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ABSTRACT

Virtual reality head-mounted displays (VR HMDs) are attracting
users with the promise of full sensory immersion in virtual environ-
ments. Creating the illusion of immersion for a near-eye display
results in very heavy rendering workloads: low latency, high framer-
ate, and high visual quality are all needed. Tethered VR setups in
which the HMD is bound to a powerful gaming desktop limit mo-
bility and exploration, and are difficult to deploy widely. Products
such as Google Cardboard and Samsung Gear VR purport to offer
any user a mobile VR experience, but their GPUs are too power-
constrained to produce an acceptable framerate and latency, even
for scenes of modest visual quality.

We present FLASHBACK, an unorthodox design point for HMD
VR that eschews all real-time scene rendering. Instead, FLASH-
BACK aggressively precomputes and caches all possible images
that a VR user might encounter. FLASHBACK memoizes costly
rendering effort in an offline step to build a cache full of panoramic
images. During runtime, FLASHBACK constructs and maintains
a hierarchical storage cache index to quickly lookup images that
the user should be seeing. On a cache miss, FLASHBACK uses fast
approximations of the correct image while concurrently fetching
more closely-matching entries from its cache for future requests.
Moreover, FLASHBACK not only works for static scenes, but also
for dynamic scenes with moving and animated objects.

We evaluate a prototype implementation of FLASHBACK and
report up to a 8× improvement in framerate, 97× reduction in
energy consumption per frame, and 15× latency reduction compared
to a locally-rendered mobile VR setup. In some cases, FLASHBACK

even delivers better framerates and responsiveness than a tethered
HMD configuration on graphically complex scenes.

1. INTRODUCTION

Driven by recent advances in the mobile computing hardware

ecosystem, wearable Virtual Reality (VR) is experiencing a boom

in popularity, with many offerings becoming available. Wear-

able VR head-mounted displays (HMDs) fall into two device

classes: (i) Tethered HMDs: HMDs tethered to powerful, ex-

pensive gaming desktops, such as the Oculus Rift, HTC Vive,
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and Sony Playstation VR; (ii) Mobile-rendered HMDs: Self-

contained, untethered HMDs that run on mobile phones slotted

into head mounts, e.g., Google Cardboard and Samsung Gear VR.

However, both device classes present significant drawbacks.

Tethered HMDs are capable of rendering rich graphical scenes

at high framerates and visual quality, but require significant GPU

and compute resources in the form of a dedicated gaming desktop

or console co-located with the user. Tethered HMDs obviously

limit mobility and come with a high barrier to entry, but also suf-

fer the risk of tethered cords wrapping around a user’s neck.

Mobile-rendered HMDs are widely available but suffer from

low graphical quality, poor battery life, and uncomfortable ther-

mal radiation, all of which break the illusion of immersion. Mo-

bile GPU rendering can consume up to 20W of peak power [20],

making thermal output a safety concern for near-eye devices with-

out active cooling. Limiting mobile GPU power (and thus, perfor-

mance) is highly undesirable because (i) mobile GPUs are already

over an order of magnitude slower than desktop GPUs, and (ii) a

near-eye display exacerbates any performance degradations, often

causing motion discomfort or simulator sickness.

In addition, we believe that affordability is vital to widespread

VR adoption. Tethered HMDs are clearly cost-prohibitive, but

even mobile-rendered HMDs require high-end phones with high-

end GPUs. Providing immersive VR experiences on widely avail-

able, affordable devices will enable exciting new use cases: vir-

tual field trips for low-income or remote classrooms, enhanced

training simulations, medical education and examination, thera-

peutic rehabilitation, and many more beyond VR gaming [6].

The FLASHBACK Design

In this paper, we present FLASHBACK, a system that overcomes

the limitations of both Tethered and Mobile-rendered HMDs to of-

fer a full-quality VR experience on weak mobile devices. FLASH-

BACK does so by serving all of a VR application’s high data rate

rendering requests from a local cache of pre-rendered HD frames,

effectively memoizing prior rendering efforts. We are agnostic as

to what machine generates the cache — it could be a dedicated

cloud rendering server, a nearby desktop, or the HMD device it-

self (given plenty of time) — as long as the cached contents can

be downloaded to the HMD device before run time.

Pre-caching avoids the struggle of real-time rendering on a

weak mobile GPU while leveraging a prevailing trend among mo-

bile devices: storage is low-power, increasingly abundant, cheap,

and often underutilized, while graphical processing remains re-

stricted due to thermal and energy constraints. In fact, we show

that storage is sufficient to fully cache entire VR scenes.



Moreover, FLASHBACK fundamentally changes how VR appli-

cations can be deployed and executed on mobile devices. Instead

of running the application binary itself, one simply downloads

the application’s pre-rendered results (or generates them locally

ahead of time) for future use during playback, similar to down-

loading a movie. However, unlike a movie, the VR experience is

highly non-linear and interactive.

FLASHBACK builds a three-tier frame cache across GPU video

memory (VRAM), system RAM, and secondary storage to store

the set of frames needed for a given VR application. The cache

is indexed by the player’s current pose, its 3D position in the en-

vironment. As the player moves around, FLASHBACK retrieves

and displays a new frame from the cache that matches the up-

dated pose, using a nearest-neighbor algorithm to quickly search

the 3D space. Based on R-trees, our index is optimized to quickly

return results in GPU memory for immediate display while con-

currently fetching better cache entries from deeper in the storage

hierarchy for future requests. On a cache miss, FLASHBACK uses

cheap and fast approximations of the correct image based on well-

established mesh warping techniques from the computer graphics

community [24]. We further introduce cache compression tech-

niques to not only fit more cache entries in storage, but also to

increase system throughput. Section 4 explains the layout, usage,

creation, and compression of the frame cache in greater detail.

In addition to handling a static background scene, FLASHBACK

even supports dynamically-moving, animated objects (e.g., a per-

son walking, or n cars driving) using a per-object cache data struc-

ture. Dynamic object caches are indexed by the object’s anima-

tion stage, orientation, and relative distance from the player pose

for a given time- or movement-based trigger. Unlike the static

scene cache, a dynamic object cache stores frames that contain a

view of the dynamic object only, allowing FLASHBACK to com-

bine the static frame with multiple dynamic frames using pixel

depth metadata embedded in each frame. With support for both

static scenes and dynamic objects, FLASHBACK can handle many

types of VR applications. Section 5 provides a deeper exploration

of dynamic animated objects.

We develop a prototype implementation of FLASHBACK on

Windows 10 that supports rendering memoization of VR applica-

tions created with Unity, the most popular commercial game and

virtual reality creation tool. Our implementation is in three parts:

a Unity-side instrumentation suite that automates offline cache

generation, a CacheManager library that controls local cache

contents on the HMD, and a runtime based on DirectX 11 that

issues cache queries, composites cache entries into final scenes,

and displays rendered content onto the HMD. Our implementa-

tion does not require modifying the Unity VR application or the

HMD’s VR drivers, as described in Section 6.

