
Democratic Approximation of Lexicographic Preference Models

FusunYaman† and Thomas J. Walsh‡
†Department of Computer Science and Electrical Engineering

University of Maryland, Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250

{fusun,mariedj}@cs.umbc.edu

Michael L. Littman ‡ and Marie desJardins†
‡Department of Computer Science

Rutgers University
110 Frelinghuysen Rd., Piscataway, NJ 08854

{thomaswa,mlittman}@cs.rutgers.edu

Abstract

Previous algorithms for learning lexicographic preference
models (LPMs) produce a “best guess” LPM that is consistent
with the observations. Our approach is more democratic: we
do not commit to a single LPM. Instead, we approximate the
target using the votes of acollectionof consistent LPMs. We
present two variations of this method—variable votingand
model voting—and empirically show that these democratic
algorithms outperform the existing methods. We also intro-
duce an intuitive yet powerful learning bias to prune some of
the possible LPMs, incorporate this bias into our algorithms,
and demonstrate its effectiveness when data is scarce.

Introduction
Lexicographic preference models (LPMs) are one of the
simplest preference representations. An LPM defines an
order of importance on the variables that describe the ob-
jects in a domain and uses this order to make preference
decisions. For example, the meal preference of a vegetar-
ian with a weak stomach could be represented by an LPM
such that a vegetarian dish is always preferred over a non-
vegetarian dish, and among vegetarian or non-vegetarian
items, mild dishes are preferred to spicy ones. Previous
work on learning LPMs from a set of preference observa-
tions has been limited to autocratic approaches: one of many
possible LPMs is picked arbitrarily and used for future de-
cisions. However, autocratic methods will likely produce
poor approximations of the target when there are few obser-
vations. In this paper, we present ademocraticapproach to
LPM learning, which does not commit to a single LPM. In-
stead, we approximate a target preference using the votes of
a collection of consistent LPMs. We present two variations
of this method:variable votingandmodel voting. Variable
voting operates on the variable level and samples the consis-
tent LPMs implicitly. Model voting explicitly samples the
consistent LPMs and employs weighted voting where the
weights are computed using Bayesian priors. The additional
complexity of voting-based algorithms is tolerable: both al-
gorithms have low-order polynomial time complexity. Our
experiments demonstrate these democratic algorithms out-
perform the “state of the art” greedy approach. We also

Copyright c© 2008,Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

show how to incorporate domain knowledge, in the form of
a powerful learning bias, into these algorithms.

Lexicographic Preference Models
In this section, we briefly introduce the lexicographic prefer-
ence model (LPM) and summarize previous results on learn-
ing LPMs. Throughout this work, we consider binary vari-
ables whose domain is{0, 1}1, where the preferred value of
each variable is known. Without loss of generality, we will
assume that 1 is always preferred to 0.

Given a set of variables,X = {X1 . . . Xn}, an object
A overX is a vector of the form[x1, . . . , xn]. We use the
notationA(Xi) to refer to the value ofXi in the objectA.
A lexicographic preference modelL on X is a total order
on a subsetR of X. We denote this total order with⊏L.
Any variable inR is relevantwith respect toL; similarly,
any variable inX − R is irrelevantwith respect toL. If A
andB are two objects, then the preferred object givenL is
determined as follows:

• Find the smallest variableX∗ in ⊏L such thatX∗ has
different values inA andB. The object that has the value
1 for X∗ is the most preferred.

• If all relevant variables inL have the same value inA and
B, then the objects are equally preferred (a tie).

Example 1 SupposeX1 < X2 < X3 is the total order de-
fined by an LPML, and consider objectsA = [1, 0, 1, 1],
B = [0, 1, 0, 0], C = [0, 0, 1, 1] and D = [0, 0, 1, 0]. A
is preferred overB becauseA(X1) = 1, and X1 is the
most important variable inL. B is preferred overC be-
causeB(X2) = 1 and both objects have the same value for
X1. Finally, C and D are equally preferred because they
have the same values for the relevant variables.

