to be continuous, as with continuous PNs.

Colored PNs allow tokens to have attributes.

PI – These models focus on processes and their interaction with resources. A process

captures the behavior of an entity as it flows through the system step by step.

• Activity Diagrams (ADs) – ADs are graphs consisting of a well-defined set of

functional nodes such as start, terminate, delay, engage resource, and release

resource.46 The graph shows the flow of entities as well as resources through

the system.

• Network Diagrams (NDs) – Network(orblock)diagrams are used by many

popular commercial simulation packages (e.g. General Purpose Simulation

System (GPSS),47 Simulation Language for Alternative Modeling (SLAM),48

and SIMulation ANalysis (SIMAN)49). These NDs are similar to ADs but have

more types of nodes corresponding to the underlying primitives supported in

their associated simulation languages.
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Besides these three classical world views, there are other popular approaches: (1) State-

transition Models (e.g. Markov models); (2) DEVS models;20,40 and (3) Agent-based

Simulation and Modeling.50–52

Agent-based modeling offers the simulation designer a different view of the objects being

simulated. In particular, in the agent-based view, agents accept information (‘sense’),

process that information (or ‘think’), and then affect the world in some way (‘act’). This is

often referred to as the sense/think/act cycle. Even though this provides a new view for the

simulation designer, it does not necessitate a new simulation paradigm.

Most agent-based simulation systems implement the agent-based view to the user, but

‘under the hood’ use a discrete-event-based simulation engine. Examples of this approach

include SASSY52 and SPADES.53

Most of the simulation taxonomies are based on execution characteristics of models –

scheduling events, scanning for activities, interacting processes. Fishwick54,55 suggests a

different approach based on model syntax. In particular, he creates a taxonomy that

conforms closely to the taxonomy of programming languages: declarative, functional, and

constraint. By closely coupling simulation models with programming paradigms, this

taxonomic exposition highlights the connections between models and programs. For

example, declarative finite-state automata and PNs bear similar features to declarative

programming languages based on rules and logic. Functional methods of simulation

modeling are related to functional languages formalized with lambda calculus, such as Lisp.

In this context we also mention Object-orientated Simulation (OOS, e.g. Simula).56 OOS

does not represent a different user view of the simulated processes, but instead offers a

principled approach to programming simulations. All of the major simulation paradigms can

be implemented in an object-oriented manner. An example of how OOS can refine a

traditional paradigm is given by Cota and Sargent.57

3.2. Alternative Ways of Categorizing Discrete-event Models

Another useful way to build a taxonomy is based on subsumption relationships between

formalisms (e.g. Hybrid Functional Petri Nets (HFPNs) subsume Timed Hybrid Petri Nets

(THPNs), which subsume Hybrid Petri Nets (HPNs)). This is the basic approach used to

develop a taxonomy for DeMO, where a super-class representing a more general modeling

technique will have less restrictions placed upon its properties than will a subclass that

represents a more specific formalism. Figure 1 shows an example using the PN formalisms

of DeMO's ActivityOrientedModel class. Notice that the TimedPetriNet class subsumes the

PetriNet class. The reason for this is that Timed PNs allow both timed and immediate

transitions, while traditional PNs allow only immediate transitions; therefore, DeMO's

PetriNet class has an additional restriction placed on its has-Firing-Tempo property, which

specifies that only immediate transitions are allowed.

DES models have been categorized in various ways using a number of different taxonomies

and classification schemes. They have been defined as abstract, dynamic, descriptive,

numerical models.41 Cassandras and Lafortune58 define discrete-event systems as discrete-

state, event-driven, time-invariant, dynamic models. Within the class of discrete-event

models, further subclassification maybeachievedbymeansofthefollowing characteristics:

stable versus unstable models, steady-state versus transient models, deterministic versus

stochastic, and autonomous (no input) versus non-autonomous models.41 Nance59 divides

simulation models into three main classes: Monte Carlo, continuous, and discrete-event. The

International Council on Systems Engineering maintains and updates a broad taxonomy for

software tools, including simulation tools.60 Schruben and Roeder61 propose a new way of

organizing the highest levels of a modeling taxonomy for DES based on a dichotomy
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between resident entity cycle modeling and transient entity flow modeling as opposed to the

three classical worldviews. An ontology can not only be used to classify and organize DES

concepts in ways analogous to those used by existing taxonomies, but it can also encode the

relationships that exist among concepts and capture instance data associated with concepts,

thus an ontology is more than a taxonomy, and indeed may implicitly capture multiple

taxonomies.

In the next section, we will show and discuss details of DeMO, which is, as the name

implies, an ontology for the discrete-event modeling domain. In their essence, the models in

the ontology capture how state evolves over time, although they may do so by focusing on

other concepts, such as entity, event, or place. The number of state changes (via events) in

the models represented by DeMO will be discrete, while time may be continuous, and state

space may be either discrete or continuous. DeMO considers stochastic, deterministic, and

hybrid (which are primarily discrete but may have continuous components) models.

The ontology currently focuses on the classical simulation world views and state-oriented

models. Other modeling paradigms, such as object-oriented and agent-based, which are

more focused on large-scale model development and include issues of hierarchical modeling

and model reuse, are not included in the current version of DeMO.

3.3. DeMO

Assumptions about the meaning of concepts (semantics) used by particular SPLs and

simulation software packages are designed into these tools and into the simulations that they

produce. Because these assumptions are encoded into the software, they cannot be explicitly

shared with other systems or humans who may wish to interconnect with them. DeMO

attempts to overcome this limitation by explicitly describing the concepts and the

relationships among the concepts assumed in each of the DES world views, using a language

that can be understood by humans and processed by machines.

In this section, we put the pieces of the discrete-event modeling knowledge domain together

and indicate how they are mapped to the constructs provided by OWL in order to create

DeMO. DeMO was not created to support any particular application but was intended to be

a generally useful ontology for the discrete-event modeling domain. Our goal was to capture

as much machine-processable knowledge about the domain as was possible given our time

and resource constraints.