Finally, we investigate the performance limits of FLASHBACK

with a thorough evaluation of our prototype on an Oculus Rift VR

headset powered by a weak HP Pavilion Mini device. FLASH-

BACK achieves up to a 15× reduction in end-to-end latency, an

8× increase in overall framerate, and a 97× reduction in per-

frame energy consumption compared with a Mobile-rendered con-

figuration running a complex, fully-fledged VR environment. The

graphical quality, framerate, and latency of FLASHBACK are even

on par with — and sometimes better than — that of a strong gam-

ing desktop. We also show that FLASHBACK’s cache can scale

to large virtual environments and can handle a reasonable number

of concurrently visible dynamic objects. Therefore, FLASHBACK

is well-positioned to bring immersive VR experiences to mobile

devices through its novel rendering memoization techniques.

As VR is a visceral experience better seen than described, we

provide a video demonstration of FLASHBACK at [26].

2. BACKGROUND

Basic Operation of a VR System: A modern HMD, like the

Oculus Rift, has a variety of internal sensors, e.g., IMUs, that

track the player’s pose, comprised of 3D position and 3D orien-

tation. Some systems also have external sensors or cameras that

track the position of the HMD on the user’s face with respect to

the surrounding physical room. The display of the HMD is often

the same class as those used on smartphones and tablets. HMDs

use the tracked position to render the corresponding virtual envi-

ronment to the display.

Virtual Environment Creation Tools: The virtual environment

can be rendered from any computer-generated scene. Commer-

cial virtual environment creation tools are often the same as game

creation IDEs, such as Unity and Unreal. These IDEs provide a

convenient WYSIWYG way to rapidly construct and script scenes

based on pre-existing game objects. We leverage two important

properties of these tools. First, they clearly delineate static objects

from dynamic objects. Static objects in the virtual environment

do not change. Examples include buildings, terrain, landscape

and other immutable objects. A static scene consists of all static

objects rendered together. Dynamic object examples include vehi-

cles, animals, people, and anything with motion animations. Sec-

ond, the camera that generates the rendered result is conceptually

abstracted from the scene. As a result, it is straightforward to re-

place a scene’s camera with a custom camera, which we do to

generate cache entries.

VR as a mobile workload: VR HMD systems place heavy ren-

dering and power demands on computing systems. Modern VR

systems target:

• low latency: total end-to-end (motion-to-photon) latency of

under 25ms, half that of previous VR systems;

• high framerate: throughput of at least 60 frames per second

(FPS) to ensure smooth playback;

• scene complexity: visually rich, photo-realistic scenes.

These requirements are among the most demanding for con-

sumer mobile applications. In the temporal dimension, the la-

tency and framerate requirements derive from the fact that we

are physiologically very sensitive to lag in near-eye displays be-

cause the human visual and vestibular sensory systems are tightly

coupled. Even minor motion-to-photon latency can induce oscil-

loscopia (the sensation that your view and vestibular signals are

mismatched), and eventually motion sickness or simulator sick-

ness [7, 22, 4]. While classic studies found tolerance thresholds of

50ms (which coincided with measurement resolution) [3], more

recent anecdotal evidence suggests that 10-20ms is a better target,

depending upon the scene and user [25].

In the spatial domain, scene complexity refers to substantive de-

tail in a graphical scene, such as rich geometry and texture detail.

A near-eye display intensifies the importance of scene complexity

because the HMD’s pixels are mere centimeters from the eye and

magnified on the retina; thus, graphical detail (or lack thereof) be-

comes immediately more noticeable. Delivering photo-realistic

scenes requires substantial GPU processing capabilities.
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Figure 1: FLASHBACK runtime operation. FLASHBACK uses

the HMD pose to query the cache and decode the retrieved

megaframe if necessary, then it combines that static megaframe

with any dynamic object megaframes, and finally warps the

megaframe into a single final frame for the HMD.

The core challenge facing an untethered mobile HMD system

such as FLASHBACK is to provide all of the above properties —

low latency, high framerate and graphical quality — simultane-

ously at low power. Unfortunately, in Mobile-endered (and even

Tethered) HMDs, latency and high framerate are at odds with res-

olution and scene complexity: striving for higher quality scenes

impinges upon latency and framerate, and vice versa.

3. SYSTEM OVERVIEW

Figure 1 depicts the high-level operation of FLASHBACK, from

sampled input to displayed output. First, the current player pose

is read in from the HMD driver, comprising position and view ori-

entation. The position is the location of the player in 3D world

space; the view orientation is a rotation vector that represents

where the player is looking.

FLASHBACK then finds and reads multiple cache entries that

are needed for the user’s view. One of these cache entries cor-

responds to the static scene and the other entries correspond to

the dynamic objects in the scene. The cache lookup encompasses

GPU memory, system memory, and non-volatile secondary stor-

age, with varying levels of access speed. We optimize this lookup

with cache indexing (Section 4.4) and cache compression (Sec-

tion 4.3). When required, entries are pulled from higher to lower

levels of the cache hierarchy, evicting older entries. The matched

cache entries are then composited into a final view.

Upon a cache miss, instead of rendering the correct view in

real time, we synthesize an approximation of the correct view

from available cache entries with a computer graphics technique

known as mesh warping (Section 4.5). Warping is significantly

lighter-weight than rendering. Most importantly, unlike render-

ing, warping speed is not dependent on scene complexity; it is

only a fixed function of the screen resolution and runs efficiently

even on mobile GPUs. As a result, the scene can have arbitrar-

ily complex visual detail and effects, yet warping speed remains

constant.

As a final step, the HMD device driver performs lens-offsetting

barrel distortion and displays the final frame to the screen. The

components of this entire process are the main contributors to

the system’s end-to-end motion-to-photon latency, so we strive

to make them as efficient and performant as possible.
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Figure 2: Each cache entry contains a megaframe. The twenty-

four faces of the megaframe represent the left and right eye

cube maps for RGB color and depth.

4. CACHE ORGANIZATION

In this section, we describe the overall design of FLASHBACK’s

rendering memoization mechanism, its cache structure and behav-

ior, and optimizations for scalability and performance of static

scenes.

4.1 A Single Cache Entry: The Megaframe

Each entry of the cache consists of a high resolution megaframe

as shown in Figure 2. A megaframe is defined with respect to a

pose p = ((x, y, z), (θ,φ,ψ)). The parameters (x, y, z) represent

the position in 3D world coordinates. The parameters (θ,φ,ψ)
represent the orientation (sometimes referred to as rotation) as a

Euler angle comprising yaw, pitch, and roll, respectively. With

appropriate warping (Section 4.5), the megaframe allows us to

reconstruct nearby views that are translated or rotated with respect

to the megaframe’s pose.

Internally, a megaframe is composed of four cube maps. A

cube map is a classic computer graphics 360� representation of

an environment [14]. The cube map draws a panoramic image

on the six sides of a cube, with the centerpoint of the cube be-

ing the current pose. The four cube maps in a single megaframe

include:

• Left eye color (RGB) cube map,

• Left eye depth cube map,

• Right eye color (RGB) cube map, and

• Right eye depth cube map.

The left and right eye cube maps exist separately in order to gen-

erate a proper stereo view. Their positions are each offset from

the megaframe’s pose by half the inter-pupillary distance (IPD),

which is a user-specific anatomical property that represents the

distance between human eyes. The depth cube maps are not nec-

essary for representing the RGB pixel content of the scene, but

are useful during the warping step. All four cube maps in every

megaframe are stored consistently at a fixed, canonical orienta-

tion looking straight ahead, i.e., (θ,φ,ψ) = (0, 0, 0). With four

cube maps and six faces per cube, the megaframe consists of 24

faces, as illustrated in the megaframe layout of Figure 2.

