
Real-Time Screen-Camera Communication
Behind Any Scene

Tianxing Li, Chuankai An, Xinran Xiao, Andrew T. Campbell, and Xia Zhou
Department of Computer Science, Dartmouth College, Hanover, NH

{tianxing, chuankai, campbell, xia}@cs.dartmouth.edu xinranxiao@gmail.com

ABSTRACT

We present HiLight, a new form of real-time screen-camera com-
munication without showing any coded images (e.g., barcodes) for
off-the-shelf smart devices. HiLight encodes data into pixel translu-
cency change atop any screen content, so that camera-equipped de-
vices can fetch the data by turning their cameras to the screen. Hi-
Light leverages the alpha channel, a well-known concept in com-
puter graphics, to encode bits into the pixel translucency change.
By removing the need to directly modify pixel RGB values, Hi-
Light overcomes the key bottleneck of existing designs and enables
real-time unobtrusive communication while supporting any screen
content. We build a HiLight prototype using off-the-shelf smart
devices and demonstrate its efficacy and robustness in practical set-
tings. By offering an unobtrusive, flexible, and lightweight com-
munication channel between screens and cameras, HiLight opens
up opportunities for new HCI and context-aware applications, e.g.,
smart glasses communicating with screens to realize augmented re-
ality.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless communica-
tion

Keywords

Screen-camera communication; visible light communication; alpha
channel

1. INTRODUCTION
In a world of ever-increasing smart devices equipped with screens

and cameras, enabling screens and cameras to communicate has
been attracting growing interests. The idea is simple: informa-
tion is encoded into a visual frame shown on a screen, and any
camera-equipped device can turn to the screen and immediately
fetch the information. Operating on the visible light spectrum band,
screen-camera communication is free of electromagnetic interfer-
ence, offering a promising out-of-band communication alternative
for short-range information acquisition. The most popular example

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MobiSys’15, May 18–22, 2015, Florence, Italy.

Copyright c© 2015 ACM 978-1-4503-3494-5/15/05 ...$15.00.

http://dx.doi.org/10.1145/2742647.2742667.

is QR code [6], where information (typically a URL) is encoded
into a 2D barcode. Recent research endeavors have led to innova-
tive barcode designs that boost the data rate [14, 26] or enhance the
transmission reliability [15, 16, 28, 36].

These efforts are exciting; however, they commonly require dis-
playing visible coded images, which interfere with the content the
screen is playing and create unpleasant viewing experiences. In this
paper, we seek approaches to enable unobtrusive screen-camera
communication, which allows the screen to concurrently fulfill a
dual role: displaying content and communication. Ultimately, we
envision a screen-camera communication system that transmits and
receives dynamic data in real time, while ensuring communication
occurs unobtrusively regardless of the content the screen is display-
ing — let it be an image, a movie, a video clip, a web page, a
game interface, or any other application window. As the user inter-
acts with the screen and switches the content, the communication
sustains. Hence, communication is truly realized as an additional
functionality for the screen, without placing any constraints on the
screen’s original functionality (displaying content).

We are not alone in working towards this vision. Recent ef-
forts have made valuable progress on designing unobtrusive screen-
camera communication [10, 37, 39, 41, 42]. However, a fundamen-
tal gap to the vision remains, mainly because existing designs all
require direct modifications of the pixel color (RGB) values of the
screen content. This methodology cannot enable real-time unobtru-
sive communication atop arbitrary screen content that can be gener-
ated on the fly with user interactions. The reason is two-fold. First,
modifying pixel RGB values in real time has to rely on the Graph-
ics Processing Unit (GPU) by directly leveraging related GPU li-
braries. However, the operating system typically does not allow a
third-party application to pre-fetch or modify the screen content of
other applications or system interfaces (e.g., the home screen of a
smartphone or tablet). Thus, to achieve real-time communication,
existing designs are limited to screen content within a single ap-
plication or standalone files (e.g., image, video). Second, although
the main processor (CPU) can pre-fetch and modify arbitrary pixel
RGB values, modifying RGB values at the CPU incurs a signifi-
cant delay (hundreds of milliseconds), which makes these designs
unable to support real-time communication atop dynamic content
such as video.

To overcome this barrier, we propose a new design paradigm for
unobtrusive screen-camera communication, which decouples com-
munication and screen content image layers. Our key idea is to
create a separate image layer (a black matte, fully transparent by
default) dedicated to communication atop all existing content im-
age layers. We encode data into the pixel translucency change at
the separate image layer, so that the receiver (camera) can perceive
the color intensity change in the composite image and decode data.

To control pixel translucency, we leverage the alpha channel [27],
a well-known concept in computer graphics. We control the level
of pixel translucency change so that it is perceivable only to cam-
eras but not human eyes. Furthermore, by controlling the translu-
cency of each pixel independently, we enable multiple simultane-
ous transmitter elements on the screen. This creates a MIMO com-
munication channel between screens and cameras [7], which can
further boost data rate or improve transmission reliability.

Our methodology has two key benefits. First, operating on the
alpha channel, the system no longer needs to directly modify pixel
RGB values while achieving the same effect. Since alpha values are
blended by the GPU, the encoding is almost instantaneous, which is
critical to support real-time communication atop arbitrary dynamic
content. More importantly, since alpha blending is a mature fea-
ture offered by the GPU, existing platforms (e.g., Android, iOS)
provide application-layer functions that use related GPU APIs to
modify pixel alpha values. Thus, the CPU can call these functions
at the application layer without directly dealing with GPU APIs or
modifying the OS or low-level drivers. Second, by realizing com-
munication at a separate image layer, the system makes unobtrusive
communication universally available and truly parallel to the con-
tent playing on the screen – no matter if it is a static, dynamic, or
multi-layer content, and regardless of the frame rate it is playing at
and the frame resolution. Users can use the screen as it is, while the
communication between the screen and the camera occurs behind
the scene in real time, unobtrusively.

Following our methodology, we design and build HiLight1, the
first system that supports real-time, unobtrusive screen-camera com-
munication atop arbitrary screen content using off-the-shelf smart
devices. We address the following specific design challenges. First,

when determining the level of pixel translucency change, we face a
tradeoff between user viewing experiences and transmission relia-
bility. HiLight seeks the best tradeoff by adapting the translucency
change based on the color distribution of screen content and the
frame transition. It smooths the pixel translucency change across
the screen while ensuring the change is reliably detectable by the
receiver. Second, the whole encoding has to finish within a tight
time limit (16 ms) to support video’s normal playing speed and
avoid the flicker effect [9]. We design lightweight encoding al-
gorithms that require only sampled color information of sampled
content frames. This reduces the overhead of pre-fetching content
frames and ensures that data encoding and decoding can be fin-
ished within 8 ms. Third, the receiver perceives a mixture of color
intensity change caused not only by encoded translucency change,
but also by other interfering sources such as screen content change,
ambient light, and camera noise. We design efficient algorithms to
extract the desired color intensity change, and adapt our strategy to
the scene type. This design ensures the system robustness under
diverse practical settings.

We evaluate the HiLight prototype with an Samsung Tab S tablet
as the transmitter and an iPhone 5s as the receiver. We test HiLight
using 112 images, 60 video clips, and various web browsing and
gaming scenarios. Our key findings are as follows:

• HiLight supports unobtrusive communication atop arbitrary

screen content as the user is interacting with the screen, achiev-
ing 1.1 Kbps throughput with 84 – 91%+ accuracy for all
scene types.

• HiLight realizes real-time data processing using off-the-shelf
smart devices. Its encoding and decoding delays are both

1We have made the demo video clips of HiLight available at
http://dartnets.cs.dartmouth.edu/hilight.

within 8.3 ms even for high-resolution video frames (1080p),
sufficient to support video playing at 60 FPS and 120 FPS
frame rates.

• HiLight is robust across diverse practical settings with hand
motion and perspective distortion, supporting up to 1-meter
viewing distance and 60◦ viewing angle for the 10.5-inch
transmitter screen and maintaining stable performance once
the ambient light is above 40 lux in indoor environments.

Contributions. We summarize our key contributions as follows:

• We analyze existing unobtrusive screen-camera communica-
tion designs using detailed measurements and identify their
limitations to enable real-time unobtrusive communication
atop any screen content.

• We propose a new design paradigm for unobtrusive screen-
camera communication, which decouples communication from
the screen content and uses the alpha channel to encode data
into pixel translucency change [21]. Since alpha values are
blended by the GPU, data encoding is almost instantaneous,
which is the key to enabling real-time communication atop
arbitrary content.

• We design and build HiLight using off-the-shelf smart de-
vices, the first system that realizes on-demand data transmis-
sions in real time unobtrusively atop arbitrary screen con-
tent. We extensively evaluate our prototype under diverse
practical settings, examine its potential performance on a
wide range of devices (e.g., smartphones, tablets, laptops,
and high-end cameras), and assess its user perception.

By offering an unobtrusive, flexible, and lightweight communi-
cation channel between screens and cameras, HiLight presents op-
portunities for new HCI and context-aware applications for smart
devices. For example, a user wearing smart glasses can acquire ad-
ditional personalized information from the screen (e.g., TV screen,
smartphone, or tablet screen) without affecting the content users are
currently viewing. HiLight also provides far-reaching implications
for facilitating new security and graphics applications.

2. SCREEN-CAMERA COMMUNICATION:

LIMITATIONS AND SOLUTION
In this section, we first present the design goals for a universal

screen-camera communication system. We then analyze the ineffi-
cacy of existing designs to achieve these design goals. Finally we
introduce our new methodology.

2.1 Design Goals
We bear in mind the following goals when designing a universal

screen-camera communication system.

Staying Unobtrusive to Users. The screen-camera data com-
munication is completely hidden from users and does not require
showing any visible coded images on the screen. Hence, data com-
munication does not interfere with any content that the user is view-
ing at the screen, and can be easily embedded into any existing
screens (e.g., smartphone screens, laptop screens) without sacrific-
ing their original functionality (i.e., displaying content).

Supporting Any Scene. The data communication can occur re-
gardless of the screen content, let it be an image, a video clip, a
movie, a gaming scene, a multi-layer application windows, or the
home screen of a smartphone or tablet. Furthermore, the communi-
cation continues as the screen content changes on the fly (e.g., the

http://dartnets.cs.dartmouth.edu/hilight

user browses a web page, plays games, and watches a movie). To
support all types of screen content, the communication needs to be
independent of the screen content, which can be generated on the
fly and vary over time as the user interacts with the screen.

Processing Dynamic Data in Real Time. The system can trans-
mit and receive dynamic data on the fly, rather than pre-processing
an image or a video file to embed data. This is necessary when
the data comes on the fly or when the screen content is not known
in advance (e.g., interactive gaming scene). The challenge is that
when the screen is displaying video (e.g., movies, video clips), the
frame rate is at least 24 frames per second (FPS). Thus, the system
has to finish encoding data into a frame within 42 ms before the
screen displays the next frame. When the video is played at 60 FPS
or 120 FPS, the encoding has to finish within 16 ms or 8 ms.