As mentioned earlier, in OWL DL (which is based on description logic) concepts are

defined as classes, which may have sets of properties and relationships with other classes.

New classes can be defined using inheritance, enumerations of instances, restrictions on

properties, and logical statements. We begin our discussion of DeMO by observing that all

discrete-event models should have some basic components from which they are built, as

well as some rules (mechanisms) providing specifics of how the models should run. This is

illustrated schematically in Figure 2.

To capture this rationale in the ontology, the top-level abstract classes DeModel,

ModelComponent, and ModelMechanism are created. Subclasses of DeModel correspond to

modeling techniques for existing discrete-event modeling formalisms, such as Markov

Chains, Queuing Networks, PNs, etc. Subclasses of ModelComponent define the building

blocks of the model, which roughly correspond to the elements of the n-tuples used in

formal definitions of models, and subclasses of class ModelMechanism define how the

components operate within the model. Given this basic structure, one is required to take the

following steps when defining a subclass of DeModel: (1) define the appropriate

ModelComponent subclasses and relate them (via OWL properties) to this subclass of
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DeModel; (2) define the appropriate subclasses of ModelMechanism to explain how these

components work; and (3) relate the ModelMechanism subclasses to the ModelComponent

subclasses. Several of the concepts represented as subclasses of ModelComponent and

ModelMechanism (such as state, event, time, etc.) are fundamental concepts in simulation

and modeling.

3.3.1. The Structure of DeMO—The discrete-event modeling taxonomy described by

DeMO begins with the base class DeModel (discrete-event model). DeModel has four first-

level subclasses, which are based on the principal of focal concept used by such models:

state-oriented model;

event-oriented model;

activity-oriented model;

process-oriented model.

Each of these subclasses describes a top-level modeling formalism and serves as a base class

for a hierarchy of modeling techniques that exist under the particular formalism. The classes

for the modeling techniques are created as subclasses of the modeling formalism classes.

The hierarchy that exists under DeModel is shown in Figure 3. In order to specify a subclass

that represents a modeling technique in detail, the properties inherited from its base class

will have additional restrictions placed upon them, and additional properties may also be

added. In the remainder of Section 3, we will discuss the four first-level subclasses of

DeModel.

3.3.2. DeMO State-oriented Model—State-oriented models modeling finite-state

machines and Generalized Semi-Markov Processes (GSMPs) are widely used in computer

science and M&S. The focal concept of such models is that of state. One is also interested in

the causes of state changes as well as how the current state changes over time. In DeMO,

state-oriented models are characterized by three sets, S, E, and T.

State space (S) – A model changes over time from state to state. Its current state at a

particular time is quantified by the values of a collection of indicators, which record the

properties of the model. The set of all possible combinations of these indicators is the

model's state space, S.

Event set (E) – Events characterize the type of event instances that may occur. Event

instances occur instantaneously at particular points in time and may cause state changes

and/or future events. An event e ε E is enabled at time t1 and fires at time t2. The

difference between t1 and t2 is the event lifetime. The combination of an event and its

firing time is known as an even occurrence.

Time set (T) – A non-negative number represents the passage of time. Time t ε T is

integer valued  for discrete-time models and real valued (t ε R+) for continuous-

time models.

In addition to the three sets above, we also use the following three functions in the definition

of state-oriented models:

This is a Boolean function indicating which events a state enables. Enabling an event creates

an instance of the event that is said to be active until it fires or is cancelled.
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When an event instance is created, a clock timer is set and when it reaches zero, the event,

unless it has been cancelled, fires.

The firing of events causes the model to change over time. The changes from the current

state to the next states are determined by the state-transition function.

Note that a state-transition function may be depicted as a state-transition diagram where the

nodes represent states and the edges represent events.

Let us look at the implementation of DeMO state-oriented models. All of DeMO's state-

oriented models are rooted in a top-level abstract classed named StateOrientedModel, which

has the basic properties listed in Table 2. Restrictions are placed upon the properties of this

class in order to create the subclasses in the state-oriented model hierarchy.

Consider, for example, the GSMP, the highest concrete class in the state-oriented model

hierarchy. Part of its definition consists in placing further restrictions on the following

properties:

ClockFunction is restricted to StochasticClockFunction TransitionFunction is

restricted to Probabilistic TransitionFunction

In addition, the GSMP class uses the ModelMechanism instances shown in Table 3. Figure 4

shows a graphical representation of the GSMP class, its properties, and property restrictions.

A restriction of the TransitionTriggering mechanism is the only difference between the

GSMP and its subclass, Generalized Semi-Markov Process without Simultaneous-Events

(GSMP-SE). The GSMP-SE class TransitionTriggering mechanism has a value of

SingleEventTriggering instead of MultipleEvent Triggering, where SingleEventTriggering is

defined to allow only a single event occurrence to trigger a transition. It is easy to see how

other classes in the state-oriented models hierarchy can be defined using this same method.

For instance, the StateAutomata class is defined by further restricting the ClockFunction and

TransitionFunction classes inherited from its superclass. The ClockFunction is restricted to

NoClock and TransitionFunction is restricted to Deterministic TransitionFunction. The

hierarchical structure of the modeling techniques associated with DeMO

StateOrientedModel class can be seen in Figure 3.

3.3.3. DeMO Activity-oriented Model—State-oriented models use the concepts of state,

time, and event, and it is possible to conceive of state as an indicator of the model's

configuration at a given point in time. Another way to think of state is in terms of location.

For example, you may imagine that there is an entity (or token) moving around a model. The

entity's current location marks the model's current state (as is the case with the animation of

a Markov model). When multiple entities exist in the model, the relationship between state,

location, and entity becomes more complex. In this situation, each entity must have a

location, and the state must include this information in, for example, some type of state

vector. One might attempt to record the locations of all entities currently in the model, but

since the number of entities varies over time, the state vectors would need to vary in length.