4.2 Cache Layout and Hierarchy

Figure 3 provides a visualization of how the cache is laid out

in logical 3D space. The megaframes conceptually occupy the

3D point matching the pose at which they were rendered; as a



Figure 3: Logical layout of megaframes. Each cube represents

a megaframe’s cache index visualized in 3D space. Arrows de-

pict the distance from the closest few megaframes to the current

pose query, represented by the camera icon.

player (camera icon) moves throughout the environment, it be-

comes closer to certain cubes and further from others. Distance

is defined with respect to the position difference in Euclidean

space. It is not necessary to consider orientation differences since

megaframe cube maps are panoramic; in fact, cube maps inher-

ently contain all possible orientations for a given position.

In terms of physical layout in memory or on storage, FLASH-

BACK builds a three-tier cache of megaframes, depicted in Fig-

ure 1 as an inverted triangle consisting of GPU VRAM as L1,

system RAM as L2, and persistent secondary storage, like SSD

or Flash, as L3. Although the size of each tier in Figure 1 is

not to scale, GPU VRAM is the smallest, followed by a larger-

sized RAM, and finally a massive secondary storage unit. Current

mobile SoCs have GPU VRAMs statically allocated from system

memory, typically a few hundred MBs on integrated chips. Sys-

tem RAM is usually 0.5–2GB (excluding GPU VRAM carve out).

Secondary storage sizes of flash can be up to several hundred GBs.

SSDs, a composition of multiple flash chips, can be thousands of

GBs. While SSDs are not common on mobile devices today, they

are worth consideration as they provide a point of extrapolation

for future device storage trends. As such, a moderate number of

megaframes are on the GPU VRAM, while all other megaframes

are relegated to the other two layers.

We initially considered how the physical storage layout of

cached frames would affect performance, believing that retriev-

ing a cached frame from disk could incur a substantial and unpre-

dictable latency penalty due to random reads with poor locality.

However, as demonstrated in §7, decoder latency (explained be-

low) dominates storage read latency by 2-3 orders of magnitude.

Therefore, we find it unnecessary to optimize the cache’s on-disk

layout.

4.3 Cache Compression

Cache compression provides for better performance and spa-

tial efficiency. Were we to store megaframes in a raw, uncom-

pressed format, we would rapidly saturate the data transfer band-

width between stages [9], as megaframes must be passed between

GPU VRAM and system RAM. Saturation leads to low framer-

ates and high latency. Note that even though GPU and system

memory share the same physical memory banks in mobile SoCs,

data transfer between the two still entails data copy because of for-

mat incompatibility and pointer swizzling. Therefore, we elect to

store megaframes in a compressed format (equivalent to a single-

frame H.264 video) when in system memory and stable storage.

We only decompress frames in GPU memory when they are most

likely to be displayed to the user. For efficiency, we leverage

the dedicated hardware H.264 decoder available in all modern de-

vices (typically used for video playback).

Another benefit of storing encoded frames on stable storage is

that each cache entry is smaller in size. As an example, a de-

coded 4k texture consumes over 8MB of memory, but encoding

that texture reduces it to under 100KB, allowing FLASHBACK to

maintain vastly larger caches.

Even with frame compression at the L2 and L3 layer, the per-

formance gap between L1 access and L2 or L3 access is large,

as demonstrated in Section 7. This is because decoding frames

still takes time, even with a dedicated hardware-accelerated de-

coder. On balance, trading data transfer time for decompression

time and an increase in the maximum number of cache entries is

an important part of the FLASHBACK design.

4.4 Cache Lookup and Indexing

FLASHBACK appoints a CacheManager to control the be-

havior of the cache and the flow or eviction of megaframes be-

tween different cache levels. The CacheManager’s primary

function is to accept a request in the form of a CacheKey (CK)

structure, containing player pose, and return a CacheValue

(CV) structure containing a reference to a retrieved megaframe, de-

coding it if necessary. The arrows in Figure 3 show the Euclidean

distance vectors used to locate the closest matching megaframe

cube for a given requested CK pose.

We realize this querying semantic via a nearest-neighbor

search using R-trees [17]. The R-tree algorithm constructs a set

of minimally-overlapping bounding boxes that each contain sub-

sets of points (in our case, the megaframe positions) in the 3D

space, helping to rapidly eliminate large portions of the search

space. When the correct box is located, the algorithm calculates

the distance from each existing point to the target point (the de-

sired pose’s position) and selects the closest one. We choose R-

trees because they support: (i) fast lookup; (ii) queries across stor-

age hierarchies, better than other nearest-neighbor indexes like

quad-trees and kd-trees, and (iii) good support for insertions and

deletions.

We design our use of R-trees in such a way that whenever we

receive a new pose request, we can always immediately return a

megaframe result from the GPU cache for display. At the same

time, if there is an even closer megaframe that exists in either L2

or L3 cache, it is fetched asynchronously to the GPU such that

it is available to service future pose requests, taking advantage of

temporal locality. As such, the notion of a cache miss refers to the

requested megaframe not having an identical match in the GPU

cache.

To support this goal, we use a dual R-tree data structure. Specif-

ically, we maintain two distinct R-trees: a GPU R-tree and a uni-

versal R-tree. The GPU R-tree only indexes cache entries that are

currently resident in the GPU cache, whereas the universal R-tree

indexes all cache entries across all three storage levels. A pose

request is issued to both the GPU R-tree and universal R-tree in

parallel. The nearest neighbor megaframe in the GPU R-tree is re-

turned immediately for display. The nearest neighbor megaframe

in the universal R-tree is also looked up. If it is the same as the

megaframe returned from the GPU R-tree, no further action is

taken. If it differs, it is then transferred from secondary storage

(if it was on L3, from RAM if L2) and then decoded to L1 asyn-



chronously. When a new megaframe is decoded, it is inserted into

the GPU R-tree and updated in the universal R-tree.

FLASHBACK’s CV structure must be kept to a minimal size be-

cause there are potentially millions of instances, one for every

cached megaframe. A CV holds a pointer to either a file location

on persistent storage (L3), byte array in system memory (L2), or

raw texture on GPU VRAM (L1), depending on which cache level

it resides. In fact, a CV can exist in multiple cache levels simul-

taneously, offering redundancy if the CV must be evicted from

VRAM or RAM cache to relieve memory pressure. Since our

cache contents are read-only, we never need to write back cache

entries into stable storage. Furthermore, cache eviction is simply

a matter of removing a cache entry from the index, a fast operation

for R-trees. We currently provide a flexible eviction mechanism

and a simple LRU policy, but future policies could be more in-

telligent, e.g., evicting the furthest cache entry from the player’s

current position.

4.5 Cache Miss and Approximate Results

An embedded assumption in FLASHBACK is that every possi-

ble rendering request can be served by cached contents in one of

the cache layers. Of course, even plentiful stable storage is fi-

nite. Therefore, in order to handle cache misses, we reuse nearby

cached entries to approximate the desired result. This allows us

to substantially increase FLASHBACK’s effective cache hit rate.