Operating on Off-the-Shelf Smart Devices. The system can
transmit and receive data in real time using existing smart devices
(e.g., smartphones, tablets). These devices have limited computa-
tional power, and their cameras are not as sophisticated as high-end
single-lens reflex (SLR) cameras. Hence the encoding and decod-
ing designs have to be lightweight and robust, so that smart devices
as transmitters and receivers can process data in time while sup-
porting dynamic content such as video.

Next, we analyze existing proposals on unobtrusive screen-camera
communication and examine whether they can achieve the above
goals.

2.2 Current Limitations
Researchers have proposed designs [10, 37, 39, 41, 42] to re-

move the need of showing visible coded images while enabling
screen-camera communication. Despite the tangible benefits of ex-
isting designs, they are unable to achieve all the design goals de-
scribed in § 2.1, mainly because they directly deal with the color
values of each pixel, specified as the color intensity values in red,
green, and blue (RGB) diodes [34]. To ensure that RGB value
changes are unnoticeable to users, they have to pre-fetch the RGB
values of all content pixels to subtly modify RGB values and en-
code data. As a result, existing designs cannot serve as a unified
solution that can achieve real-time data communication decoupled
from the screen content (e.g., the home screen of a smartphone, the
interface windows of other independent applications). Next, we an-
alyze the two possible approaches to modifying pixel RGB values
using existing designs and identify their limitations.

GPU-Based RGB Modifications. To enable real-time modifica-
tions of pixel RGB values, one has to rely on GPU’s parallel pro-
cessing power and leverage GPU-related libraries (e.g., OpenGL [1]
on the Android and iOS). The key idea is to supply GPU with two
programs, known as shaders or kernels, which are executed inde-
pendently per pixel. Modern shaders are fast. Based on our experi-
ments on a Google Nexus 6 (with Android 5.0 OS) phone, it takes
only 0.13 ms to modify RGB values of all the pixels in a single
video frame (1920 x 1080 pixels). This approach, however, has two
limitations. First, it is limited to modifying screen content within a
single application or a standalone file (e.g., a video or image file).
Because of the system security model of existing platforms (e.g,
Android), third-party applications cannot pre-fetch screen content
from other applications or system interfaces (e.g., home screen).
Second, by replacing the original screen content with an opaque,
modified new content layer, the modifications can nullify the ex-
isting rendering optimization. For example, consider the user is
browsing a web page in a browser. To enable data communication,
we have to run an OpenGL application and display the modified
page through this OpenGL app. This additional step can remove

the rendering optimization made by the web browser. Therefore,
although existing designs can leverage GPU programming to en-
able real-time unobtrusive communication, they are limited to the
screen content within a single application or static standalone files
and are unable to support all dynamic screen content.

CPU-Based RGB Modifications. Another approach to modi-
fying pixel RGB values is to use the CPU to pre-fetch pixel RGB
values of the current screen content. Although this approach allows
the system to enable unobtrusive communication atop any scene,
it entails long encoding delay and fails to support real-time data
communication. We further quantify the processing time using off-
the-shelf smart devices (Nexus 4, Nexus 5, Samsung Note 3, Sam-
sung S5, Samsung Tab S, all with Android 4.4). To capture the
screen content on an Android device, we read the frame buffer un-
der the /dev/graphics/ directory. We leverage the OpenCV
library [2], a popular computer vision library, to calculate the com-
plementary RGB values for each pixel. This calculation is a repre-
sentative of the RGB modification step in all existing designs [10,
37, 39, 41, 42]. We then use the Simple Direct Layer (SDL) library
to render an image on the screen. We choose SDL library because it
is much more flexible than the rendering library [3] in the Android
framework. For all smart devices we tested, the processing time
of data encoding far exceeds 42 ms, the timing threshold (§ 2.1)
required to support real-time screen-camera data transmission. Es-
pecially for high-resolution (1080p) video, CPU-based RGB mod-
ifications need 1–2 s to embed data into a frame. While the encod-
ing time slightly drops as the frame resolution decreases, it never
drops below 300–600 ms.2 Note that these steps are the minimal for
embedding data into the RGB values of the screen content frame.
Some designs require additional steps (e.g., copying frames [37]),
leading to even longer delays. To speed up encoding, one can mod-
ify only a subset of pixels. Yet this reduces the number of pixels
used to transmit data, sacrificing either the data rate or the transmis-
sion reliability. More importantly, so far we have assumed a single
image layer. For content with multiple image layers, the cost of
pre-fetching and modifying pixel RGB values grows linearly with
the number of image layers. Thus, CPU-based RGB modifications
cannot achieve real-time data communication.

Summary of Observations. To sum up, existing unobtrusive
screen-camera communication designs require direct modifications
of content pixel color (RGB) values and fail to transmit dynamic
data atop arbitrary dynamic content, where either data or screen
content comes on the fly. Furthermore, by creating an opaque con-
tent layer with modified RGB values, these designs can nullify the
existing rendering optimization. To mitigate the problem, current
designs will have to give up whole-screen communication and sac-
rifice either the data rate or the transmission reliability. In addition,
integrating communication with screen content greatly limits their
applicable scenarios.

2.3 Solution: Decoupled Communication
Using Alpha Channel

To overcome the above limitations, we propose a new design
paradigm for unobtrusive screen-camera communication. Moti-
vated by the fact that the tight integration of communication and
screen content is problematic, we propose to decouple screen-camera
communication from the image layers of screen content. Further-
more, we design lightweight data encoding that leverages the power

2We also test devices (e.g., Samsung S5, Nexus 5) with the recent
Android 5.0, which provides a new screen capture API to speed up
the process of pre-fetching screen content. Our results show that
CPU-based RGB modifications still take more than 200 ms.

Content layer

Communication

layer

Grid

α = 0.5α = 0.01α = 0

(a) Overview

α = 0 α = 0.01 α = 0.5

(b) Resulting composite image

 400

 420

 440

 460

 0 0.1 0.2 0.3 0.4 0.5 0.6

C
o
lo

r
in

te
n
s
it
y

α

(c) Pixel color intensity perceived
by a camera (receiver)

Figure 1: Decoupling screen-camera communication from the content image layer on the screen. (a) Atop the content image layer, we create an

additional image layer (a black matte, fully transparent by default) dedicated to data communication, referred to as the communication layer. To

transmit data, we divide the communication layer into grids, and encode data into pixel translucency change of each grid without affecting users’

viewing experiences. (b) shows the resulting composite image after modifying the pixel translucency of the communication layer. (c) Camera-equipped

devices perceive color intensity change as α value increases.

of GPU and does not require direct modifications of content RGB
values. More importantly, since alpha blending is a mature fea-
ture offered by the GPU, alpha values can be modified by calling a
system function at the application layer without any OS-level mod-
ifications (see more in § 5). At the high level, our design principle
is two-fold:

• We create a separate image layer (a black matte, fully trans-
parent by default) dedicated to communication, referred to as
the communication layer, atop all content image layers (Fig-
ure 1(a)). By decoupling communication from screen con-
tent, we allow the screen to better fulfill its dual role (com-
munication and displaying content).

• We encode data by changing the pixel transparency of the
communication layer. This removes the need to directly mod-
ify pixel RGB values while achieving the same effect. In
particular, we leverage alpha channel, a well-known concept
in computer graphics, to control pixel transparency and en-
code data [21]. Since alpha values are blended by GPU (< 1
ms), our design significantly drives down the encoding delay,
which is the key to support real-time, unobtrusive communi-
cation atop any screen content.

Next, we begin with the background on alpha channel and how we
utilize it to transmit data. We then elaborate the key benefits of our
methodology and design challenges.

Communication Using Alpha Channel. As a well-known con-
cept in computer graphics, alpha channel is widely used to form
a composite image with partial or full transparency [27]. It stores
a value α between 0 and 1 to indicate the pixel translucency. 0
means that the pixel is fully transparent, and 1 means that it is fully
opaque. By default, we set α = 0 for all pixels in the communi-
cation layer to make it fully transparent and not interfere with the
screen content. As we increase the α values of the communication
layer (Figure 1(a)), we change how users perceive the color of the
content layer. Specifically, when α = 1, the pixel of the top com-
munication layer is opaque, hence users perceive this pixel as black,
the color of the communication layer. Thus we can essentially dim
an area by increasing the α values of this area on the communica-
tion layer. As an example, Figure 1(b) shows the composite image
on the screen, where we set pixel α values of the communication
layer to 0 (left), 0.01 (middle), and 0.5 (right), illustrated in Fig-
ure 1(a). A higher α leads to a darker appearance in the composite
image.

This dimming effect is perceived as color intensity (summation
of RGB channel values) change by a camera. We further exam-

ine how cameras on existing smart devices perceive color intensity
change. We set up a Samsung Note 3 phone as the transmitter, and
a Samsung S5 phone 15 cm away as the receiver. We create a top
black image layer in Note 3, adjust pixel α values of this top im-
age layer uniformly, and measure the color intensity of each pixel
captured by the S5’s camera. Figure 1(c) shows the color intensity
averaged over all pixels as α increases. It confirms that increas-
ing α value on the top image layer linearly decreases the perceived
color intensity. We also observe that even for the α change of 0.01,
imperceptible to human eyes (Figure 1(b)), the S5’s camera can still
detect the difference.

Motivated by the above observations, we encode data into pixel
translucency (α) change on the top communication layer. For to-
day’s smart devices, the screen refresh rate is typically 60 Hz. There-
fore, to ensure the change imperceptible to human eyes, we change
α values by only 1%–8%, sufficient to avoid the flicker effect3 [9].
Since the change can be perceived by cameras, camera-equipped
devices can examine the perceived color intensity change in cap-
tured frames and decode data. Furthermore, we can divide the com-
munication layer into grids and change the α values of the pixels in
each grid independently. Hence each grid functions as an indepen-

dent transmitter element, resulting into a MIMO channel between

screens and cameras.

Note that the same principle holds when using a white matte as
the communication layer, where increasing the α values of an area
in the communication layer brightens this area in the composite im-
age. However, black and white are the only two colors feasible for
realizing alpha channel based communication. The reason is as fol-
lows. In general, assume the communication layer’s color intensity
in a color channel (i.e., red, green, or blue channel) is C1 with the
alpha value of α. Based on the alpha blending principle, for a pixel
in the content layer with color intensity C2 in this color channel,
this pixel’s color intensity C in this color channel in the final com-
posite image is calculated as C = α · C1 + (1 − α) · C2, where
C1, C2 ∈ [0, 255] and α ∈ [0, 1]. Hence setting C1 to the minimal
(0) or the maximal (255) in all color channels, which corresponds
to the black or the white color, always dims or brightens a pixel in
the composite image, regardless of the pixel’s original color (C2),
the key for encoding data into the pixel translucency change atop
any screen content. In contrast, setting C1 to any value within (0,
255) in a color channel does not uniformly dim or brighten pixels
in all colors and thus is unable to enable communication atop any
pixel color of the content layer.