The vectors could be fixed length if a given number of places (or stations) could be specified
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at which entities reside, until an event (or events) occurs that causes them to move to other

places. In such a case, the state of the model can be represented as a vector n:

where  is the number of entities in place p ε P at time t. For the type of model

mentioned above, it is also convenient to take a composite view of action. For example,

service at a station in a Queuing Network may be thought of as an activity. Therefore, for

activity-oriented models, the fundamental group of sets, (S, E, T), will change as follows: P

will replace S and A will replace E to yield (P, A, T) as defined below.

Place Set (P) – A place is a location within a positional space (e.g. a metric space or

topological space) indicating where a token is. Place p is a location within the model

(e.g. logically at a node in a graph or physically in an n-dimensional coordinate system).

Activity Set (A) – An activity can be thought of as an atomic behavior and it usually

happens over a time interval, which is delimited by a start event and an end event.

Activities cause entities to move (or using PN terminology, transitions cause tokens to

move from place to place).

Time set (T) – A non-negative number represents the passage of time. Time t ε T is

integer valued  for discrete-time models and real valued (t ε R+) for continuous-

time models.

The implementation of activity-oriented models in DeMO begins with the abstract class

ActivityOrientedModel. The basic properties of this class are listed in Table 4.

Restrictions may be placed on these and other properties in order to create subclasses of the

ActivityOrientedModel class. The highest level concrete class in the activity-oriented model

class hierarchy is the HFPN class. Part of the definition of this class consists of placing

additional restrictions on the properties below:

ActivitySet is restricted to FiniteTransitionSet IncidenceFunction is restricted to

InputIncidence Function and OutputIncidenceFunction InitialState is restricted

to InitialMarking

In addition, the TransitionFiringTempo property is added to the HFPN class, and it uses the

ModelMechanism instances shown in Table 5.

The set of arc weights in a PN model is similar to the state-transition function in our

description of state-oriented models. The arc weights in conjunction with the place marking

determine which transitions will be enabled. The transitions of a PN model correspond

roughly to the state-transitions function of a state-oriented model in that their firing

determines markings of the model places. The activity-oriented models also have an

incidence function. This function establishes relationships between the places and transitions

(activities) of a model. When a HFPN model is represented as a graph, the relationship is

viewed as an arc between a place and a transition.

A graphical representation of the HFPN class and its properties can be seen in Figure 5. All

other subclasses in the hierarchy are created by placing further restrictions on the properties

inherited from this class and, in some cases, adding new properties.

3.3.4. DeMO Event-oriented Model—It is often the case with state-oriented models that

the size of the state becomes very large, while the number of distinct types of events remains

relatively small. Given this situation one might consider turning that state-transition diagram
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into a smaller diagram where the nodes represent events instead of states. If this is done, the

three primitive sets, (S, E, T), introduced in our discussion of state-oriented models still

apply, but the focus will now be on events and the relationships between them.

The EGs4 modeling technique follows this approach, and SEGs62 provide an extended

formal framework for EGs. SEGs are used as a top-level formalism for DeMO event-

oriented models. A SEG depicts the causality between events. Each node in the directed

graph represents an event, while arcs indicate how one event may influence another event.

The arcs may also be labeled with conditions and time delays, and events (nodes) may have

attributes (state variables) associated with them. State changes in an EG simulation model

are made by assigning values to the state variables of the nodes. State space, S, need not be

explicitly defined, as with state-oriented models, since the values of the state variables

define the state of the system at a given point in time. In SEGs, sets of scheduling edges and

canceling edges relate events to each other. If an event e1 is connected to an event e2 with a

scheduling/canceling edge, it means that the occurrence of event e1 will prompt the

scheduling/canceling of event e2. The notion of clock function presented in our discussion of

state-oriented models corresponds to the edge delay times of SEGs, for example, if

occurrence of event A schedules event B, then the edge connecting A and B may have a

time delay t associated with it (i.e. event B is scheduled to occur t units after the occurrence

of event A). The activation function and transition function in our description of state-

oriented models roughly corresponds to the set of edge conditions and state-transition

functions, respectively, for SEGs described by Schruben and Roeder.61 An edge condition

along with the current event and the current state are used to determine the next event, while

the set of state-transition functions determine the value of the state variables for each event

node. EGs also specify a set of event priorities that are used to facilitate tie breaking for

events that are scheduled to occur simultaneously.

The top-level abstract class for DeMO event-oriented models is EventOrientedModel and its

basic properties are listed in Table 6.

The highest level concrete class in the event-oriented model class hierarchy is the

SimulationEventGraph class. Part of the definition of this class consists of placing additional

restrictions on the property below:

IncidenceFunction is restricted to Scheduling IncidenceFunction and

CancelingIncidenceFunction

The SimulationEventGraph class also uses the ModelMechanism instances shown in Table

7. Figure 6 shows a graphical representation of the SimulationEventGraph class, along with

its property restrictions.

3.3.5. DeMO Process-oriented Model—The PI world view is richer and more widely

varied than the others, and consequently, developing a concise and adequate formalism is

quite a challenge. There has been less work on formal definitions for PI than for the other

world views. Zeigler40 describes a structured model for process interaction using elements

of the DEVS formalism. Cota and Sargent57 modify PI to full encapsulation, while still

allowing preemption of one process by another. Schriber and Brunner63 provide terminology

for the world view where they discuss the transaction-flow approach to PI. Using their

terminology, processes are described as transactions that are discrete units of traffic moving

from point-to-point in a system, while competing with each other for resources. Silver et

al.28 review the work of Zeigler, Cota and Sargent, and Schriber and Brunner as a starting

point for the development of a PI ontology to be used for ontology-based representations of

process-oriented models.
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Following the ideas for the transaction-flow approach to PI, simulation models that conform

to this world view may be described as having two types of components – active (processes)

and passive (resources). Processes take actions that can change the state of the system, while

resources are unable to directly take actions. A process can be thought of as being made up

of a set of descriptive variables, a time left in the current state, and a set of computation

segments. Each of a process’ computation segments consists of a condition C under which

the segment will be activated, an activation function f that determines the actions to be taken

when the segment is activated, and a label l, which points to the first statement of the

segment. In our presentation of state-oriented models, we introduced three primitive sets, (S,

E, T), and we discussed how these sets are used in each of the models, state-oriented,

activity-oriented, and event-oriented, addressed so far. Applying the use of these sets to

process-oriented models is more diffcult, but we will attempt to illustrate some rough

correspondences between the use of the sets in the process-oriented model and the other

models.