However, naïvely substituting a view centered at pose p in lieu

of a desired view at pose p
0 results in a poor experience with un-

comfortable visual stuttering. Therefore, we apply a mesh warp

to the megaframe at p in order to derive an appropriate view

for p0. Mesh warping is a classic technique from the family of

computer graphics techniques known as Image-Based Rendering

(IBR) [24]. We explain the mechanics, limitations, and advan-

tages of mesh warp below.

Given an RGB cube map and matching depth cube map both

at pose p (say, of the left eye), we can generate a novel view v0

as if it had been taken from a new pose p
0. At a high level, each

pixel of the original view is mapped to a 3D position (since p

and the depth map are known), and then the 3D position is repro-

jected to a pixel in the new view (since p
0 is known). The final

view v0 resolution is proportional to the size of the megaframe.

Assuming a typical HMD field of view (106� height, 94� width),

a 4k megaframe (3840× 2160) generates 720p final view frames

(1280× 720).

However, if translation is too great (i.e., the position of p and

the position of p
0 are too far apart) then v0 will suffer from vi-

sual artifacts such as disocclusions. Imagine looking at an open

doorway and then stepping forward; from the original view, it is

unclear what should appear in the disoccluded “holes” that are

now visible. This suggests that we may desire additional cube

maps to handle translations that are beyond a threshold, which is

precisely what our additional megaframes provide. On the other

hand, since our cube map covers a panoramic view, mesh warp-

ing is robust to arbitrary changes in rotation without introducing

artifacts.

4.6 Populating the Cache

We now discuss how FLASHBACK actually generates the

megaframes that will occupy the cache. These frames are gen-

erated offline, either on the mobile device itself (given enough

time) or alternatively downloaded much like a video file from a

desktop computer or powerful rendering server in the cloud. De-

ploying a dataset as large as the megaframe cache from a cloud

server to the mobile device seems prohibitive at first, but is in

actuality quite tractable due to the cache’s extremely high com-

pressability. The cache can be greatly compressed on the server

due to adjacent megaframes having largely identical blocks, and

then decompressed (decoded) on the mobile device in an ahead-

of-time cache unpacking step.

Logically, FLASHBACK performs a 3D grid sweep across the

virtual space constituting the static scene. At each grid point,

FLASHBACK captures a panoramic stereo image of the world and

writes this to a cube map. It does this again for depth, and then

composites the corresponding megaframe. The megaframe is then

encoded as an individual key frame (I-frame) using the H.264

codec. Finally, FLASHBACK writes the encoded megaframe to

secondary storage with a unique identifier linking back to the

pose from which it was generated. This fully-automated proce-

dure repeats for every possible pose in the environment, which

is potentially n3 combinations due to the three dimensions of the

pose’s position value. The density of the grid, or quantization, im-

pacts both the final cache size and the visual artifacts encountered

during the warping approximation, as well as latency and framer-

ate. We found that a virtual grid density between 0.02 and 0.05

virtual-world units (e.g., 2-5cm) offers a good trade-off between

unnoticeable visual artifacts and cache size (§8).

Furthermore, we can aggressively cull the set of possible pose

values based on the geometry and restricted movement paths of

the environment. For example, for a virtual environment in which

the player walks on the ground, we can limit the potential height

values to a smaller range, e.g., five to seven feet above the ground.

This technique significantly reduces the pose state space by elim-

inating impossible values, such as being underground or inside of

a solid wall. Thus, while the worst case complexity of generating

the megaframe cache is O(n3), the typical case is much less.

5. HANDLING DYNAMIC OBJECTS

In addition to caching the static environment’s megaframes,

FLASHBACK supports dynamic objects complete with freeform

motion paths and animations. Dynamic object caching extends

the base semantics of static caching with a more complex cache

key structure and querying procedure.

5.1 Generating the Dynamic Object Cache

Rendering memoization for dynamic objects involves a proce-

dure similar to that of static scenes. Offline, FLASHBACK iterates

over the input space and renders megaframes. However, instead

of only iterating over possible positions, dynamic objects have

more dimensions: position, orientation, and animations. This re-

sults in a massive input space for each object, but fortunately it

can be pruned along all three dimensions.

Capturing Dynamic Object Megaframes

We now describe the full procedure for populating a dynamic ob-

ject’s cache. As a preprocessing step, we extract and treat each

dynamic object independently by placing it in an otherwise empty

virtual world. This is important for megaframe composition free

from side effects, described in Section 5.3 below.

Next, we iterate over all possible values along the position, ori-

entation and animation dimensions in a set of nested loops. The



Figure 4: FLASHBACK caches dynamic objects by rendering a

megaframe from all possible relative player positions and view-

ing angles, depicted here as camera icons. This repeats for all

object animations and rotations.

outer loop is position. This position value consists of the same 3D

point format but has a different semantic meaning from a static

megaframe’s position: it is the position of the player relative to

that of the object, which is calculated by the Euclidean distance

between the object position and the player camera position. We

prune the position dimension in the same way as for static frames:

the dynamic object is only visible to the player from a limited ge-

ographical area (e.g., distance). It is important to understand that

the position value used for dynamic objects is not the physical lo-

cation of the dynamic object itself in world space, but rather the

position of the player relative to the dynamic object. This vastly

reduces the position-dimension state space. For example, when

the player stands 5 meters north (in a bird’s-eye view) of the dy-

namic object, this configuration results in the same player view

of that object no matter the absolute position of the two bodies in

the virtual environment.

The next inner loop iterates over all possible values along the

orientation dimension. Just like the player, a dynamic object can

have its own view orientation, commonly referred to as the ob-

ject’s rotation. We prune the orientation dimension according to

both the potential player viewpoints as well as the possible rota-

tions of the object itself. For example, if the object rotates along

the vertical y-axis only, a very common behavior for animated

objects, we only need to iterate over angles in the y direction.

The final inner loop iterates over all possible animation stages

in the object’s animation sequence. There are up to as many

stages as there are frames in the animation sequence; stages can

be a downsampling of the number of frames in the animation.

For example, the horse-drawn cart in Figure 4, which is a profes-

sionally produced dynamic object with animations, has a detailed

“trotting” animation sequence, but we were able to represent it as

a periodically repeating set of 36 stages with no loss in anima-

tion fidelity. If an object has multiple animation sequences (e.g.,

walking, running, or standing), the procedure is repeated for every

sequence.

Capturing Dynamic Object Pose Traces

In order to know which megaframe should be used for a dy-

namic object at a given point in time, FLASHBACK records a pose

trace of the dynamic object during offline playback of the origi-

nal VR application. This trace defines the object’s motion path

and stage in the animation sequence for a given timestamp. Note

CK.orientation

CK.pos

Anim.	List Anim.	List

Top-level	R-tree,	

position-indexed

Dynamic	
CacheKey

Mid-level	R-tree,	

orientation-indexed

Last-level	animation	list,

timestamp-indexed

Anim.	List

Retrieved

megaframe

Figure 5: Nested R-Trees for Retrieval of Dynamic Objects. Dy-

namic objects are indexed by relative position (top-level R-tree),

orientation (nested R-trees), and animation stages (simple lists).

that this means dynamic objects appear deterministically based

on the timeline. For example, a horse always trots along the same

path in the virtual environment, independent of where the user is

positioned or looking. Future work includes extending the cache

index to support different dynamic object behavior based on the

player’s actions and pose.

5.2 Dynamic Object Index and Lookup

The query execution for dynamic object caches is a two-step

process. First, the object’s pose trace is queried using the current

timestamp to determine at what view orientation and animation

stage that object should appear.