3The occurrence of the flicker effect depends on the screen refresh
rate and the degree of change across frames.

2. Specify α values

of the communication

layer

ScreenGPUCPU

Frame

1. Fetch

3

3. Render

Figure 2: Flowchart of modifying alpha values. The CPU passes spec-

ified α values to GPU using a system function at the application layer.

The GPU then applies the alpha blending technique to combine α val-

ues with an image frame.

Benefits. Our methodology offers three benefits. First, operat-
ing on the alpha channel significantly reduces the encoding time.
Figure 2 shows the procedure for the system to process a frame
using alpha-channel communication. The main processor passes
specified α values of the communication layer to the GPU, which
blends them with the content layer using the alpha blending tech-
nique [27]. The blending can be finished in 1 ms, several orders of
magnitude faster than modifying pixel RGB values on CPU. Sec-

ond, since we enable communication using a separate image layer
(communication layer), communication can occur regardless of the
screen content, its frame rate, and the number of content image
layers. Thus our design allows the screen-camera communication
channel to support arbitrary scene, including a multi-layer scene
(e.g., Angry Birds) that needs to modify the α values of the con-
tent layer. Also, since data encoding is in the separate image layer,
we can parallelize data encoding and content playing and further
reduce encoding delay. Third, by adding a transparent communi-
cation layer and slightly adjusting its translucency, our design does
not interfere with the GPU rendering optimization for the underly-
ing image layers while achieving the same effect of directly modi-
fying pixel RGB values.

Challenges. To implement our methodology, we face three key
challenges. First, determining the level of translucency change is
nontrivial. The change has to be unobtrusive to human eyes while
reliably detectable by cameras. Also, α value changes RGB values
by a percentage. Thus for darker colors, the absolute color inten-
sity change is smaller and harder to detect. Second, when transmit-
ting dynamic data atop a video, all encoding steps need to finish
within 42 ms to support video’s normal playing speed. Further-
more, to reduce the flicker effect [9], the frequency of the translu-
cency change at the communication layer has to match the screen’s
refresh rate (60 Hz). Hence the encoding needs to be lightweight
to finish within 16 ms, and can operate on smart devices. Third,
for a dynamic scene, the screen content changes over time. The
resulting color intensity change interferes with our encoded color
intensity change. Even for static content, environmental factors
such as ambient light and camera noise can affect decoding. All
these interfering sources make it challenging to extract data from
the perceived color intensity change.

We address the above challenges and design HiLight. In the next
two sections, we describe in detail our design of HiLight on both
the transmitter and the receiver.

3. HiLight TRANSMITTER
HiLight transmitter encodes data into the pixel translucency (α

value) change at the communication layer. The translucency change
is fixed at the screen’s refresh rate (60 Hz), independent of the con-
tent frame rate that can change at any time. We face two design

Cut scene?
Scene

detection

Alpha blending

Y

N

BFSK modulation

Alpha matrix generator

Deferring

transmission

Image buffer

Data

Sampled

frames

Figure 3: The encoding procedure of the HiLight transmitter.

challenges. First, it is nontrivial to determine the α value change
(∆α) for each pixel. On one hand, ∆α should stay minimal to
be imperceptible to users. On the other hand, a larger ∆α means
a more detectable change in the perceived color intensity at the
receiver. Hence we need to seek the best tradeoff between user
experience and communication reliability. Second, the per-frame
encoding needs to finish within 16 ms to support video’s normal
playing speed and avoid the flicker effect. While we remove the
need to directly modify RGB values, the remaining steps for data
encoding (fetching and rendering in Figure 2) can still take more
than 16 ms. We need to further reduce the encoding delay.

We address the challenges as follows. First, we set the ∆α small
(1–8%) to keep the translucency change unobtrusive to users. To
ensure that the change can be reliably detected, we configure the
∆α of each pixel based on the color distribution of the content
frame and the transition across frames. The configuration helps re-
ceivers deal with dark areas or frames with drastic content change.
Second, to further reduce the data encoding delay, we fetch only
one content frame per sampling window (0.1 s in our implementa-
tion) and sample a subset of pixels for their color values. This is
not doable for existing designs to achieve whole-screen communi-
cation. Since existing designs rely on directly modifying content
color values, they have to fetch every frame and obtain color values
of all pixels in a frame.

Next, we first overview the overall encoding procedure, and then
focus on two main design components in detail.

3.1 Overview
Figure 3 overviews the encoding procedure. We sample content

image frames to configure ∆α for each pixel at the communication
layer. Note that the content frame information only helps optimize
the ∆α configuration and is not an enabler for the communica-
tion. Unlike current designs that require modifying content image
frames, we only need to read (not write) coarse-grained informa-
tion of content image frames. Given two adjacent sampled frames,
the transmitter examines their color transition to adapt the encod-
ing strategy. If the frame content changes drastically, the resulting
color intensity change can overwhelm the intensity change encoded
with data. We refer to these frames as cut scene frames, which typ-
ically occur rarely (1.3% in a test video stream in Figure 5(d)).
We skip the cut-scene frames and defer encoding. Once detecting
a non-cut scene frame, we determine the ∆α based on the color
brightness of the area in the content layer and the frame transition.

Given the ∆α for each pixel, the transmitter modulates bits us-
ing Binary Frequency Shift Keying (BFSK). We choose BFSK be-
cause of its simplicity and its robustness to interference (e.g., am-
bient light). In our implementation, bit 0 and 1 are represented
by translucency change at 20 Hz and 30 Hz respectively, over six
frames (Figure 4). We set six frames as a frame window, because it
is the minimal to achieve 20 Hz and 30 Hz change under the screen
refresh rate of 60 Hz. By removing the low-frequency components

0

∆α

 0 50 100 150 200

A
lp

h
a
 v

a
lu

e

Time (ms)

1
0

(a) Time domain

 0

 4

 8

 12

 16

 20

 10 15 20 25 30 35

P
o
w

e
r

(d
B

)

Frequency (Hz)

1
0

(b) Frequency domain

Figure 4: Encoding bits into pixel translucency (α) change. (a) shows

the sequence of α values for symbols ‘01’. (b) shows the translucency

change in the frequency domain for bit 0 and 1 after applying FFT.

(< 15Hz), the frequency power of the data bit is less affected by en-
vironmental noise (e.g., ambient light). In comparison, modulation
schemes (e.g., Manchester code) that rely on phase transition in
the time domain to extract data can suffer performance degradation
caused by environmental noise. In addition, since FSK encodes
data as relative color intensity changes, HiLight is robust against
image quality degradation (e.g., block boundary effects caused by
video compression).

After generating the sequence of α values for each pixel, the
main processor passes these values to GPU. The GPU then ap-
plies the alpha blending technique [27, 34] to generate image layers
(communication layer) with specified translucency, combines them
with content image frames, forms composite images, and outputs
them to the image buffer.

Next we describe two main design components (scene detection
and determining α value changes ∆α) in detail.

3.2 Scene Detection
Scene detection is the key component for the system to support

arbitrary screen scene. It runs continuously in the background,
samples content frames, and identifies the screen scene type based
on the frame transition. The scene type is crucial for deciding
whether the encoding should be performed, and for determining
the degree of pixel translucency change at the communication layer
(§ 3.3).

Specifically, the transmitter periodically samples content frames
every 0.1 s. We choose 0.1 s as the sampling window because it
is sufficient for detecting frame transition accurately while missing
a small number of frames. For each sampled frame, the thread
further uniformly samples one-sixteenth of the pixels and obtains
their color information.

Given the sampled pixels of two sampled frames, we aim to cat-
egorize the current frame into one of the following scene types:
the static, the gradual, and the cut scene. These categories capture
the degree of frame transition, and are widely used in computer vi-
sion [17]. Figure 5 shows example frame pairs for each scene type.
While screen content can change drastically over a long time, the
change between two adjacent frames is gradual and minor. There-
fore, static and gradual scenes are the most common, while cut
scene occurs rarely (Figure 5(d)). Because of the drastic color in-
tensity change of the cut scene and its rare occurrence, we encode
data only atop the other two types of scenes.

To determine the scene type, we measure the dissimilarity of two
adjacent sampled frames using two existing metrics. The first met-
ric [44], referred to as the pixel-based metric, calculates the differ-
ence of the pixel color intensity values of two frames. For frames F
and F ′ each with X × Y pixels, the pixel-based metric dp(F, F

′)

is calculated as:

dp(F, F
′) =

∑
1≤i≤X
1≤j≤Y

| C(pij)− C(p′ij) |

X × Y
, (1)

where C(pij) and C(p′ij) are the color intensity values of pixels
pij and p′ij in frame F and F ′, respectively. The second metric [25,
31], referred to as the histogram-based metric, examines the differ-
ence in the color distribution of two frames. It partitions the whole
color intensity range into bins, counts the number of pixels with
color values within each bin, and calculates the difference as:

dh(F, F
′) =

∑

i∈[1,K]

max(H(i),H′(i))6=0

(H(i)−H ′(i))2

max(H(i),H ′(i))
, (2)

where H(i) and H ′(i) are the number of pixels in the i-th bin for
frame F and F ′ respectively, and K is the number of bins. We
choose these two metrics because they are easy to compute, and
complement each other. Pixel-based metric captures small local
changes (e.g., a small moving object), while histogram-based met-
ric captures the global change.

We combine these two metrics to classify a frame. For both met-
rics, a higher value indicates a more drastic frame transition. Hence
we define two thresholds for each metric to signal a static and a cut
scene. We denote the thresholds for the metric dp as dstaticp and

dcutp , and dstatich and dcuth for the metric dh. We classify a frame
as a cut scene if the values of both metrics are above their cut scene
thresholds, i.e., dp > dcutp and dh > dcuth . We classify a frame
as a static scene if both metric values are below the static scene
thresholds, i.e., dp < dstaticp and dh < dstatich . A frame is a grad-
ual scene if neither condition is satisfied. In our implementation,
we empirically set dstaticp , dcutp , dstatich , and dcuth as 10, 100, 0.1,
and 1, respectively. These values also align with the literature in
computer vision [29, 30, 32].

3.3 Determining Alpha Value Change (∆α)
Armed with the content frame information (scene type, and frame

color distribution), the second key component determines the de-
gree of pixel translucency change at the communication layer. The
goal is to keep the resulting color intensity change unobtrusive
while ensuring they are still reliably detectable by receivers.