The state space, S, is not explicitly defined in a PI model, but the descriptive variables of the

process define the state of the system at a particular point in time. Events are also not

explicitly defined in PI models; however, we draw a correspondence between events,

activities, and the computation segments of a process. The computation segment of a process

can be viewed as an analogy of an event in that it occurs at a fixed point in time and may

cause the state of the system to change.

Presenting a basic algorithm for PI simulation is helpful in clarifying the role played by the

components of a model. We describe such an algorithm here. When a simulation begins,

activation notices are placed onto a list known as a Future Activations List (FAL). Each

notice contains a process, the reactivation time of the process, and a label value representing

the reactivation point of the process. The FAL is ordered by reactivation time. It is then

processed in sequential order by removing the first activation notice, which contains the

current process. The simulation clock is set to the current process’ reactivation time and

execution of the process begins at the computation segment specified by the reactivation

point. If the condition C associated with the segment evaluates to true, the segment's

activation function, f, is applied. Among other things, f may change the state of the system

and schedule activation notices for the process or other processes that it influences.

The top-level abstract class associated with the process-oriented models in DeMO is the

ProcessOrientedModel class, which has the basic properties listed in Table 8.

The basic properties of the ProcessOrientedModel class are few compared to the classes that

represent the other DES world views. The reason for this is that process-oriented models are

defined primarily by defining processes and the process activities (computation segments) of

processes. Since this is the case, many of the details of DeMO ProcessOrientedModel class

are addressed via properties of the Process and ProcessActivity classes, rather than by

properties of the ProcessOrientedModel class. Given this situation, we present the basic

properties of the Process and ProcessActivity classes in the Table 9, while the

ModelMechanism instances for the ProcessOriented Model class are shown in Table 10.

A PI model can be visualized as a collection of directed graphs, where each type of process

in the model is represented as a graph. Using the classes above, we can describe the basic

structure of a model. A PI model is made up of different types of processes. Each process is

a directed graph whose vertices are ProcessActivities and edges, which link the

ProcessActivities, are Transports.

The highest level concrete class in DeMO process-oriented model hierarchy is the

ProcessInteraction class. Figure 7 shows a graphical representation of the
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ProcessOrientedModel, ProcessInteraction, Process, and ProcessActivity classes along with

some of their primary property restrictions. For more details on process-oriented models see

Silver et al.28

4. Applications of DeMO

Ontologies may be thought of as knowledge repositories for specific domains; as an

ontology for the domain of discrete-event modeling, DeMO should specify the concepts

used in the domain as well as the relationships between the concepts. It does this by

providing a collection of knowledge concepts about existing DES formalisms; and while the

range of formalisms described in DeMO is representative rather than exhaustive, it is

possible (at least in principle) to insert any DES formalism into the ontology. Given the

purpose of the ontology, we believe that it will ultimately be judged by the benefits that it

brings to the M&S community. It is, therefore, important that the ontology be made

available to this community. This has been done by placing DeMO on the Web. The

presence of DeMO on the Web provides a centralized machine-readable knowledge

repository for discrete-event M&S that can be used by either modelers or computer

applications in a variety of ways. Having this knowledge available via the Internet may be a

useful step in the evolution of Web-based M&S, and the ontology itself may grow and

evolve through the efforts of the M&S community. In this section, we present some current

ways in which DeMO is being used for M&S, and we explore some potential future uses of

the ontology. In time, we expect new uses of DeMO to emerge based on the needs of

modelers and the demands of different applications.

4.1. Ontology-driven Modeling and Simulation

ODS aligns the knowledge resident in domain ontologies with the knowledge resident in a

modeling ontology in order to expedite the development of simulations. The methodology

presented uses the DeMOforge tool (see Figure 8) to support a three phase approach to

ODS. Each of the phases, (1) ontology mapping, (2) model transformation, and (3) model

generation, is described below.

ODS allows ontologies to drive the creation of a DES model by integrating the knowledge

resident in domain ontologies with the knowledge resident in a modeling ontology and then

transforming the results into an executable simulation model. One method for achieving this

is to have the simulation software packages and the domain ontologies logically linked via a

common DES ontology (i.e. DeMO). The mapping phase of ODS lays the foundation for

these logical links. During this phase, domain ontology concepts are mapped to concepts and

relationships in DeMO to create correspondences between the components of the domain

ontologies and the modeling ontology. These correspondences are used during the model

transformation phase to provide a conduit through which syntactically compatible and

semantically meaningful knowledge from the domain ontologies is transferred to DeMO

ontology. For example, models of biochemical pathways have been built using instances of

the Reaction Ontology (ReactO;

http://glycomics.ccrc.uga.edu/core4/informatics-ontologies.html), and these instances have

been transformed into DeMO instances that represent the system as a conceptual model that

conforms to a specific DES world view (activity-oriented) and modeling technique (Hybrid

PNs). By allowing the parts of a model to be stored as instances of DeMO classes, we are

able to accurately represent the model in a way that is independent of the simulation code.

Pace64 defines a conceptual model as the collection of information that describes a

simulation developer's concept about a simulation and its parts. We take this view when we

consider a collection of ontological instances to be a form of conceptual model. During the

model generation phase of ODS, DeMO instances created in the transformation phase are

used to generate an executable simulation model.
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The DeMOforge ODS tool29 was developed to support the ODS process described above.