Once the dynamic object pose descriptor is acquired, step two

is to query the actual megaframe cache using a dynamic cache key

(dynamic CK), consisting of the pose descriptor from the trace in

step one (orientation and animation) and the relative player posi-

tion. The dynamic CK consists of 7 values: a 3D position vector,

3D orientation vector, and scalar animation stage.

While it is possible to construct a 7 dimension R-tree, it would

suffer because a high-dimension data structure is ill-suited for use

with spatial indexing algorithms. Instead, we construct a nested R-

tree as shown in Figure 5 that reduces the R-tree to 3 dimensions

at most. It consists of a top-level R-tree indexed by position (sim-

ilar to the universal R-tree for static scenes). However, instead of

its leaf nodes pointing to megaframes, each leaf node points to a

second-level R-tree indexed by orientation; there are n such ori-

entation R-trees, one for each node in the position R-tree. Finally,

each leaf node of the orientation R-tree points to a simple list that

maps a timestamp to an animation stage pointer. Finally, the an-

imation stage pointer points to a megaframe that was captured

with the corresponding 7-tuple.

The logic behind the nesting ordering of position, orientation

and animation stage is that it prioritizes position distance. Sud-

denly seeing a large translation jump in a dynamic object will

throw off the player’s inner balance more so than seeing that ob-

ject at an unexpected rotation angle or a strange animation frame.

To execute a query, the CacheManager first queries the top-

level (position-indexed) R-tree using the relative position value to
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Figure 6: Compositing Dynamic Objects With Static Scenes.

Croppings of the megaframes (a single cube face) for one static

scene and one dynamic object are shown.

obtain a reference to the mid-level R-tree of orientation indices.

It then queries that mid-level R-tree using the dynamic object’s

current orientation to obtain a reference to the lowest level list

of animation frame sequences, which is finally indexed using the

animation stage timestamp to obtain the actual megaframe that

best matches the dynamic CK’s values.

5.3 Compositing Dynamic Objects

Once a megaframe has been retrieved for every visible dy-

namic object, all of their megaframes along with the static scene

megaframe are overlaid into a single composite megaframe. Re-

call that each megaframe includes not only the cube faces rep-

resenting the actual scene pixels, but also the depth values for

each pixel (see Figure 2). We utilize these depth values in a pixel

shader to determine which objects should occlude other objects

and components of the static scene, and vice versa. Therefore,

FLASHBACK can support a complex layering of both dynamic

and static objects, e.g., placing a sprite in front of one building but

behind another. An illustrative example is shown in Figure 6. Af-

ter composition is complete, the composite megaframe is handed

off to the cube map warp routine to construct the final view.

5.4 Look-ahead Decoding

When we have idle decode cycles (e.g., when many requests

are hitting the GPU cache), it is worthwhile from an energy and

performance perspective to speculate on which megaframes will

be requested in the near future. That way, we can preemptively

decode the chosen megaframes and have them ready on GPU

VRAM by the time they are needed. We employ a relatively

straightforward speculation mechanism that looks n frame peri-

ods into the future (e.g., 5 frames from now) by reading n fu-

ture values of the dynamic object’s pose trace. FLASHBACK

then instructs the CacheManager to lookup those n future

megaframes and decode as many as time permits.

Though this is particularly well-suited for dynamic objects due

to their predictable motion pattern known ahead of time, we can

also apply it to the static scene by speculating on the player’s

movement. This turns out to be less successful than for dynamic

objects (§7) because it relies on accurately predicting the user’s

future pose, which has much more uncertainty than deterministic

dynamic object poses [21].

5.5 Limitations of Dynamic Objects

As FLASHBACK composites the pixel representation of dy-

namic objects, it is more limited than general rendering.

Lighting Models: Our approach cannot support certain lighting

models and special effects for dynamic objects: these include

scene-dependent lighting and reflections. For example, if the ap-

pearance of a dynamic object depends on where it is relative to

the scene’s light sources, our caching mechanism will fail to cap-

ture the object’s lighting variations. These limitations stem from

the fact that we construct the cache entries for the dynamic ob-

ject in isolation from the static scene. It is conceivable that the

cache can also be augmented to include indexing by relative light

source positions and orientations, much like it is already indexed

by relative player pose. We leave this as future work.

Scalability: FLASHBACK’s technique for handling dynamic ob-

jects has unique scalability properties; we quantify and explain its

behavior in Section 8.2.

6. IMPLEMENTATION

Our prototype implementation of FLASHBACK runs on Win-

dows 10 using the Oculus Rift DK2 HMD. It is powered by a

weak HP Mini computer equivalent in compute and GPU power

to a mid-range smartphone (§7). Our implementation is in three

parts: the Unity cache generator that automates the rendering

memoization process, the CacheManager on the HMD, and the

lightweight playback client on the HMD.

Unity-side Cache Generation: We implement Unity-side cache

generation by adding a special array of rendering cameras that au-

tomatically generate megaframes. A series of scripts coordinate

the camera behavior with the automated pose enumeration (§5.1),

which can be either manually bounded or automatically inferred

based on the collision boxes and environment geometry of the

Unity application. Every megaframe is encoded with an external

ffmpeg toolchain and saved to cache storage. In total, we pack-

age 3900 lines of C# code into a Unity prefab that simplifies the

incorporation of our caching scripts down to a simple drag-and-

drop import operation. Thus, any Unity game or VR application

can be quickly and easily transformed to work with FLASHBACK.

CacheManager: We implement the CacheManager, including

all querying, organization, and handling of cached megaframes,

with approximately 1200 lines of C++ code. In addition to the

functions described in Sections 4 and 5, the CacheManager

provides raw megaframes to the playback program for display,

meaning that it must handle decoding. The CacheManager is

also responsible for parsing the cache contents from storage. Be-

cause FLASHBACK’s caches can scale to very large proportions,

parsing them must also perform well at scale. Iterating through

every cached file is prohibitively slow, so FLASHBACK creates a

special index file for each cache instance once the cache is fully

generated, enabling the playback program to bypass the parsing

process altogether. Instead, it memory maps or reads each index

file directly into a pre-allocated R-tree instance, using an initial

packing algorithm to create the whole R-tree in one batch, offer-

ing better query performance as a side benefit.

Lightweight Playback Program: The cache population proce-

dure effectively flattens a VR application’s complex behavior into

a collection of data structures on storage. As such, the program

needed to “play” the application on the mobile device is relatively
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Figure 7: Four GFXBench benchmarks across three devices

demonstrate that the HP Pavilion Mini is less capable than a

Galaxy S6, and that both devices are an order of magnitude

weaker than a VR-capable desktop [1].

simple. We develop a reference implementation of the playback

program atop a remote desktop client framework with skeleton

code for decoding and displaying VNC-like screenshots. The

playback program is responsible for initializing and interfacing

with the CacheManager, reading pose information from the

HMD driver, and driving the display with frames obtained from

the CacheManager.

Due to its simplicity, our playback program is wholly applica-

tion agnostic; the single executable can play any memoized VR

application without modification or recompilation. To switch be-

tween different VR applications, one simply redirects the program

to a different set of cached files.