To achieve the goal, we configure the ∆α of each pixel based
on the color distribution of the content frame and frame transition.
Our configuration is driven by two observations. First, ∆α changes
the pixel color intensity by a percentage. Thus, for a fixed ∆α, the
resulting absolute color intensity change of dark pixels is smaller
and less detectable than that of bright pixels [21]. Second, frame
content change also leads to color intensity change, which inter-
feres with the intensity change encoded with data. Motivated by
these observations, we increase the ∆α for pixels atop dark con-
tent areas or upon a gradual scene frame. This enhances the coded
intensity change in these two challenging scenarios, allowing the
receiver to better extract data.

Specifically, we determine the α value change ∆α for each pixel
in two steps (Algorithm 1). The first step is to divide the screen into
grids and decide the ∆α at the grid level. For each grid Gk, we
calculate its average color intensity value C(Gk) over all sampled
pixels in Gk. We configure the grid-level α change ∆αG within
[1%, 8%] based on the grid color intensity C(Gk), and the scene
type. A side effect of this step is that for adjacent grids with dif-
ferent α values, the grid border appears as a noticeable edge. To
minimize this side effect, the second step is to fine-tune the ∆α

for each pixel within a grid and diminish the α value difference

(a) Static scene
(dp = 0.2, dh = 0)

(b) Gradual scene
(dp = 12.2, dh = 0.2)

(c) Cut scene
(dp = 216, dh = 1.6)

Static

Gradual

Cut

 0 200 400 600 800 1000

Frame index

Scene type

(d) Frame scene type in a video stream

Figure 5: (a)-(c) Example image pairs of three scene types (the static, the gradual, and the cut scene). We evaluate the difference of each pair of

frames using both the pixel-based metric dp and the histogram-based metric dh. (d) shows the scene type of each frame in a video stream.

Algorithm 1: Determine alpha value change (∆α).

input : 1) F , sampled content frame; 2) ST , scene type.
output: α value change ∆α for each pixel.

Divide F into X grids: G1, ..., GX

for k ← 1 to X do
// Computing grid-level ∆α
C(Gk) = Mean {C(pij) | pij ∈ Gk}
if C(Gk) ≤ 50 then ∆αG = 4%
else if C(Gk) ≤ 100 then ∆αG = 3%
else if C(Gk) ≤ 150 then ∆αG = 2%
else ∆αG = 1%
if ST = gradual then ∆αG = 2 ·∆αG

// Fine-tuning ∆α within a grid

(xc, yc)← FetchCenter (Gk)
for pij ∈ Gk do

∆αij = ∆αG
sqrt(2π)

× e−
(i−xc)2+(j−yc)2

2

end

end

among pixels on the grid border. In particular, for pixels in the cen-
ter of the grid Gk, their ∆α is the same as the grid-level α change
∆αG. This ensures that the receiver can still differentiate translu-
cency changes of adjacent grids. For pixels further away from the
grid center, we gradually decrease their ∆α following a standard
normal distribution N (0, 1) (Figure 6). The fine-tuning smooths
the translucency change across grids. Finally the ∆α values for
all pixels are fed into the modulator, which modulates each bit into
translucency (α) change over time.

4. HiLight RECEIVER
HiLight receiver captures incoming frames, examines the per-

ceived color intensity changes, and decodes data. The main design
challenge is to extract the desired color intensity change out of the
perceived change. This is challenging because the color intensity
change perceived by the receiver comes from not only encoded α

changes, but also changes in screen content, ambient light condi-
tion, as well as camera noises. The receiver needs to extract data
from the perceived color intensity change given the presence of all
these interfering factors.

To address the challenge, we design strategies to filter out color
intensity change associated with interfering factors, and adapt our
strategy to the current scene type. In particular, for the static scene,
we leverage an audio beamforming algorithm [33, 35] to minimize
the impact of interfering factors and extract the desired color inten-
sity change encoded with data; for the dynamic scene, we identify

Grid width

∆α (%)

G
ri
d
 h

e
ig

h
t

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 6: Configuring ∆α for each pixel within a grid, assuming the

grid-level α change is 1%. Here the darkness indicates the ∆α value,

not the actual pixel appearance. We gradually decrease ∆α as pixels

become further away from the grid center. This diminishes the appear-

ance of the grid border and optimizes the viewing experience.

Cut scene?
Scene

detection

Extracting desired

illumination change
Demodulation

(FFT)

Discarding

captured frames
Y

Data Captured

frames

N

Figure 7: An overview of the decoding procedure in HiLight.

patterns caused by the encoded change. These patterns help re-
cover the bits hidden in the mixed intensity change. Note that we
integrate these scene-dependent strategies into a single framework,
which allows the system to support arbitrary scenes in a unified
solution.

Next we first overview the decoding procedure, followed by a de-
tailed description on extracting the desired color intensity change.

4.1 Overview
Figure 7 summarizes the main steps of decoding. The receiver

keeps monitoring the incoming frames, and buffers frames in a
frame window (six frames). It then samples a frame in this frame
window, compares it to the last sampled frame, and applies the
same scene detection algorithm as that in the transmitter (§ 3.2)
to identify the scene type. If the scene type is the cut scene, the
receiver discards this frame window since the transmitter does not
encode data on these frames. For frames of other scene types (i.e.,
the gradual or static scene), the receiver divides the captured trans-
mitter screen into grids, identifies and enhances the desired color
intensity change in each grid (§ 4.2).

The extracted color intensity change is then passed to a BFSK
demodulator, which applies Fast Fourier Transform (FFT) to project
translucency change into the frequency domain. To reduce the im-
pact of ambient light noise with frequency components close to 0,
the receiver filters out frequency components below 15 Hz. Among
the frequency components above 15 Hz, the receiver identifies the
component with the highest power, maps it to the corresponding
bit, and outputs the bit into a candidate pool. The receiver then
slides the frame window by one frame, and repeats the above pro-
cedure to generate another candidate bit. The final bit for this frame
window is the bit with the most occurrences in the pool.

4.2 Extracting Desired Color Intensity Change
The receiver perceives mixed color intensity change caused by

encoded α values, screen content, ambient light, and camera noise.
Among them, the color intensity change associated with encoded
α values is the desired change that the receiver aims to extract, and
the rest are interfering sources. To minimize the impact of these
interfering sources, our design is driven by the fact that these inter-
fering sources have nonuniform impact across the screen, depend-
ing on the brightness of the area. Therefore, we can further divide a
grid into smaller regions, evaluate the impact of interfering sources
on each region, and assign higher weight to regions less affected
by interfering sources. This allows us to reduce the impact of the
interfering factors, and enhance the desired change associated with
data. The key question then is to determine the weight of each re-
gion within a grid. An effective weight assignment should leverage
the scene type of the screen content. Next we describe our strategy
for each scene type (the static and gradual scene) in detail.

Static Scene. For the static scene, we are inspired by an au-
dio beamforming algorithm called Minimum Variance Distortion-
less Response (MVDR) [33, 35]. This algorithm was originally
designed to enhance audio signals in a desired direction while can-
celing out noise signals. The key idea is to leverage the correlation
(e.g., delay spread and energy distribution in the frequency domain)
across noise signals and cancel the noise energy.

We develop a variant of this algorithm in our context, where the
goal is to enhance the contribution of regions less affected by inter-
fering sources. Specifically, for a grid with N regions, we calculate
the weight matrix for its regions as:

W = R
−1

C ×Rsum, (3)

where R is a N×N noise correlation matrix capturing the correla-
tion across regions of this grid, C is a N × 1 constant matrix with
all elements equal to 1, and Rsum is the summation of all elements
in R−1.

We obtain the noise correlation matrix R via a training process
for a static scene. In particular, once the receiver detects a static
scene, it buffers frames for M frame windows. It then applies FFT
to compute the frequency components of each frame window, and
estimates the correlation Rij between region i and j as:

Rij =
1

M
×

∑

1≤k≤M

XikX
T
jk, i, j ∈ [1, N], (4)

where Xik and Xjk are the vectors of frequency components of the
kth frame window, for region i and j respectively. From our exper-
iments, we find that M = 5 is sufficient to train the correlation
matrix and cancel out the contributions of regions more affected by
interfering sources. Thus the training takes 0.5 s overall.

Gradual Scene. When the screen content is dynamic, it is hard
for training-based methods to catch up with the content change in

 200

 210

 220

 230

 240

 250

 0 20 40 60 80 100 120

P
e

rc
e

iv
e

d
 c

o
lo

r
In

te
n

s
it
y

Time (ms)

(a) w/o encoding bit 1

 200

 210

 220

 230

 240

 250

 0 20 40 60 80 100 120
0

∆α

P
e
rc

e
iv

e
d
 c

o
lo

r
In

te
n
s
it
y

A
lp

h
a
 v

a
lu

e

Time (ms)

α value

(b) w/ encoding bit 1

Figure 8: Identifying patterns caused by encoded α values when ex-

amining the perceived color intensity changes over a frame window (0.1

s), assuming bit 1 is encoded.

real time. Thus we design a lightweight scheme without training to
assign weights to regions within a grid.

Our design is based on a simple observation: while frames can
change drastically over a long time, when examining adjacent frames
within a frame window (i.e., 0.1 s) and focusing on a tiny region,
we observe that the color intensity change is often monotonic at a
constant speed (Figure 8(a)). As a result, when it is mixed with
the encoded α change, the α change creates variations in the speed
of perceived color intensity change. As an example, Figure 8(b)
shows the perceived color intensity of a region when mixed with
α value change encode for bit 1. When the α value decreases (no
dimming effect) at the second and fourth frames, it slows down the
perceived color intensity change at both points. These speed varia-
tions are reflected by the sign of the second derivative of the color
intensity change over time. Similarly, α value change for encoding
bit 0 also leads to a pattern in the second derivative of color inten-
sity change in a frame window. We leverage these patterns to infer
the encoded bit.

Clearly, for regions less affected by interfering sources, these
patterns resulting from encoded bits are less noticeable. Therefore,
we can determine the weight of each region by examining whether
these patterns in the second derivatives exist. In our implemen-
tation, for regions where these patterns do not exist, we set their
weights as zero to minimize their impact. By focusing on regions
that exhibit detectable patterns, we reduce the impact of interfer-
ing sources and make the system robust in diverse settings. Fur-
thermore, the pattern detection only requires computing the second
derivatives. Hence we can update the weight matrix on the fly based
on current screen content.

5. SYSTEM IMPLEMENTATION
We implement HiLight at the application layer using off-the-

shelf smart devices. We implement HiLight transmitter at the An-
droid platform, and the receiver at the iOS framework using iPhone
5s. We choose iPhone 5s as the receiver because for the receiver
to decode data, its camera needs to be able to capture at least 60
frames per second, and the iOS AVFoundation framework sup-
ports 120 FPS video recording on iPhone 5s. In contrast, the cur-
rent Android framework (Android 4.4 or lower) does not support
video recording at 60 FPS4, and phone manufactures (e.g., Sam-
sung, HTC) do not make their phone camera API/library public.