The tool, whose architecture is shown in Figure 8, supplies modules to support each of the

phases of ODS. In this section, we provide an overview of the tool and give an example of

its use in the domain of biochemistry. DeMOforge supports the mapping phase of ODS by

providing a facility for creating mappings between domain ontologies and DeMO. On a

technical level, these mappings are similar to the mappings that often occur between domain

ontologies, but their purpose is different. The mappings that typically occur between domain

ontologies are used to establish relationships (i.e. equivalence and subsumption) between

multiple concepts.65 For example, one ontology may use the term ‘automobile’ and another

may use the term ‘car’ to describe the same concepts. Entities that use these ontologies need

to understand that both of these terms refer to the same concept. An accepted way of

facilitating this understanding is to create a mapping between the terms that specifies that

the ‘automobile’ and ‘car’ are equivalent. DeMOforge creates mappings between domain

ontologies and a modeling ontology, rather than between domain ontologies, and the

concepts being mapped by the tool do not necessarily have obvious relatedness. An example

of this can be seen in the mappings created between ReactO and DeMO in order to drive the

simulation of biochemical pathways. ReactO classes and properties used in the

representation of biochemical pathways have been mapped to DeMO classes that are used in

the representation of HFPN models.

Figures 9 and 10 show graphs of the classes and property relationships that make up a

ReactO Pathway and a DeMO HFPN. The dashed lines in Figure 9 indicate mappings

between ReactO and DeMO classes. For example, since a biochemical pathway may be

represented as a HFPN for purposes of simulation, the ReactO Pathway class is mapped to

DeMO HFPN class. You will notice in Figure 9 that the ReactO Pathway is made up of

several classes that are related to the Pathway class via properties. Since this is the case, we

must map the relevant classes used to represent a ReactO Pathway to appropriate DeMO

classes, as indicated by the dashed lines in the figure. For example, because the ReactO

Reaction class is related to the ReactO Pathway class, the Reaction class is mapped to the

appropriate DeMO class. Knowing that in a HFPN a reaction is often represented as a

continuous transition, a developer may create a mapping between the Reaction class of

ReactO and the ContinuousTransition class of DeMO, specifying that a biochemical reaction

corresponds to a continuous transition for the purpose of DES.

In addition to mapping classes between ontologies, DeMOforge is also capable of mapping

properties to classes. A property (or more specifically an object property) in an ontology

typically establishes a relationship between two entities, most often two classes. For

instance, the ReactO has-Reaction property is used to create a relationship between the

ReactO Pathway class and the ReactO Reaction class. This creates a subject-predicate-object

triple, where the Pathway class is the subject, the has-Reaction property is the predicate, and

the Reaction class is the object. Given the nature of property usage, DeMOforge allows

triples rather than single properties to be mapped. The dashed lines in Figure 10 indicate

mappings between triples in ReactO and classes in DeMO. Consider the ReactO Reaction

→ consumes → Molecule triple. The consumes property is used in this triple to establish a

relationship between the ReactO Reaction and Molecule classes. In order to support the

development of a DeMO-based HFPN model, this triple needs to be mapped to DeMO

ContinuousInputArc class.

Mapping domain ontology property triples to DeMO classes frequently causes DeMOforge

to generate rules to be stored along with the mapping. The rules are used by DeMOforge

during the ODS transformation phase to generate property relationships among DeMO

instances. An example of this rule generation can be seen in the mapping of the ReactO

Reaction → consumes → Molecule triple to ContinuousInputArc class. When the mapping
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is created, DeMOforge checks to see if the ContinuousInputArc class has property

relationships with DeMO ContinuousPlace and Continuous Transition classes. DeMOforge

determines that it needs to check for these relationships because mappings currently exist

between the ReactO Molecule class and DeMO ContinuousPlace class and between the

ReactO Reaction class and DeMO ContinuousTransition class. Upon performing this check,

DeMOforge finds that the ContinuousInputArc class is related to the ContinuousPlace class

via the has-Source-Place property and to the ContinuousTransition class via the has-Target-

Transition property. Given this information, DeMOforge generates rules to be stored with

the mapping which state that the has-Source-Place and has-Target-Transition properties

should be used when ContinuousInputArc instances are created during the ODS

transformation phase.

Tables 11 and 12 show the mappings between ReactO and DeMO that were created in order

to facilitate simulation of biochemical pathway models. Table 11 shows the class-to-class

mappings, while Table 12 shows the property-to-class mappings and related rules.

The Transformation Module of DeMOforge translates instances of domain ontology classes

into instances of DeMO classes that are used to represent a conceptual DES model. We will

illustrate this using an example in which a portion of an N-Glycan biosyntheses pathway as

represented via ReactO instances is transformed into DeMO instances, which are used to

represent the pathway as a HFPN. An N-Glycan is an oligosaccharide (i.e. a carbohydrate

consisting of at least two sugar units) that is linked to a glycoprotein by attachment to the

amide nitrogen of an asparagine residue.

In this example, the DeMOforge transformation tool is used to retrieve pre-existing

instances of ReactO classes that represent an N-Glycan pathway. The tool then uses these

instances along with the mappings shown in Tables 11 and 12 to create instances of DeMO

classes, which taken together can be viewed as a conceptual HFPN model of the same

pathway. The tool makes use of SWRL rules to accomplish the transformation. The

following steps give a brief outline of the process.

1. SWRL queries are generated and used to retrieve the ReactO instances that

represent the pathway model. Given the ReactO Pathway instance that represents

the N-Glycan pathway, the query uses property relationships to traverse the

instance graph and place instances that represent the pathway in a data structure for

further processing. An example of these instances can be seen in of Figure 11.