7. EVALUATION

We evaluate FLASHBACK’s ability to improve the framerate

and reduce the end-to-end latency and energy consumption of full-

quality VR applications on mobile devices, using a combination

of macrobenchmarks (§7.2) and microbenchmarks (§7.3).

7.1 Setup and Methodology

As mentioned in Section 6, we use the HP Pavilion 300-030

Mini as our mobile device that powers an Oculus Rift DK2 HMD.

The HP Mini is a small, weak computer equipped with a mobile-

class Intel HD 4400 GPU, an Intel i3 1.9GHz dual-core processor,

4GB of RAM, and a 240GB OCZ Arc 100 SSD. This setup is

compatible with our existing Windows-based software stack, and

as Figure 7 shows, is a suitable approximation for the state-of-the-

art Samsung Galaxy S6 Gear VR mobile HMD, with HP Mini

being outperformed by the Gear VR in all benchmarks. Similarly,

the OCZ ARC SSD that we used presents sequential and random

read speeds approximately equivalent to that of the Galaxy S6’s

secondary storage [33].

We evaluated FLASHBACK with Viking Village [2], a demand-

ing virtual-world Unity application designed for high-end desktop

PCs, with complex scenes that exceed the capabilities of current

mobile devices. We augmented Viking Village to support virtual

reality and generate megaframes; a 4K (3840x2160) megaframe

allows our prototype to display 720p final frames on the HMD.

Unless otherwise mentioned, all experiments are performed with

two independent dynamic objects in addition to the static scene.
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Figure 8: FLASHBACK achieves an end-to-end latency up to

15X shorter than a weak mobile device rendering locally, with

worst-case latency no higher than that of a gaming desktop.

We measured energy consumption of our HP Mini setup, includ-

ing the Oculus Rift DK2 HMD, using a P3 P4460 Kill-A-Watt

Electricity Usage Monitor.

7.2 Macrobenchmarks

We evaluate FLASHBACK’s real-world performance with as-

sessments of four target objectives: (i) low end-to-end latency, (ii)

high framerate, (iii) good visual quality, and (iv) low energy con-

sumption. The following sections demonstrate that FLASHBACK

compares favorably to locally rendering the VR application on

both a strong desktop PC and a weak mobile device.

FLASHBACK achieves low end-to-end latency

Figure 8 demonstrates the low end-to-end latency of FLASHBACK

compared to other systems. This represents the elapsed time from

when the latest pose is received from the HMD until when the

frame corresponding to that pose is sent to the display. It does

not include the latency contributed by the input subsystem and the

display hardware, as FLASHBACK has no impact on these compo-

nents; those latencies are equally present when VR applications

execute locally and therefore do not affect the contributions of our

work.

As shown in Figure 8, FLASHBACK achieves a median end-

to-end latency of 12.4ms for GPU cache hits. FLASHBACK can

achieve such low latency on a GPU hit because the player pose

can be sampled right before choosing a texture to display. Even

when the requested megaframe is absent from the GPU cache and

must be retrieved and decoded, FLASHBACK still incurs lower

end-to-end latency than a strong desktop PC.

FLASHBACK delivers high framerates

Figure 9 presents a framerate comparison of three different VR

configurations running Viking Village: local rendering on our mo-

bile device (HP Mini), local rendering on a strong desktop PC,

and FLASHBACK on the HP Mini. For a truly immersive expe-

rience, it is necessary for the system hardware running the VR

application to deliver as high a framerate as the HMD supports.

Figure 9 indicates that a mobile device’s capabilities are insuffi-

cient to deliver a satisfactory framerate when locally rendering

on a demanding VR application. In contrast, our unoptimized

FLASHBACK prototype delivers a framerate 8× higher than a mo-

bile device and even exceeds that of a desktop PC with a high-end
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Figure 9: FLASHBACK delivers framerates up to 8X higher

than a mobile HMD rendering locally.

VR implementation Visual Quality

Standalone mobile device 0.81
FLASHBACK 0.932

Table 1: SSIM metrics showing that FLASHBACK does not neg-

atively affect visual quality, delivering great image quality at

much higher framerates. An SSIM of 1.0 indicates perfect im-

age fidelity, and values above 0.9 are very good [12].

GPU. On a GPU hit for a static scene, FLASHBACK’s framerate is

limited not by our system but by the hardware refresh rate limita-

tions of the display on the Oculus Rift DK2. We note that the per-

formance of FLASHBACK decreases with more visible dynamic

objects, which we discuss and quantify in Section 8.2.

FLASHBACK offers higher visual quality

Thus far, we have used the term visual quality loosely; now

we provide a more rigorous definition. Structural Similarity

(SSIM) [34] score is a standard criterion from the video com-

pression community used to quantify the perceived loss in video

quality between a pristine image f⇤ and a distorted version of

that image, f . For example, the images f⇤ and f might repre-

sent the same scene rendered with a High graphics setting and

a Low graphics setting, respectively. The function SSIMf∗(f)
outputs a real value in [0, 1], where a lower values indicates lower

fidelity to the pristine image. By definition, SSIMf∗(f⇤) = 1
and SSIMf∗(f) = 0 when f is random noise. While SSIM

is not perfect representation of human quality assessment, it is

more accurate than alternative measures such as SNR and PSNR,

and maps reasonably to the standard subjective measure for video

quality based on user studies, Mean Opinion Score [34].

SSIM extends from still images to video in a straightforward

way: a frame-by-frame comparison of a pristine video v⇤ against

a distorted video v, with each frame’s SSIM scores averaged

to obtain an overall score. In our case, v⇤ is the pristine video

generated by our high-end desktop PC tethered to the HMD, and

v is the video generated and displayed by FLASHBACK.

Table 1 shows FLASHBACK’s effect on Viking Village’s visual

quality using SSIM. We recorded a trace of head movements and

replayed it on our FLASHBACK prototype to obtain v⇤, and again

on a stock Viking Village implementation to obtain v. Figure 10

Figure 10: Sample frames outputted at the same trace pose

(post-alignment), used as SSIM inputs. The left frame is the

pristine image (f⇤) from stock Viking Village. The right frame

(f ) represents a worst-case GPU cache miss in FLASHBACK,

demonstrating the quality of our graphical warp.

shows a side-by-side comparison of two sample frames as out-

putted by Viking Village and FLASHBACK. Due to an inalterable

Oculus SDK difference between Viking Village and our imple-

mentation of FLASHBACK, the images are rendered with slightly

different pose values, resulting in a minor translation-only pixel

misalignment. This difference stems from a Unity-specific im-

plementation of the Oculus library that is unavailable outside of

Unity and is not unique to Viking Village. We correct this align-

ment issue with Hugin [27], a well-known panoramic stitching

tool that we configure to crop each unaligned image to the same

aligned bounds. We restrict Hugin to simply shift and crop the im-

ages by a few pixels, disabling stretching, re-projection, or warp-

ing of any kind. Configured as such, Hugin does not alter the

quality of either image nor unfairly affects the SSIM test results.

We found that FLASHBACK does not adversely affect visual

quality, but rather achieves a higher SSIM score while delivering

a much higher framerate; it also does not significantly degrade

the quality as compared to stock Viking Village. Our prototype

of FLASHBACK obtained a median SSIM score of 0.932 with a

standard deviation of 0.015, which falls within the “great quality”

threshold of the SSIM scale [34, 12]. In order to be as critical

of FLASHBACK as possible, we chose to compare undistorted

eye textures instead of the final frame displayed on the HMD.