To implement the HiLight transmitter, we use ImageView (an
Android UI container) to create the communication layer (Figure 1(a))

4The recent Android 5 framework [4] includes a new camera API,
which supports 4K resolution video recording with 65 Mb/s band-
width. It supports 60 FPS or a higher frame rate. We plan to im-
plement HiLight on the new platform once the hardware support is
available.

Figure 9: Experimental setup

with Samsung Tab S (left) as the

transmitter and iPhone 5s as the

receiver (right).

 0

 20

 40

 60

 80

 100

150 250 350 450 550 650 765
 0

 0.3

 0.6

 0.9

 1.2

A
c
c
u
ra

c
y
 (

%
)

T
h
ro

u
g
h
p
u
t
(K

b
p
s
)

Avg. color intensity

HiLight HiLight basic

(a) Static scene

 0

 20

 40

 60

 80

 100

Scenery Sport Drama Web
Browsing

Game
 0

 0.3

 0.6

 0.9

 1.2

A
c
c
u
ra

c
y
 (

%
)

T
h
ro

u
g
h
p
u
t
(K

b
p
s
)

HiLight HiLight basic

(b) Dynamic scene

Figure 10: HiLight’s performance atop arbitrary scene assuming 120 grids on the communication layer. We also

plot the performance of HiLight basic [21] that excludes two design enhancements (§ 3.3 and § 4.2) to examine

their contribution. Since the throughput is equal to the accuracy multiplied by the number of transmitted bits,

we plot a single bar reflecting numbers in both accuracy and throughput.

atop all image layers. We use the setImageAlpha method to
specify α values at the application layer. This method passes the
given α values down to the SurfaceFlinger layer of the An-
droid framework, which further leverages the glBlendFuncAPI
in the OpenGL ES library [24] to run the alpha blending on the
GPU. Given the ubiquity of hardware accelerated compositing, a
similar implementation can be realized on other mobile platforms
(e.g., iOS, Windows). We implement scene detection and α value
generation as two separate threads. In the first thread, we sam-
ple the frame buffer under /dev/graphics/ to fetch the screen
content every 0.1 s. We leverage the OpenCV library to imple-
ment the scene detection algorithm, which runs continuously to
detect the scene type of the incoming sampled frames. The first
thread passes the detection result and frame information to the sec-
ond thread, which then generates α values and modulates each bit
using BFSK. The transmitter signals the start of a transmission by
sending 1 in all grids for 0.1 s. Finally, to avoid touch events be-
ing blocked by the communication layer, which is atop all content
image layers, we register a View.OnTouchListener to return
false so that the system ignores the communication layer and passes
the touch event to the applications below the communication layer.

To implement the HiLight receiver, we use the AVCapture ses-
sion in the iOS AVFoundation framework to capture frames. To
reduce the camera noise in the dark environment, we leverage the
built-in light sensor to detect the dark environment, and increase
the camera ISO value to raise its sensitivity accordingly. We ap-
ply an existing screen detector [42] to locate the transmitter screen,
extract the screen area from each captured frame, and divide the
captured screen area into grids. To speed up the frame decoding,
we fetch only a quarter of pixels in the screen area to decode bits.
We implement the main components (scene detection, extracting
desired color intensity change, and FFT decoding) in three sepa-
rate threads. We display the decoding results in a pop-up window
on the receiver’s screen.

6. HiLight EXPERIMENTS
We perform detailed experiments to evaluate the HiLight proto-

type, focusing on its ability to support unobtrusive transmissions
atop arbitrary scene in real time and its robustness in practical set-
tings. We also seek to understand how hardware choice on screen
and camera affects its performance, as well as user’s perception on
the unobtrusiveness of our system.

Experimental Setup. We use the Samsung Tab S as the default
transmitter (we test other types of screens in § 6.4). We set up the
transmitter and receiver (iPhone 5s) at their normal viewing dis-
tance (30 cm for the transmitter’s 10.5-inch screen, see Figure 9).

Table 1: Statistics of test images.

Avg. color
<150

[150, [250, [350, [450, [550, [650,
intensity 250) 350) 450) 550) 650) 765)

of images 10 31 23 23 14 6 5

We increase the viewing distance when testing HiLight on trans-
mitters with larger screens in § 6.4. While we fix them on two
phone holders for most experiments, we also test the hand-held sce-
nario in § 6.3. By default, we divide the transmitter screen into 120
grids, where each grid is 2.7 cm2 in size (Table 2). We repeat each
experiment for five rounds, and perform all experiments under a
fluorescent lamp (100 lux) in an office environment. We focus on
two performance metrics: 1) accuracy, the percentage of bits suc-
cessfully received over all bits transmitted; and 2) throughput, the
number of bits successfully received per second.

6.1 Supporting Arbitrary Scene
To evaluate HiLight’s ability to support arbitrary scene, we ran-

domly select 112 images with all levels of average color intensity
(Table 1), 60 video clips, a 30-min web browsing scene, and 6 gam-
ing apps5. We run HiLight to transmit random bits atop each screen
content, and measure the throughput and accuracy at the receiver.
In all of our graphs, we plot error bars covering the 90% confidence
interval.

Static Scene. Figure 10(a) plots the average accuracy and through-
put as the average pixel color intensity value varies, where a higher
color intensity value indicates a brighter image. We divide the
whole color intensity range into seven intervals, and average the
results of images with color intensity values in the same interval.
Intuition says that dark images lead to less detectable translucency
changes and thus much lower throughput. Surprisingly, we observe
that HiLight is not sensitive to image color intensity, maintaining
91%+ accuracy and 1.1 Kbps throughput for any images with aver-
age color intensity above 150. Even for dark images (color inten-
sity values below 150), HiLight still achieves 85% accuracy and 1
Kbps throughput. This sets a notable improvement over our prior
design, referred to as HiLight basic [21]. The improvement can be
attributed to the effectiveness of two design components: the adap-
tion of α value change (§ 3.3) and the strategy of extracting en-
coded color intensity change (§ 4.2). Our hypothesis is confirmed
by the results of HiLight basic [21], which fixes the ∆α to 1%
and does not use weight matrix to extract desired color intensity

5All the test images and video clips are available at http://
dartnets.cs.dartmouth.edu/hilight-test.

http://dartnets.cs.dartmouth.edu/hilight-test
http://dartnets.cs.dartmouth.edu/hilight-test

 0

 5

 10

 15

 20

Note 3 S5 Nexus 5 Nexus 4 Tab SE
n
c
o
d
in

g
 t
im

e
 p

e
r

fr
a
m

e
 (

m
s
)

Transmitter device

Rendering (0.5-0.8 ms)
Generating α (<0.02 ms)

Scene detection (5.8-7 ms)
Decoding (0.1-0.2 ms)
Sampling (0.1-0.3 ms)

(a) High resolution (1080p)

 0

 5

 10

 15

 20

Note 3 S5 Nexus 5 Nexus 4 Tab SE
n
c
o
d
in

g
 t
im

e
 p

e
r

fr
a
m

e
 (

m
s
)

Transmitter device

Rendering (0.5-0.8 ms)
Generating α (<0.02 ms)

Scene detection (3.8-5 ms)
Decoding (<0.1 ms)

Sampling (0.1-0.2 ms)

(b) Medium resolution (720p)

 0

 5

 10

 15

 20

Note 3 S5 Nexus 5 Nexus 4 Tab SE
n
c
o
d
in

g
 t
im

e
 p

e
r

fr
a
m

e
 (

m
s
)

Transmitter device

Rendering (0.5-0.8 ms)
Generating α (<0.02 ms)

Scene detection (2.2-3.2 ms)
Decoding (<0.05 ms)

Sampling (<0.1 ms)

(c) Low resolution (480p)

Figure 11: HiLight’s encoding time per frame under different frame resolution. Across all test devices, HiLight encodes a single frame within 8 ms,

sufficient to support both 60 FPS and 120 FPS frame rates.

changes. To future improve HiLight’s performance on very dark
scenes (color intensity below 150), we can set white as the grid
color of the communication layer atop dark areas. We plan it for
future work.

Dynamic Scene. For the dynamic scene, we test three types of
video clips including scenery video (e.g., campus video), sports,
and drama (e.g., TV shows, movie trailers). They represent video
with minor, medium, and drastic frame transition, respectively. For
each type, we test 20 video clips and each clip lasts 1–2 mins. We
also test two example scenarios when the screen content is gener-
ated on the fly. These include 1) web browsing, where the user is
reading and scrolling down a web page, refreshing the page, and
switching to other web pages; and 2) gaming, where the user is
playing games (e.g., Angry Bird, Super Mario).

Figure 10(b) plots the average throughput and accuracy under all
types of dynamic scene. Our key observations are as follows. First,
overall HiLight maintains 84% accuracy with 1 Kbps throughput
across these scene types, even for drama video clips that contain
drastic screen content change. By examining the performance of
HiLight basic, we validate the efficacy of our two key design com-
ponents, which lead to 18% improvement in general and 20% for
drama video in particular. Second, dynamic scene leads to slightly
lower throughput and accuracy than the static scene, mainly for two
reasons. The first reason is that to configure α changes, the system
uses sampled color information of sampled frames to estimate ac-
tual frames. The sampling leads to estimation errors as frames vary
over time, making the adaptation of ∆α sub-optimal. One solution
is to sample more frequently upon more drastic frame transition.
We plan it for future work. Another reason is that we defer trans-
missions upon cut scene. Yet since cut scene occurs rarely (only in
sports and drama), the resulting throughput loss is less than 0.6%
and 2.4% for sports and drama. Third, among different dynamic
scenes, drama scene is the most challenging as it contains more
drastic content changes that greatly interfere with encoded color
intensity change. Web browsing scene achieves the best perfor-
mance among all because it has a fair portion of static scene when
the user reads web pages. Most games we test often change back-
ground images drastically, and thus the gaming scene is similar to
drama.