2. Previously defined class mappings are used to create DeMO instances that

correspond to the ReactO instances retrieved in Step 1. For example, the mapping

between the ReactO Molecule class and ContinuousPlace class is used to transform

a ReactO Molecule instance named GlcNAc-2-Man-1-PP-Dol-1 into a DeMO

ContinuousPlace instance of the same name. The class mappings are shown in the

center of Figure 12, while DeMO instances can be seen on the right side of the

figure.

3. The property mappings (see bottom left of Figure 12) along with their associated

rules are used to create additional DeMO instances and to establish property

relationships among them. An example of this can be seen in the creation of

instances for DeMO ContinuousInputArc class as described in the steps below.

4. The property mapping between the ReactO triple Reaction → consumes →
Molecule and DeMO ContinuousInputArc class is retrieved and used to drive the

creation of ContinuousInputArc instances.
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5. Since the Reaction → consumes → Molecule triple has Reaction as its domain,

DeMOforge will read each ReactO Reaction instance in the pathway and create

analogous DeMO ContinuousInputArc instances, as shown in Figure 13.

6. DeMOforge uses the rules associated with the mapping along with the property

relationships defined for the DeMO ContinuousInputArc class to create additional

instances and establish relationships between them. For example, the ‘use has-

Source-Place property’ and ‘use has-Target-Transition property’ rules will cause a

DeMO ContinuousPlace instance and a ContinuousTransition instance to be created

for each ContinuousInputArc instance in Figure 13. These rules will also cause a

Continuous Place instance and a ContinuousTransition instance to be linked to each

ContinuousInputArc instance via property relationships. Figure 14 shows one

ContinuousInputArc instance and its property relationships.

Once the DeMOforge transformation process is complete, that is all relevant ReactO

instances, mappings and rules have been processed in order to create DeMO instances, the

N-Glycan pathway model originally represented as a collection of ReactO instances will

have been transformed into a HFPN-based N-Glycan pathway model represented as a

collection of DeMO instances.

After transformation is complete, DeMO instances, which represent a conceptual DES

model, are used to generate an executable simulation model. In the case of the example

discussed above, the instances that represent a HFPN model of the N-Glycan pathway are

used to generate an executable pathway simulation. The generation of the executable model

is accomplished using the DeMOforge generation module. This module uses category-

specific code generators to translate DeMO instances into an executable model. In our

example, an executable HFPN model for the JSIM simulation environment6 was produced

by a generator using the following steps: (1) the OWL 2.2.0 application programming

interface (API)66 was used to read through DeMO instances and populate a data structure

with a graph-based representation of the model; (2) the scenario management component of

the generator determined that additional information was required for the particular scenario

under which the simulation was to be executed, and it requested user input for the location

of sources from which data was to be retrieved; (3) the information collected in the previous

two steps was used to produce a JSIM-based HFPN model. The runtime animation of the

model is shown in Figure 15.

4.2. Additional Applications

While much of the work related to the application of DeMO ontology up to this point has

focused on ODS, work on the use of DeMO in other applications areas is also underway.

These include model discovery, models reuse, and formalized documentation of the model

development process.

4.2.1. Model Discovery—DeMO ontology, once populated with conceptual models, acts

as a repository that is able to categorize models in a variety of different ways for purposes of

model discovery. DeMO-based conceptual models can be searched for by DES formalism

(or modeling technique) or by terms from domain ontologies to which DeMO-based models

maintain links. As mentioned earlier, DeMO-based conceptual models created using the

DeMOforge ODS tool maintain links to classes in the domain ontology that was used to

drive their creation. For example, if ReactO has been used to drive the creation of a DeMO-

based HFPN model of a particular biochemical pathway, the links that DeMO-based model

maintains to ReactO may be used during model discovery. Given the presence of the links in

DeMO, a search tool can use terms from ReactO to search for DeMO-based model. Suppose

that a biochemical researcher is searching for a pathway model that uses a particular enzyme
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that exists in ReactO. The researcher may use this knowledge, which resides in ReactO, to

search for HFPN models that use the enzyme. Since DeMO-based HFPN pathway models

will maintain links to enzyme information in ReactO, the search may lead to the discovery

of DeMO-based models that use the enzyme.

DeMO can also be used to support the discovery of executable simulation models that are

available either locally or via the Web. Executable models created using the DeMOforge

tool or by other means should conform to DeMO ontology as well as to the relevant domain

ontologies. In addition, these executable models should use naming conventions that

conform to these ontologies, and they may also maintain annotations (meta-data) about the

ontological knowledge used during model generation. Search tools can use the ontological

information embedded within the executable models for purposes of model discovery. From

a Web point of view, discovering executable models is roughly analogous to discovering

semantically annotated Web services.

4.2.2. Model Reuse—One of the primary reasons for model discovery is model reuse.

DeMO-based conceptual models can be reused by allowing the scenario management

facility of the DeMOforge tool to change input parameters and translate the conceptual

models into executable models that use different input. While the ability to discover and

reuse DeMO-based models under different scenarios is important, the ability to use DeMO-

based models (or portions of models) as components in the development of other models is

an equally important issue. According to Teo and Szabo,18 the four main steps in

component-based simulation development are: (1) model discovery; (2) model reuse; (3)

syntactic composition; and (4) semantic composition. We have seen how DeMO may be

used to support model discovery and reuse; we will now briefly discuss how DeMO may be

used to support composition.

Work is currently in process to add hierarchical modeling capabilities to DeMO. The

hierarchical modeling capability will allow conceptual models to be redefined as model

components. This is accomplished using the CompositeComponent subclass of DeMO

ModelComponent class. The idea is that a DeMO-based conceptual model will be wrapped

in a model component, allowing it to act as a component of another model. The

CompositeComponent class has the properties shown in Table 13.

The has-Wrapped-Model property specifies the model instance that is to be wrapped as a

model component. The has-ComponentMapping property allows the wrapped model to be

linked to a specific instance of the ModelComponent class, which indicates the type of

model component that the model represents. For example, a conceptual model that is an

instance of the ProcessInteractionModel class may be wrapped by an instance of the

CompositeComponent class and have a has-ComponentMapping property, which indicates

that it is to be considered an instance of the ProcessActivity class for purposes of model

composition. The has-InputPort and has-OutputPort properties are used to describe how data

will enter and exit the model when it is treated as a component.