Eye textures are rendered at a much higher resolution than the

final frame and thus represent the worst-case degradation due

to FLASHBACK. On the other hand, the standalone mobile de-

vice rendering Viking Village locally obtained a poor SSIM score

of 0.81, falling beneath the 0.86 threshold of “visually accept-

able” [34, 12].

FLASHBACK significantly improves energy efficiency

We evaluate FLASHBACK to exemplify the energy-saving bene-

fits of rendering memoization. Figure 11 shows that FLASHBACK

consumes significantly less energy — under 250mJ per frame —

than local execution on both a mobile device and desktop PC. As

a frame of reference, the HP system has a minimum power con-

sumption of 6.6W when idling with the screen on, and a maxi-

mum consumption of 28W under full utilization. Energy-efficient

VR playback enables FLASHBACK to run longer on an untethered

mobile HMD, providing a more immersive VR experience.
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Figure 11: FLASHBACK significantly reduces the energy con-

sumed per frame displayed even when a frame must be decoded

first. Desktop measurements were conducted on a different,

less energy-efficient machine.

7.3 Microbenchmarks

We now characterize the behavior of FLASHBACK with the fol-

lowing microbenchmarks that test query scalability to large-size

caches and retrieval performance of the cache.

Cache Scalability and Performance

To determine whether the performance and scalability of FLASH-

BACK’s frame cache satisfies the requirements of demanding VR

applications like Viking Village, we designed several microbench-

marks with caches of different sizes. Figure 12a plots the median

lookup time to query the cache using our universal R-tree, where

all cache values are indexed at a single hierarchical level. There-

fore, locating (not retrieving) a cached frame in RAM is equally

as fast as locating one on disk or GPU. Figure 12a also shows that

FLASHBACK’s additional GPU R-tree lookup will always have a

very low query time, because the on-GPU cache never exceeds a

few hundred entries due to limited VRAM.

We present the cache retrieval performance from the three dif-

ferent sources in our current FLASHBACK implementation: the

disk, system memory, and the GPU. Figure 12b shows the re-

trieval results for 4k megaframes. A GPU cache hit is very fast,

taking less time than a vsync refresh interval. In fact, this is the

reason that FLASHBACK’s performance on a GPU hit is limited

not by the cache itself but by the HMD’s refresh rate. On the other

hand, the cost of retrieving from memory and the disk is higher

because the cache entry must first be decoded, the bottleneck in

both cases.

Typical Cache Storage Requirements

We present in Figure 12c the cache storage size necessary to sup-

port a virtual environment of varying dimensions and complexi-

ties using our preferred quantization of 0.02 virtual-world units.

As discussed in Section 4.6, the size of the static cache depends

not only on the range of possible position values but also on the

granularity with which we quantize the virtual environment. At

this quantization granularity, while not modest, our requirements

for a complex VR environment like Viking Village can fit well

within the flash storage of a modern smartphone; this can be

reduced significantly with selective post-deployment decompres-

sion (§4.6). In addition, while our preferred granularity is 0.02,

for some users, the visual inconsistencies introduced by a granu-

larity of up to 0.05 or 0.1 may be too small to distinguish, further

reducing FLASHBACK storage requirements vastly.

8. DISCUSSION

In this section, we discuss unique aspects of FLASHBACK’s

behavior and analytically characterize its limitations.

8.1 Cache Hit Ratios

In FLASHBACK, the latency of delivering the most accurate

megaframe for a given pose is dependent upon cache hit ratios.

Note that a frame will always be displayed, but it may not be the

closest match for a given pose if that frame was not yet decoded

in GPU VRAM. As our evaluation has shown, the performance of

FLASHBACK on a GPU hit is much higher than on misses due to

decoding. While it is difficult to provide hard numbers for cache

hit ratios with VR being a novelty in the consumer market, we can

provide estimates. The average effective latency Lavg is given by

the following equation:

Lavg = (hit%)× (Lhit) + (1− hit%)× (Lmiss)

For example, a 40% GPU cache hit ratio would produce an ex-

pected latency of 34ms. Energy savings are similarly propor-

tional to this hit ratio. In our anecdotal experience, we play-tested

both a simple, single-room VR application as well as the complex

Viking Village application in an informal experiment, and expe-

rienced GPU cache hit ratios from 18-47% depending on motion

path and player behavior.

8.2 Scalability to Multiple Dynamic Objects

Figure 13 demonstrates that FLASHBACK can scale to com-

positing a moderate number of concurrently visible dynamic

objects. The performance degradation is due to our unopti-

mized pixel shader comparing every pixel of a dynamic object’s

megaframe with the static scene’s megaframe in the backbuffer.

The current FLASHBACK prototype drastically reduces the num-

ber of pixel comparisons by merging it with the graphical warp

shader, such that only pixels appearing in the final frame are pair-

wise compared instead of all pixels in the megaframe. Future

improvements are possible by comparing only pixels within the

dynamic object’s active region instead of the entire frame.

Though the number of visible dynamic objects can be a bot-

tleneck, this limitation warrants clarification. FLASHBACK is

performance-limited by the number of currently-visible dynamic

objects with independent motion paths or animation characteris-

tics. Thus, if there are 50 instances of a rotating sprite that all

rotate together or in some deterministic pattern — a rather com-

mon scenario — all 50 of those object instances can be clustered

into a single dynamic object for FLASHBACK’s display purposes,

and quickly rendered as such. When the visible dynamic objects

are truly independent, as in Figure 13, our approach is scalable

only to tens of simultaneously visible dynamic objects. Anecdo-

tally, this is a reasonable number for many virtual environments.

In the case of Figure 13, our HP setup reaches 100% phys-

ical memory usage when rendering 8 or more independent dy-

namic objects. This causes a memory thrashing effect where de-

coded textures fill GPU memory, which subsequently causes sys-

tem RAM pages to be rapidly swapped to/from disk. This phe-

nomenon occurs because our HP setup has an integrated graphics

card, meaning that GPU memory is physically shared with system
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VR Environment Cache Size

Car interior 115 MB
10x10 bedroom 730 MB
20x25 lounge 2.8 GB
2500 sqft. house 8.7 GB
Basketball arena 29 GB
Viking Village [2] 54 GB

(c)

Figure 12: (a) Cache query time scales well with the size of the cache, allowing FLASHBACK to performantly support very large

caches. (b) Performance when retrieving 4k megaframes from all three cache levels. The y-axis break shows very small retrieval

times from GPU. (c) Cache size on Flash storage (uncompressed) for various static virtual environments.
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Figure 13: FLASHBACK scales well to a moderate number of

visible dynamic objects, maintaining a high framerate until in-

sufficient memory causes page thrashing.

RAM, so the HP’s 4GB of RAM must be split between the OS,

other applications, our VR application, and FLASHBACK’s cache.

Even with poor memory management behavior, FLASHBACK is

still able to maintain approximately 37 FPS for 10+ visible dy-

namic objects. Note that we did not observe this thrashing behav-

ior on systems with dedicated graphics VRAM, as the contents of

under-pressure GPU memory cannot force system RAM pages to

be evicted to swap space.

8.3 Speculative Decoding Tradeoffs

As indicated in Figure 12b, decoding cached frames is among

the most expensive operations on the critical display path. Fortu-

nately, both low- and high-end mobile devices today feature an op-

timized hardware codec that outperforms our HP device’s codec.