Varying the Grid Size. We also examine how different grid size
on the communication layer affects HiLight under the static or dy-
namic scene. We test seven grid sizes (Table 2) using 10 images
and 10 video clips, and list HiLight’s average throughput and accu-
racy in Table 2. Overall, as the number of grids increases, HiLight’s
throughput grows rapidly and its accuracy drops slowly. This is be-
cause more grids mean more concurrent transmitter elements, lead-
ing to more transmitted bits. Yet as each grid has fewer pixels, the

Table 2: Impact of grid size on HiLight performance.

of grids 6 30 120 180 240 360 600

Size (cm2) 54.2 10.8 2.7 1.8 1.4 0.9 0.5

of pixels 683K 137K 34K 23K 17K 11K 6.8K

Static scene

Accuracy (%) 99.4 93.9 89.4 86.8 82.9 78.7 75.2
Throughput

0.06 0.3 1 1.6 2 2.8 4.5
(Kbps)

Dynamic scene

Accuracy (%) 91.0 87.1 85.4 80.3 78.3 73.2 67.2

Throughput
0.05 0.3 1 1.4 1.9 2.6 4

(Kbps)

inter-symbol interference [26] kicks in, making it more challeng-
ing to differentiate pixel translucency changes across adjacent grids
and causing more bit errors. However, the increase in the trans-
mitted bits outweighs the accuracy drop, leading to the throughput
growth. In particular, for the grid size of 0.5 mm2 (600 grids), Hi-
Light achieves 4 Kbps under both static and dynamic scene. The
minimal grid size is ultimately limited by the resolution of the cam-
era sensor and the distance between the transmitter and the receiver.

6.2 Processing Time
To evaluate HiLight’s ability to support real-time communica-

tion, we measure its processing time of per-frame encoding and
decoding. We measure the data encoding time as the duration start-
ing from fetching a frame to the end of rendering. The decoding
time is the time taken to process frames in a frame window (six
frames) upon the arrival of a new frame.

Encoding Time. We measure HiLight’s encoding time on five
Android devices. Since the encoding time is not affected by the
number of grids on the screen and heavily depends on the frame
resolution, we test three resolution levels, each with 10 video clips.
Figure 11 plots the total per-frame encoding time as well as the
breakdown. We make three key observations. First, across all de-
vices and frame resolution levels, HiLight’s encoding delay is con-
sistently below 8.3 ms. This is mainly because HiLight leverages
GPU to process α values and removes the need to directly modify
pixel RGB values. With the per-frame encoding time below 8.3 ms,
HiLight can further support high-resolution video streaming at 120
FPS while transmitting data unobtrusively.

Second, among all encoding steps, scene detection occupies 78–
87% of the encoding time and ranges from 2.5 ms to 7 ms. It is
longer for the higher frame resolution, because there are more pix-
els for the algorithm to sample and process. Third, our sampling
strategy significantly reduces the overhead of fetching and decod-
ing a frame. Since we sample one frame per frame window (six
frames) and sample one-sixteenth of pixels in the sampled frame,

 0

 20

 40

 60

 80

 100

 30 60 90 120 150
 0

 0.2

 0.4

 0.6

 0.8

 1
A

c
c
u
ra

c
y
 (

%
)

T
h
ro

u
g
h
p
u
t
(K

b
p
s
)

TX/RX distance (cm)

Static
Dynamic

(a) Supporting distance

 0

 20

 40

 60

 80

 100

 0 100 200 300
 0

 0.2

 0.4

 0.6

 0.8

 1

A
c
c
u
ra

c
y
 (

%
)

T
h
ro

u
g
h
p
u
t
(K

b
p
s
)

Ambient light intensity (lux)

Static
Dynamic

(b) Ambient light

 0

 20

 40

 60

 80

 100

 30 60 90 120
 0

 0.2

 0.4

 0.6

 0.8

 1

A
c
c
u
ra

c
y
 (

%
)

T
h
ro

u
g
h
p
u
t
(K

b
p
s
)

TX/RX Distance (cm)

Static
Dynamic

(c) Hand motion

Figure 12: Impact of practical factors on HiLight’s performance.

Table 3: HiLight’s decoding time over a frame window under different

grid size, using iPhone 5s.

Decoding Decoding time (ms) under varying # of grids
steps 6 30 120 180 240 360 600

Sampling 2.95

Scene
1.22

detection

Extracting
0.02

changes

Demodulation 0.07 0.21 0.81 1.1 1.73 2.47 3.31

Overall 4.26 4.4 5 5.29 5.92 6.66 7.5

fetching pixel color values entails 0.35 ms, which is 1/96 of fetch-
ing every frame and obtaining the color values of all pixels.

Decoding Time. We further examine HiLight’s data decoding
time as the number of grids on the communication layer varies. Ta-
ble 3 lists the time taken by each decoding step when processing
frames in a frame window on iPhone 5s. Aiming to capture the
decoding time upon each incoming frame on the fly, we do not in-
clude the MVDR training delay (§ 4.2) in the table, because we
do not need to perform the training for each frame, but only in the
beginning of the whole decoding process for a static scene6. From
Table 3, our key observations are as follows. First, under all the grid
sizes, HiLight is able to decode frames in a frame window within
8 ms. This demonstrates that even when the transmitter is sending
data at 120 Hz (supported by higher screen refresh rate), the re-
ceiver is able to process all incoming data in real time. Second, for
all decoding steps except BFSK demodulation, their running time
is independent of the number of grids. This is because these steps
are performed upon sampled pixels of each frame. Only the num-
ber of sampled pixels affects their running time. In comparison,
BFSK demodulation performs FFT for each grid independently to
decode each bit. More grids lead to more FFT computations and
thus a longer processing time.

6.3 Practical Considerations
We now evaluate the impact of practical factors on HiLight’s per-

formance. We test 10 images and 10 video clips, and repeat all
experiments for five rounds.

Supporting Distance. We start with examining the transmission
distance HiLight supports. We increase the distance between the
screen and the camera from 30 cm (the normal viewing distance)
to 150 cm, and plot the resulting throughput and accuracy under
both static and dynamic scene in Figure 12(a). Overall HiLight’s
performance is relatively stable when the distance is within 1 m,
maintaining 90%+ accuracy for the static scene and 85%+ for the
dynamic scene. This demonstrates the efficacy of HiLight design.

6Our measurements show that MVDR training takes 1 ms to 27 ms
as the number grids increases from 6 to 600, respectively.

As the distance further increases, throughput and accuracy start to
drop quickly. This is expected, because light attenuates over dis-
tance, leading to weaker illumination changes that are harder to
detect. In addition, since the receiver camera does not have an op-
tical zoom, as the receiver is further away, the transmitter screen
becomes smaller in the captured frame. This reduces the captured
pixels for decoding and lowers the decoding accuracy.

Ambient Light. Next, we examine HiLight’s sensitivity to am-
bient light. We test four indoor ambient light conditions (1 lux,
40 lux, 100 lux, and 300 lux), and plot HiLight’s performance in
Figure 12(b). Intuitively, dark settings are challenging for HiLight,
where pixel translucency changes are harder to detect and camera
noise is also higher. Yet we observe that the HiLight’s performance
is fairly stable once the light illuminance is above 40 lux (far be-
low the normal ambient light, which is around 100 lux). HiLight
achieves the robustness because the system leverages the built-in
light sensor on iPhone 5s to sense the ambient light and raises the
camera sensitivity in dark settings. This allows the receiver to bet-
ter sense the pixel translucency change. While increasing camera
sensitivity also introduces camera noise, most camera noise is fil-
tered out by our weight matrix used to extract the desired color
intensity change (§ 4.2).

Hand Motion. We now move on to examining the impact of
hand motion on HiLight. We hold the receiver in the air facing
a fixed transmitter, and vary the distance between the transmitter
and the receiver. Figure 12(c) plots the results when the transmit-
ter screen is displaying static or dynamic content. As expected,
hand motion causes misalignment between two devices, leading to
image blur and thus lowering the accuracy. Yet at the normal view-
ing distance (30 cm), the accuracy drop is minor (<3–4% com-
pared to the perfectly aligned scenario in Figure 12(a)). As the dis-
tance increases, the performance gap to the perfectly aligned sce-
nario increases. This is because at longer distances, hand motion
causes more significant screen misalignment, and the receiver is
more likely to misidentify the grids on the screen. Comparing the
two types of scene, we observe that the accuracy of the static scene
drops more quickly. This is because the weight matrix for the static
scene is calculated once during decoding, while for the dynamic
scene, the weight matrix is updated for every frame window and
thus can better deal with screen misalignment. To minimize the
impact of hand motion, one can leverage image tracking and align-
ment algorithms in computer vision to track the transmitter screen.
The challenge is to ensure that these algorithms can be performed
in real time. We plan to study this as part of our future work.

Viewing Angle. Finally, we examine HiLight with varying hori-
zontal and vertical viewing angles to assess the impact of the mis-
alignment between the transmitter and the receiver. In the first two
experiments, we fix the transmitter screen and rotate the receiver
either horizontally or vertically by 0◦ to 60◦ while keeping their

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60
 0

 0.2

 0.4

 0.6

 0.8

 1

A
c
c
u
ra

c
y
 (

%
)

T
h
ro

u
g
h
p
u
t
(K

b
p
s
)

Horizontal viewing angle β (degree)

Static
Dynamic

(a) Horizontal viewing angle β

TX
RX

γ

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60
 0

 0.2

 0.4

 0.6

 0.8

 1

A
c
c
u
ra

c
y
 (

%
)

T
h
ro

u
g
h
p
u
t
(K

b
p
s
)

Top-down viewing angle γ (degree)

Static
Dynamic

(b) Top-down viewing angle γ

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60
 0

 0.2

 0.4

 0.6

 0.8

 1

A
c
c
u
ra

c
y
 (

%
)

T
h
ro

u
g
h
p
u
t
(K

b
p
s
)

TX rotation angle θ (degree)

Static
Dynamic

(c) TX rotation angle θ

Figure 13: Impact of the horizontal and vertical viewing angle on HiLight’s performance.

Table 4: Impact of screens on HiLight’s performance, using iPhone 5s

as the receiver.

TX Screen
Scene Through- # of Accuracy
type put (Kbps) grids (%)

Samsung OLED 10.5" Static 1.1 120 91
Tab S 2560 × 1600 Dynamic 0.3 30 90

Nexus 5
LCD 5.0" Static 0.6 60 91

1920 × 1080 Dynamic 0.2 20 91

Mac Air
LED 13.3" Static 1.1 120 91
1440 × 900 Dynamic 0.3 30 90

iMac
LED 27" Static 1.6 180 91

2560 × 1440 Dynamic 0.6 60 91

distance the same (30 cm). In the third experiment, we fix the re-
ceiver and make the transmitter screen self-rotate from 0◦ to 60◦.
Figure 13 shows the three experimental setups, the observed per-
spective distortion in each setup7, and HiLight’s throughput and
accuracy. Overall, HiLight supports up to 60◦ viewing angle in
all directions for both types of scenes. Its performance gracefully
degrades as the viewing angle increases, because the transmitter
screen captured by the receiver distorts as a trapezoid, making it
challenging for the receiver to identify grids. In addition, since
different pixels on the screen have different depths to the receiver,
some portion of the captured screen can be out of focus. How-
ever, the performance degradation is less than 7–8% for both scene
types. This is because HiLight relies on the relative color inten-
sity change to extract data and is insensitive to static noises such
as the image quality degradation caused by being out of focus. To
further enhance HiLight’s robustness against perspective distortion,
one can leverage image projection algorithms (e.g., affine transfor-
mation [8]) to avoid grid misidentification. Our experiments show
that the current implementation of these algorithms requires 100
ms to process a frame, thus we need an optimized implementation
to support real-time communication.