Hierarchical modeling facilities are currently under development for DeMO

ProcessInteractionModel and ActivityOrientedModel classes and will be integrated into the

StateOriented and EventOriented model classes in the future. When a PI model is redefined

as a model component, the has-Wrapped-Model property of the CompositeComponent

instance, which represents the model, will have as its value an instance of the

ProcessActivity class. The ProcessActivity instance will act as a proxy for the model when it

is used as a component in other PI models. The value of the has-InputPort property will be a

Source ProcessActivity instance of the original PI model, and the value of the has-

OutputPort property will have as its value a Sink ProcessActivity instance of the original
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model. The has-Transport property, which acts as a connector between PI Activity instances,

of the proxy activity will be used to connect the CompositeComponent instance to other

Activity instances in the hierarchical model.

When a PN model is redefined as a model component using a CompositeComponent

instance, its has-Wrapped-Model property will have an instance of the Place class as its

value. The Place instance will act as a proxy for the model when it is used as a component in

other models. The has-InputPort property value of the CompositeComponent instance will

have a Place instance from the original model as its value, and the has-OutputPort property

will also have a Place instance from the original model as its value. A Transition instance,

along with its has-InputArc and has-OutputArc properties, will be used to connect the

CompositeComponent instance to the other places in the PN model. In Figure 16, two PN

models have been redefined as components using Composite Component instances named

WC1 and WC2. The has-ComponentMapping property of WC1 contains a Place instance

named P10, and the has-ComponentMapping property of WC2 contains a Place instance

named P11. Figure 16(a) shows a graphical view of a PN model that uses the WC1 and

WC2. Figure 16(b) shows a graphical view of the same PN model when the proxy places are

used in place of WC1 and WC2.

While the hierarchical modeling facilities currently under development will support limited

component-based model development at the syntax level, issues such as semantic

composability and parallel execution of models remain as future work.

4.2.3. Formalized Documentation of the Model Development Process—In

addition to the mappings used to support ODS described in Section 4.1, DeMO has the

ability to store mappings between DeMO instances that represent a conceptual DES model

and the domain ontology instances that were used by ODS to create the conceptual model.

DeMO also has the ability to store mappings to external resources that provide information

about the modeling process and application domain for which the conceptual model was

created. These mappings are stored as properties of DeMO DomainInstance-Mapping class.

Every subclass of DeMO's top-level model class (DeModel) and top-level model component

class (ModelComponent) contains a has-DomainInstance-Mapping property. This allows all

DeMO model instances and all model component instances to store mappings to domain

ontology instances and external resources.

The mappings between DeMO instances and domain ontology instances can be

automatically created by the DeMOforge tool during the ODS transformation phase. If

information about external resources is available in the domain ontologies, it may also be

transferred to DeMO during the transformation phase; otherwise, mappings to external

resources may be added to DeMO by the model developer.

Because DeMO-based conceptual model has links to information about the domain for

which it was created, it may be used to generate model documentation, for example in the

form of a report or an annotated graphical representation of the conceptual model. The

conceptual model's links to domain information may also be passed to the executable model

during the generation phase of ODS, as described below.

Since conceptual DES models represented as DeMO instances are used during the ODS

generation phase to create an executable model, the domain ontology instances and external

resource mappings can be passed along to executable models. Making this information

available to executable models opens up several possibilities. For example, Section 4.1

describes ODS of a biochemical pathway. In this example, ODS takes a biochemical

pathway described using ReactO instances and transforms it into a conceptual HFPN model
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represented as DeMO instances. This DeMO-based conceptual model is then used to

generate an executable model. In ReactO, one of the pathway's enzymes is represented as an

instance of ReactO Enzyme class. In DeMO, the same enzyme is represented as an instance

of the ContinuousPlace class. When ODS generates the executable model, mapping

information that resides with DeMO ContinuousPlace instance can be passed to the

executable model. Once the mapping information is available to the executable model, it

may be used in a variety of ways. For instance, during animation of the simulation a user

may mouse over the continuous place, which represents the enzyme, and the simulation may

use the mapping information to access ReactO and display information about the enzyme.

5. Conclusions and Future Work

In this paper we present DeMO. DeMO is a general purpose DES ontology, which

represents the domain of discrete-event modeling by describing the classic DES world views

as well as many of the formalisms and modeling techniques that conform to the world

views. Since DeMO was developed using OWL and is easily accessed via the Internet, our

hope is that it might be used to support the increasing collaborative work among the M&S

community.

The paper also proposes DeMO version of ODS, and discusses its practical implementation,

which is realized in the development of the DeMOforge tool. The primary contribution of

this approach to ODS is that it allows the knowledge resident in domain ontologies and a

modeling ontology to drive the creation of executable simulation models. DeMOforge uses a

three phase approach to ODS. This approach allows executable simulation models to be

generated from conceptual models developed using knowledge resident in domain

ontologies. In addition, we present other ways in which DeMO may be used to support

M&S, such as: (1) supporting model discovery via searches by modeling technique/

formalism or domain ontology concept; (2) supporting model reuse and component-based

model development; and (3) providing formalized documentation of the model development

process as a byproduct of ODS.