Nevertheless, we evaluate the utility of speculative decoding to

mask the decoder latency.

Figure 14 shows the effect of our simple speculative decoding

method in terms of the percent framerate change for a given looka-

head distance, as described in §5.4. As expected, dynamic objects

are much more amenable to speculation because their poses can

be easily predicted, at least when they do not interact with the

player. Predicting a static frame pose is much more difficult be-

cause it depends on the player’s movement, which requires a more

advanced speculation algorithm to be truly effective. Our specu-
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Figure 14: Speculative decoding offers some improvement for

dynamic objects at moderate lookahead distances, but is inef-

fective when overly aggressive. All framerates are >50 FPS.

lation turns out to be less accurate and even counter-productive

when looking further ahead, as it causes frames with a higher like-

lihood of usage to be prematurely evicted from the GPU cache in

favor of unused speculative frames.

8.4 Quantization Affects Performance

The choice of quantization granularity has an impact on

FLASHBACK’s performance, as seen in Figure 15. Towards the

left side, coarser quantizations increase cache hit ratios, maximiz-

ing framerate and minimizing latency, but reduce visual quality

because the graphical warp must stretch the image to a further per-

spective. Towards the right, finer quantizations maintain excellent

visual quality but reduce cache locality, degrading performance.

The worst-case effect of superfine quantization is that every

new pose results in a new megaframe, i.e., zero GPU cache hits.

Thus, the theoretical lower bound on performance is equivalent

to decoding every megaframe, shown in the third column of Fig-

ures 8 and 9. It is therefore important to select a quantization that

represents the sweet spot between performance and visual qual-

ity. We have found that a quantization 0.05 virtual units (e.g.,

5cm) offers playback free from noticeable visual artifacts, and

that quantizations finer than 0.02 offer diminishing returns that

are visually indistinguishable, hence why we chose a quantization

of 0.02 when evaluating FLASHBACK.



 10

 20

 30

 40

 50

 60

 70

0.00250.0050.010.020.050.1

F
ra

m
e
ra

te
 (

F
P
S
)

Framerate

 10

 15

 20

 25

 30

 35

 40

 45

 50

0.00250.0050.010.020.050.1

L
a
te

n
c
y
 (

m
s
)

Quantization (virtual units, log scale)

Latency

Figure 15: The effects of quantization (cache density) on

FLASHBACK’s performance: framerate and latency.

9. RELATED WORK

The general idea of precomputing or pre-caching results to ser-

vice interactive requests on mobile devices has appeared in nu-

merous forms [15]. For example, work has looked at precom-

puting statistical models for mobile appointment reminders [19],

pre-caching web search results on mobile devices [23], and pre-

caching database query results on mobile devices [5]. Our sce-

nario is highly targeted at VR rendering, and therefore makes

many domain-specific choices to improve graphical quality, la-

tency, and framerate.

Instead of precomputation, an alternate way to enhance the ca-

pabilities of a mobile device is to offload computation to more

powerful computers. The mobile computing community has

a rich history of exploring computation offload to supplement

resource-constrained devices. Among these, Maui, Clone Cloud,

and Comet investigated the implications of general purpose com-

pute offload [11, 10, 16]. In the domain of wearable visual aug-

mented reality offload, the authors of [18] evaluated computa-

tion offload for visual and cognitive assistance tasks with Google

Glass. The timing, compute, bandwidth, and quality requirements

for full resolution, wide field of view, high-framerate HMDs are

qualitatively much more strict than for text annotations on Google

Glass, and therefore yield different points in the wearable design

space. Such offloading techniques would be inappropriate for mo-

bile VR, causing high latencies and poor visual quality.

In the space of offloading real-time rendering for mobile de-

vices, recent work has demonstrated that it can be done with low

latency [21] or high quality [12]. Specifically, Outatime [21]

focuses on the case of synchronous client-server execution, in

which a powerful rendering server speculates on future inputs

and delivers predicted frames to the mobile client ahead of time,

masking network latency. In contrast, FLASHBACK fully decou-

ples client execution from the server — if a server is used at all

— and relies instead on the mobile device’s local storage hierar-

chy. FLASHBACK does indeed utilize a similar cube map and

graphical warp IBR approximation as Outatime, albeit adapted

for virtual reality. In the future, we are likely to merge these two

complementary techniques into a hybrid system employing both

speculation and caching to jointly improve latency and quality.

In summary, all offloading strategies, including some pre-

liminary forays into the HMD space [13], require active, sta-

ble network connectivity to servers, ignoring the plentiful high-

performance storage on the device itself.

The graphics community has examined the quality vs. per-

formance trade-off of caching objects as rendered images. One

such pioneering effort, Apple’s QuickTime VR, allowed for free-

viewpoint viewing of static virtual environments or objects from

a desktop computer [8]. Later works helped develop algorithms

to efficiently add dynamic objects into virtual environments [31,

30, 32]. However, these efforts were primarily focused on desk-

top environments and preceded mobile device architectures, such

as: multi-level storage hierarchies, flash storage, video decoders

and energy constraints. They were also less ambitious in terms of

exploring the limits of memoizing dynamic object motion paths

and animation sequences, standard elements of modern 3D scenes.

Previous work has also proposed a cube map-like frame layout

for warping pre-rendered images to the user’s head pose at run-

time [29, 28]. However, these latter solutions relied on special-

ized hardware support, termed virtual reality address recalcula-

tion pipelines, which is not present in modern GPUs. All of our

work operates on commodity low end mobile GPUs.

10. CONCLUSION

We present FLASHBACK, an unorthodox solution for bring-

ing full-quality VR experiences to weak mobile HMD devices.

FLASHBACK avoids the expensive costs of a VR application’s

heavy rendering demands by aggressively pre-generating and

caching all possible frames that a player might see. With sup-

port for caching of both static scenes and dynamic animated

objects, FLASHBACK can support most VR applications in an

application-agnostic fashion. We implement and evaluate a proto-

type of FLASHBACK to demonstrate improved energy efficiency

per frame, higher overall framerates, and lower end-to-end la-

tency compared to that of local rendering on a mobile device.

Acknowledgments

The authors thank Bernhard Reinert and Wei-ge Chen for their

invaluable advice and implementation assistance. We also thank

our shepherd, Youngki Lee, for his useful guidance and feedback.

Kevin Boos was supported in part by NSF Award #1422312.

11. REFERENCES
[1] Minimum requirements for the Oculus DK2.

https://support.oculus.com/hc/en-us/articles/201955653-

Minimum-requirements-for-the-Oculus-Rift-Development-

Kit-2. Accessed: 2015-11-30.

[2] Viking Village Unity Application.

https://www.assetstore.unity3d.com/en/#!/content/29140.

Accessed: 2015-11-30.

[3] R. Allison, L. Harris, M. Jenkin, U. Jasiobedzka, and

J. Zacher. Tolerance of temporal delay in virtual

environments. In Virtual Reality, 2001. Proceedings. IEEE,

March 2001.

[4] M. Bajura, H. Fuchs, and R. Ohbuchi. Merging virtual

objects with the real world: Seeing ultrasound imagery



within the patient. In Proceedings of the 19th Annual

Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’92. ACM, 1992.
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