6.4 Impact of Screen/Camera Hardware
We next examine how the physical capability of screens and

cameras affects HiLight’s performance. We test HiLight on differ-
ent screens and cameras and examine its highest throughput while
maintaining accuracy above 90%. We adjust the distance for each
pair of devices to ensure the captured screen size in the camera
preview the same.

7Using the 10-inch OLED screen, we observe minor pixel bright-
ness degradation caused by viewing angle change (<10% at 60◦

viewing angle). Its impact on HiLight’s performance is negligible.

Table 5: Impact of cameras on HiLight’s performance, using Samsung

Tab S as the transmitter.

Receiver
Cam- Scene Through- # of Accuracy
era type put (Kbps) grids (%)

iPhone 5s 8 MP
Static 1.1 120 91

Dynamic 0.3 30 90

Samsung
13 MP

Static 4.9 540 90
Note 3 Dynamic 4.9 540 90

Samsung S5 16 MP
Static 6.7 720 93

Dynamic 4.9 540 90

Canon 60D
18 MP

Static 6.6 720 92
(SLR camera) Dynamic 5.0 540 92

Varying the Screen. We first fix iPhone 5s as the receiver
and test different types (LCD, LED, OLED) of screens in varying
sizes (5–27 in) as transmitters. Since our current implementation
of the HiLight transmitter is based on the Android framework, to
test HiLight on devices such as Mac Air and iMac, we make video
clips with data embedded into a static or dynamic scene, play these
video clips on each screen, and measure the real-time accuracy and
throughput at the receiver. Table 4 lists the results for 10 static and
10 dynamic scenes. Clearly screen resolution and size are the two
key factors affecting the performance. iMac’s screen works the best
with the largest size and second-highest resolution. Among differ-
ent screen types, OLED screens are the most preferable, because
OLED screens do not have backlight and each pixel emits light in-
dependently. Therefore, colors on OLED screens are brighter with
higher contrast, making color intensity change easier to detect. In
comparison, both LCD and LED screens have backlight that re-
duces the color contrast. LED screens outperform LCD screens
because the LED backlight renders color change more precisely.

Varying the Camera. Next, we fix the Samsung Tab S as the
transmitter, use different cameras to capture frames, and process
captured frames offline to examine the accuracy and throughput.
We test four types of cameras including a high-end SLR camera
with 18 MP resolution. Results in Table 5 demonstrate the sig-
nificant performance gain brought by high-resolution cameras for
both types of scene. Higher-resolution cameras capture more pix-
els on the transmitter screen, and thus they support smaller grids on
the transmitter screen and achieve higher throughput. In particular,
the high-end SLR camera supports 720 grids on the 10-in screen
enabling 6.6 Kbps throughput, six times higher than that achieved
by iPhone 5s in our prototype. Even the cameras on some existing
smart devices (Note 3 and S5) are sufficient for HiLight to reach 5 –
6 Kbps, similar to that of the high-end camera. This demonstrates

 1

 2

 3

Original HiLight 1 2 3 4 5

U
s
e
r

p
e
rc

e
p
ti
o
n
 s

c
o
re

Fixed ∆α (%)

(a) Static scene

 1

 2

 3

Original HiLight 2 4 6 8 10

U
s
e
r

p
e
rc

e
p
ti
o
n
 s

c
o
re

Fixed ∆α (%)

(b) Dynamic scene

 1

 2

 3

 1 2 3 4 5

U
s
e
r

p
e
rc

e
p
ti
o
n
 s

c
o
re

Fixed ∆α (%)

Bright
Medium

Dark

(c) Static scene, fixed ∆α

 1

 2

 3

 2 4 6 8 10

U
s
e
r

p
e
rc

e
p
ti
o
n
 s

c
o
re

Fixed ∆α (%)

Scenery
Sport

Drama

(d) Dynamic scene, fixed ∆α

Figure 14: User perception on HiLight’s unobtrusive transmissions, where the perception scores are explained in Table 7. Achieving scores of 2 or

below is acceptable. Comparing to changing pixel translucency uniformly with a fixed amount, HiLight adapts the pixel translucency changes (∆α)

non-uniformly across pixels, and thus diminishes the visual effects caused by data communication.

Table 6: Statistics of the 20 video clips used in our user study.

Scene Static scene Dynamic scene
type Bright Medium Dark Scenery Sport Drama

of video clips 3 3 4 3 3 4

Table 7: User perception scores.

Score User perception

1 Certainly no noticeable visual effects. Good viewing experience.

2 Uncertain about visual effects. Still good viewing experience.

3 Certainly noticeable visual effects.

HiLight’s robustness on diverse hardware platforms and its great
potential on future smart devices with more sophisticated cameras.

6.5 User Perception
Finally, we conduct a user study to examine whether HiLight

causes any noticeable visual artifacts on the original screen con-
tent. Our user study is conducted with 10 participants (5 male and
5 female) in the age range of 18 to 30. We select 20 original video
clips (each lasts for 10 s) covering diverse scenes (Table 6). For
each video clip, we create six modified versions by encoding data
into pixel translucency (α) changes. In one version, we use HiLight
to encode data, which adapts ∆α non-uniformly across pixels (Al-
gorithm 1). In the other five versions, we change the α values of all
pixels uniformly with a fixed amount, varying from 1% to 5% for
the static scenes and 2% to 10% for the dynamic scenes. Among
the total 140 video clips (20 original and 120 modified), we ran-
domly assign 100 of them to each participant. To avoid participant
response bias [12], we do not inform participants which video clips
are modified and which are original. Before the study, each partic-
ipant watches the original video clips on a Samsung Tab S screen
to gain an initial sense of the video content. During the study, each
participant watches the assigned 100 video clips (mixed with the
original and modified versions) in a random order on the Tab S
screen and rates from 1 to 3 to indicate the certainty of observing
visual effects in each video clip8. Table 7 shows the perception
scores. Achieving a score of 1 is ideal and 2 is acceptable.

We plot the average user perception scores in Figure 14(a) and
(b). We make two key observations. First, by adapting the amount
of translucency changes (∆α) non-uniformly across the screen, Hi-
Light significantly reduces the visual effects caused by the ∆α in
both static and dynamic scenes. User’s perception level on HiLight
is very close to that of watching the original video clips. In con-
trast, a fixed ∆α across all pixels easily leads to noticeable visual
effects even for small ∆α values (4% for static scenes and 6% for

8A participant can replay a video clip multiple times to determine
the score.

the dynamic scenes). This result demonstrates the effectiveness of
HiLight’s adaptation of ∆α based on sampled screen content pixels
and its gradient smoothing of ∆α within each grid (Figure 6).

Second, the maximal amount of translucency changes that users
cannot perceive depends on the screen content. Between static
and dynamic scenes, dynamic scenes allow larger pixel translu-
cency changes that are unnoticeable by users. We hypothesize that
this is because human eyes are less sensitive to subtle changes in
pixel brightness when the screen content itself contains more dras-
tic color intensity changes. We observe a similar pattern as we
analyze different types of dynamic scenes. Figure 14(d) plots the
average user perception score for three types of dynamic scenes,
as the fixed ∆α increases. For drama scenes that have the most
drastic color intensity changes, 6% of fixed α changes are still al-
most unnoticeable by users. Among the static scenes, we observe
that users can tolerate larger pixel translucency changes (∆α) atop
darker screen content (Figure 14(c)). This is because the absolute
brightness changes of darker areas are smaller than that of brighter
areas. These observations together justify the ∆α configuration in
HiLight (Algorithm 1), which increases the ∆α for dark areas and
dynamic scenes.

7. POTENTIAL APPLICATIONS

Augmented Reality. HiLight can enable innovative interaction
designs for augmented reality (AR) apps. For AR glasses with
heads-up displays and cameras, they can leverage HiLight to ob-
tain additional information layers from any surrounding screens.
Users wearing smart glasses can acquire personalized information
from any screen, including the subtitles of a movie or TV program,
customized coupon or URL link within an advertisement, and hints
in gaming apps, without affecting the content shown on the screen.

Continuous Authentication. Operating on the visible light spec-
trum, HiLight communication occurs only when the camera is phys-
ically facing the screen. This allows us to continuously authenticate
user’s physical presence, highly valuable for many existing apps.
Consider a user wearing smart glasses in front of a screen. On-
line banking or health-related apps can leverage HiLight to continu-
ously authenticate user’s presence and immediately log out the user
when the user leaves the screen. In addition, online video streaming
providers such as Amazon can leverage HiLight to monitor the ex-
act portion of video a user has watched, and define accurate pricing
scheme based on the information.

Video Tagging. When capturing a video, it is hard to add ob-
ject tags on the fly. Using HiLight, we can embed information as-
sociated with the local object or location into all public screens.
Thus, when a camera captures video, it also simultaneously fetches

the additional information from surrounding screens and attaches it
with the video. Social apps such as Facebook can then automati-
cally extract the information in the captured video and add tags for
the user.

8. RELATED WORK
We categorize existing research on screen-camera communica-

tion into two categories.

Obtrusive Screen-Camera Communication. Active research
has examined screen-camera communication using visible coded
images [6]. One class of work focuses on boosting data rate, by
leveraging better modulation schemes [26] or innovative barcode
designs [14, 43]. Another class of work aims to enhance link relia-
bility, by tackling the frame synchronization problem [15, 22, 28],
or enabling barcode detection at long distances [16, 23], or design-
ing multi-layer error correction schemes [36]. A recent study [40]
generates dynamic QR code to transmit sensor data on the fly. Our
work leverages insights from these studies, but differs in that we
aim to enable screen-camera communication without showing vis-
ible coded images.

Unobtrusive Screen-Camera Communication. Prior work has
studied how to hide information in a given screen content while
enabling screen-camera communication. Yuan et al. leverage wa-
termarking to embed messages into an image [41, 42]. [10, 37,
39] enable unobtrusive communication by switching barcodes with
complementary hue. PiCode and ViCode [19] integrate barcodes
with existing images to enhance viewing experiences. All these
methods have greatly reduced the visual artifacts of visible codes.
Yet they all require direct modifications of content pixel RGB val-
ues, which prevents them from supporting arbitrary scene in real
time. The unique contribution of HiLight is to broaden the ap-
plicable scenario of unobtrusive screen-camera communication. It
removes the need to directly modify RGB values and decouples
communication from screen content. HiLight is similar in spirit
to prior efforts that modulate bits by changing the screen’s back-
light [13, 18, 20]. All these designs, however, require special hard-
ware support (e.g., shutter plane). HiLight differs in that it works
upon off-the-shelf smart devices.