Future work includes making enhancements to DeMO to more fully support hierarchical and

component-based model development, and addressing issues such as semantic

composability. We are also planning to modify the ontology to include modeling techniques,

such as Colored PNs, not supported by the current version. In future versions of the

DeMOforge tool, we plan to include facilities to provide ODS for state-oriented and event-

oriented modeling techniques, to provide a mechanism that allows DeMO-based conceptual

models to be transformed from one modeling technique to another, and to replace logic

currently encoded using the SWRL with logic that uses languages associated with RIF, a

new emerging standard.
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Figure 1.
PN formalism class structure.
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Figure 2.
Schematic representation of the rationale behind DeMO design. All subclasses of DeModel

are built from ModelComponents and put in motion by ModelMechanisms.
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Figure 3.
DeMO's taxonomy of DES modeling formalisms and techniques.
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Figure 4.
Graphical representation of GSMP portion of DeMO.
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Figure 5.
Graphical representation of DeMO activity-oriented model and Hybrid Functional PN

model.
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Figure 6.
Graphical representation of DeMO event-oriented model and simulation event graph model.
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Figure 7.
Graphical representation of DeMO process-oriented model and process-interaction model.
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Figure 8.
DeMOforge architecture.

Silver et al. Page 33

Simulation. Author manuscript; available in PMC 2012 August 21.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 9.
Mappings between ReactO pathway and DeMO HFPN classes.
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Figure 10.
Mappings between ReactO properties and DeMO classes.
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Figure 11.
Graph of ReactO instances representing an N-Glycan pathway.
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Figure 12.
Mappings used and instances created during the ODS transformation phase for an N-Glycan

pathway.
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Figure 13.
ReactO Reaction instances and analogous DeMO ContinuousInputArc instances.
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Figure 14.
Example of DeMO ContinuousInputArc instance and its relationship to a ContinuousPlace

and a ContinuousTransition instance.
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Figure 15.
JSIM simulation environment's animation of N-Glycan pathway simulation.
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Figure 16.
PN model using hierarchical capabilities of DeMO. (a) A graphical view of how the original

models fit into the PN model when they are redefined using the CompositeComponent class.

The shaded places serve as input or output ports. (b) A graphical view of the PN models in

(a) with the proxy places used to represent the original models.
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Table 1

Layers of the Semantic Web architecture

Layer Principal Language Name (URL)

Proof/trust Future work

Rule/logic RIF, SWRL Extensible Markup Language, XML Schema Definition (www.w3.org/XML,
www.w3.org/XML/Schema)

Ontology OWL (Lite, DL, Full)
OWL 2 (EL, QL, RL)

Web Ontology Language (www.w3.org/2004/OWL/)

OWL 2 Web Ontology Language (http://www.w3.org/TR/owl2-profiles)

Meta-data RDF, RDF Schema RULE Interchange Format (http://www.w3.org/TR/rif-core)

Semantic Web Rule Language (www.w3.org/Submission/SWRL/)

Resource/data XML, XSD Resource Description Framework, RDF Schema (www.w3.org/RDF)
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Table 2

Basic properties of DeMO StateOrientedModel class

Property name Property restriction (instance of)

has-StateSpace DiscreteStateSpace

has-EventSet FiniteEventSet

has-TimeSet TimeSet

has-TransitionFunction TransitionFunction

has-ClockFunction ClockFunction

has-InitialState InitialState
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Table 3

ModelMechanism instances used by DeMO GSMP class

Mechanism name Value (instance)

TransitionTriggering MultipleEventTriggering mechanism

TransitionEnabling EventEnabling mechanism

EventScheduling StateMachineScheduling mechanism
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Table 4

Basic properties of DeMO ActivityOrientedModel class

Property name Property restriction (instance of)

has-PlaceSet FinitePlaceSet

has-ActivitySet FiniteActivitySet

has-TimeSet TimeSet

has-IncidenceFunction IncidenceFunction

has-ClockFunction ClockFunction

has-InitialState InitialState
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Table 5

ModelMechanism instances used by DeMO HybridFunctionalPetriNet class

Mechanism name Value (instance)

TransitionTriggering MultipleTransitionTriggering mechanism

TransitionEnabling ArcWeightEnabling mechanism
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Table 6

Basic properties of DeMO EventOrientedModel class

Property name Property restriction (instance of)

has-EventSet FiniteEventSet

has-IncidenceFunction IncidenceFunction

has-TimeSet TimeSet

has-ClockFunction ClockFunction

has-InitialState InitialState
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Table 7

ModelMechanism instances used by DeMO SimulationEventGraph class

Mechanism name Value (instance)

TransitionTriggering MultipleTransitionTriggering mechanism

TransitionEnabling EventEnabling mechanism

EventScheduling SimulationGraphScheduling mechanism
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Table 8

Basic properties of DeMO ProcessOrientedModel class

Property name Property restriction (instance of)

has-ProcessTypes Process

has-TimeSet TimeSet

has-ClockFunction ClockFunction

has-InitialState InitialState
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Table 9

Basic properties of DeMO Process and ProcessActivity classes

Process class property name Property restriction (instance of)

has-ProcessActivity ProcessActivity

ProcessActivity class property name Property restriction (instance of)

is-Supported-by Resource

has-Input-Transport Transport

has-Output-Transport Transport
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Table 10

ModelMechanism instances used by DeMO ProcessOrientedModel class

Mechanism name Value (instance)

TransitionTriggering ProcessTriggering mechanism

TransitionEnabling ProcessEnabling mechanism

EventScheduling ProcessInteractionScheduling mechanism
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Table 11

Mappings between corresponding ReactO and DeMO classes

ReactO class DeMO class

Pathway HybridFunctionalPetriNet

Reaction ContinuousTransition

Molecule ContinuousPlace

Enzyme ContinuousPlace
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Table 12

Mappings between corresponding ReactO properties and DeMO classes

ReactO property DeMO class Transformation rule

Reaction consumes Molecule ContinuousInputArc use has-Source-Place property, use has-Target-Transition property

Reaction generates Molecule ContinuousOutputArc use has-Source-Transition property, use has-Target-Place property

Reaction has-Catalyst Enzyme ContinuousTestArc use has-Source-Place property, use has-Target-Transition property
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Table 13

Properties of DeMO CompositeComponent classes

Property name Property restriction (instance of)

has-Wrapped-Model DeModel

has-ComponentMapping Activity or Place

has-InputPort SourceActivity or Place

has-OutputPort SinkActivity or Place
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