9. CONCLUSION
We presented HiLight, the first system enabling real-time, unob-

trusive screen-camera communication atop any screen scene (can
be generated on the fly). We implemented HiLight on off-the-shelf
smart devices and evaluated HiLight in diverse practical settings.
By placing no constraint on the screen’s original functionality (dis-
playing content) while enabling communication, HiLight opens up
opportunities for new HCI and context-aware applications.

Our current system has several limitations and possible exten-
sion that we plan to address in future work. First, the throughput of
our system is currently limited by the screen refresh rate (60 Hz).
For OLED screens, the physical response time of a pixel can be
less than 0.01 ms [5], translating into the pixel change frequency
higher than 100 KHz. We plan to seek methods to better approach
this physical limit and boost the system throughput. Second, we
plan to explore advanced modulation and coding schemes to im-
prove the transmission reliability. We observe that most bit errors
are randomly spread out. Since the current communication chan-
nel is one-way without any feedback from the receiver, error han-
dling schemes such as low-density parity-check (LDPC) code [11]
or Reed-Solomon code [38] are good candidates. Third, our current
design sets a uniform color (black) for the communication layer.

We plan to vary the color (between black and white) across dif-
ferent grids of the communication layer based on the content area
color (e.g., use white color for dark areas and black for bright ar-
eas). This color adaptation can enhance the system reliability atop
a wide range of screen content. Forth, to better support device mo-
bility (e.g., a user wearing smart glasses as the receiver), we plan to
integrate low-complexity object tracking algorithms into HiLight,
so that the receiver can keep tracking the screen area and decode
data even during constant hand or head movement. Finally, our
system is still a one-way channel. To realize a two-way channel, we
can place two devices with screens facing each other and each de-
vice uses its front-facing camera to receive data. Obtaining receiver
feedback allows the transmitter to adapt its configuration (e.g., grid
size, frame window). We plan to explore the associated systems
and design challenges.

10. ACKNOWLEDGMENTS
The authors sincerely thank shepherd Chunyi Peng and the re-

viewers for their valuable feedback and Jiawen Chen at Google for
his insights on GPU programming. We also thank DartNets Lab
members Zhao Tian, Rui Wang, Fanglin Chen, and Xiaole An for
their support on our study. This work is supported in part by the
Dartmouth Burke Research Initiation Award and the National Sci-
ence Foundation under grant CNS-1421528. Any opinions, find-
ings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect those of
the funding agencies or others.

11. REFERENCES

[1] https://www.opengl.org/.

[2] http://opencv.org/platforms/android.html.

[3] http://developer.android.com/guide/

topics/resources/drawable-resource.html.

[4] https://developer.android.com/about/

versions/android-5.0.html.

[5] http://en.wikipedia.org/wiki/OLED.

[6] Automatic identification and data capture techniques - QR
code 2005 bar code symbology specification. ISO/IEC
18004:2006.

[7] ASHOK, A., ET AL. Challenge: Mobile optical networks
through visual MIMO. In Proc. of MobiCom (2010).

[8] BERGER, M. Geometry I. Springer Science & Business,
2009.

[9] BULLOUGH, J., ET AL. Effects of flicker characteristics from
solid-state lighting on detection, acceptability and comfort.
Lighting Research and Technology 43, 3 (2011), 337–348.

[10] CARVALHO, R., CHU, C.-H., AND CHEN, L.-J. IVC:
Imperceptible video communication. In Proc. of HotMobile

(poster) (2014).

[11] DAVEY, M. C., AND MACKAY, D. J. Low density parity
check codes over gf (q). In Information Theory Workshop,

1998 (1998), IEEE, pp. 70–71.

[12] DELL, N., VAIDYANATHAN, V., MEDHI, I., CUTRELL, E.,
AND THIES, W. "Yours is Better!": Participant Response
Bias in HCI. In Proc. of CHI (2012).

[13] FATTAL, D., ET AL. A multi-directional backlight for a
wide-angle, glasses-free three-dimensional display. Nature

495, 7441 (2013), 348–351.

[14] HAO, T., ZHOU, R., AND XING, G. COBRA: Color
barcode streaming for smartphone systems. In Proc. of

MobiSys (2012).

https://www.opengl.org/
http://opencv.org/platforms/android.html
http://developer.android.com/guide/topics/resources/drawable-resource.html
http://developer.android.com/guide/topics/resources/drawable-resource.html
https://developer.android.com/about/versions/android-5.0.html
https://developer.android.com/about/versions/android-5.0.html
http://en.wikipedia.org/wiki/OLED

[15] HU, W., GU, H., AND PU, Q. LightSync: Unsynchronized
visual communication over screen-camera links. In Proc. of

MobiCom (2013).

[16] HU, W., MAO, J., HUANG, Z., XUE, Y., SHE, J., BIAN,
K., AND SHEN, G. Strata: Layered coding for scalable
visual communication. In Proc. of MobiCom (2014).

[17] HUANG, C.-L., AND LIAO, B.-Y. A robust scene-change
detection method for video segmentation. IEEE Transactions

on Circuits and Systems for Video Technology 11, 12 (2001),
1281–1288.

[18] HUANG, S. Backlight modulation circuit having rough and
fine illumination signal processing circuit, Mar. 27 2012. US
Patent 8,144,112.

[19] HUANG, W., AND MOW, W. H. PiCode: 2D barcode with
embedded picture and ViCode: 3D barcode with embedded
video (poster). In Proc. of MobiCom (2013).

[20] KIMURA, K., MASUDA, S., AND HAYASHI, M. Display
apparatus and method for controlling a backlight with
multiple light sources of a display unit, Sept. 11 2012. US
Patent 8,264,447.

[21] LI, T., AN, C., CAMPBELL, A., AND ZHOU, X. HiLight:
Hiding bits in pixel translucency changes. In Proc. of the 1st

ACM MobiCom Workshop on Visible Light Communication

Systems (VLCS) (2014).

[22] LIKAMWA, R., RAMIREZ, D., AND HOLLOWAY, J.
Styrofoam: A tightly packed coding scheme for
camera-based visible light communication. In Proc. of the

1st ACM MobiCom Workshop on Visible Light

Communication Systems (VLCS) (2014).

[23] MOHAN, A., WOO, G., HIURA, S., SMITHWICK, Q., AND

RASKAR, R. Bokode: Imperceptible visual tags for camera
based interaction from a distance. In Proc. of SIGGRAPH

(2009).

[24] MUNSHI, A., GINSBURG, D., AND SHREINER, D. OpenGL

ES 2.0 programming guide. Pearson Education, 2008.

[25] NAGASAKA, A., AND TANAKA, Y. Automatic video
indexing and full-video search for object appearances. In
Proc. of the IFIP TC2/WG 2.6 Second Working Conference

on Visual Database Systems II (1992).

[26] PERLI, S. D., AHMED, N., AND KATABI, D. PixNet:
Interference-free wireless links using LCD-camera pairs. In
Proc. of MobiCom (2010).

[27] PORTER, T., AND DUFF, T. Compositing digital images. In
ACM SIGGRAPH Computer Graphics (1984).

[28] RAJAGOPAL, N., LAZIK, P., AND ROWE, A. Visual light
landmarks for mobile devices. In Proc. of IPSN (2014).

[29] ROSIN, P. L. Thresholding for change detection. In
Computer Vision, 1998. Sixth International Conference on

(1998), IEEE, pp. 274–279.

[30] ROSIN, P. L., AND IOANNIDIS, E. Evaluation of global
image thresholding for change detection. Pattern

Recognition Letters 24, 14 (2003), 2345–2356.

[31] SETHI, I. K., AND PATEL, N. V. Statistical approach to
scene change detection. In IS&T/SPIE’s Symposium on

Electronic Imaging: Science & Technology (1995),
pp. 329–338.

[32] SMITS, P. C., AND ANNONI, A. Toward
specification-driven change detection. IEEE Transactions on

Geoscience and Remote Sensing 38, 3 (2000), 1484–1488.
[33] SUR, S., WEI, T., AND ZHANG, X. Autodirective audio

capturing through a synchronized smartphone array. In ACM

Mobisys 2014.

[34] TAN, K. W., ET AL. FOCUS: a usable & effective approach
to OLED display power management. In UbiComp (2013).

[35] VAN DE SANDE, J., AND ASSIGNOR, T. Real-time
beamforming and sound classification parameter generation
in public environments. TNO report TNO-DV (2012), S007.

[36] WANG, A., MA, S., HU, C., HUAI, J., PENG, C., AND

SHEN, G. Enhancing reliability to boost the throughput over
screen-camera links. In Proc. of MobiCom (2014).

[37] WANG, A., PENG, C., ZHANG, O., SHEN, G., AND ZENG,
B. InFrame: Multiflexing full-frame visible communication
channel for humans and devices. In Proc. of HotNets (2014).

[38] WICKER, S. B., AND BHARGAVA, V. K. Reed-Solomon

codes and their applications. John Wiley & Sons, 1999.

[39] WOO, G., LIPPMAN, A., AND RASKAR, R. VRCodes:
Unobtrusive and active visual codes for interaction by
exploiting rolling shutter. In Proc. of ISMAR (2012).

[40] YONEZAWA, T., OGAWA, M., KYONO, Y., NOZAKI, H.,
NAKAZAWA, J., NAKAMURA, O., AND TOKUDA, H.
SENSeTREAM: Enhancing online live experience with
sensor-federated video stream using animated
two-dimensional code. In Proc. of UbiComp (2014).

[41] YUAN, W., DANA, K., VARGA, M., ASHOK, A.,
GRUTESER, M., AND MANDAYAM, N. Computer vision
methods for visual mimo optical systems. Proceedings of the

IEEE International Workshop on Projector-Camera Systems

(held with CVPR) (2011), 37–43.

[42] YUAN, W., ET AL. Dynamic and invisible messaging for
visual mimo. In IEEE Workshop on Applications of

Computer Vision (WACV) (2012).

[43] ZHANG, B., ET AL. SBVLC: Secure barcode-based visible
light communication for smartphones. In Proc. of

INFOCOM (2014).

[44] ZHANG, H., KANKANHALLI, A., AND SMOLIAR, S. W.
Automatic partitioning of full-motion video. Multimedia

Systems 1, 1 (1993), 10–28.

	Introduction
	Screen-Camera Communication: Limitations and Solution
	Design Goals
	Current Limitations
	Solution: Decoupled Communication Using Alpha Channel

	HiLight Transmitter
	Overview
	Scene Detection
	Determining Alpha Value Change ()

	HiLight Receiver
	Overview
	Extracting Desired Color Intensity Change

	System implementation
	HiLight Experiments
	Supporting Arbitrary Scene
	Processing Time
	Practical Considerations
	Impact of Screen/Camera Hardware
	User Perception

	Potential Applications
	Related Work
	Conclusion
	Acknowledgments
	References