An observationo = (A,B) is an ordered pair of objects,
connoting thatA is preferred toB. However, preference
observations are often gathered from expert demonstrations,
with ties broken arbitrarily. Thus, for some observations,A
andB may actually be tied. An LPML is consistentwith
an observation(A,B) iff L implies thatA is preferred toB
or thatA andB are equally preferred.

1The representation can easily be generalized to monotonic
preferences with ordinal variables.

134

Algorithm 1 greedyPermutation
Require: A setof variablesX and a set of observationsO.
Ensure: An LPM that is consistent withO, if one exists.
1: for i = 1, . . . , n do
2: Arbitrarily pick one ofXj ∈ X such that

MISS(Xj , O) = minXk∈X MISS(Xk, O)
3: π(Xj) := i, assign the ranki to Xj

4: RemoveXj from X
5: Remove all observations(A,B) from O such that

A(Xj) 6= B(Xj)
6: Return the total order⊏ on X such thatXi < Xj iff

π(Xi) < π(Xj)

The problem of learning an LPM is defined as follows.
Given a set of observations, find an LPML that is consistent
with the observations. Previous work on learning LPMs was
limited to the case where all variables are relevant. This
assumption entails that, in every observation(A,B), A is
strictly preferred toB, since ties can only happen when there
are irrelevant attributes.

Schmitt and Martignon (2006) proposed a greedy
polynomial-time algorithm that is guaranteed to find one of
the LPMs that is consistent with the observations if one ex-
ists. They have also shown that for the noisy data case,
finding an LPM that does not violate more than a con-
stant number of the observations is NP-complete. Algo-
rithm 1 is Schmitt and Martignon (2006)’s greedy variable-
permutation algorithm, which we use as a performance base-
line. The algorithm refers to a functionMISS(Xi, O), which
is defined as|{(A,B) ∈ O : A(Xi) < B(Xi)}|; that is, the
number of observations violated inO if the most important
variable is selected asXi. Basically, the algorithm greedily
constructs a total order by choosing the variable at each step
that causes the minimum number of inconsistencies with the
observations. If multiple variables have the same minimum,
then one of them is chosen arbitrarily.

Dombi, Imreh, and Vincze (2007) have shown that if there
aren variables, all of which are relevant, thenO(n log n)
queries to an oracle suffice to learn an LPM. Furthermore,
it is possible to learn any LPM withO(n2) observations if
all pairs differ in only two variables. They proposed an al-
gorithm that can find the unique LPM induced by the ob-
servations. In case of noise due to irrelevant attributes, the
algorithm does not return an answer.

In this paper, we investigate the following problem: Given
a set of observations with no noise, but possibly with arbi-
trarily broken ties, find a rule for predicting preferences that
agrees with the target LPM that produced the observations.

Voting Algorithms
Instead of finding just one of the consistent LPMs, we pro-
pose a democratic approach that reasons with a collection
of LPMs that are consistent with the observations. Given
two objects, such an approach prefers the one that a major-
ity of its models prefer. However, enumerating the exponen-
tially many models is impractical. Instead, we describe two
methods—variable votingand model voting—that sample

the set of consistent LPMs and use voting to predict the pre-
ferred object. Unlike existing algorithms that learn LPMs,
these methods do not require all variables to be relevant or
observations to be tie-free.

Variable Voting
Variable voting uses a generalization of the LPM representa-
tion. Instead of a total order on the variables, variable voting
reasons with apartial order (�) to find the preferred object
in a given pair. Among the variables that are different in
the objects, the ones that have the smallest rank (the most
salient) in the partial order vote choose the preferred object.

Definition 1 (Variable Voting) SupposeX is a set of vari-
ables and� is a partial order onX. Given two objects,
A andB, the variable voting process with respect to� for
determining which of the two objects is preferred is:

• DefineD, the set of variables that differ inA andB.
• DefineD∗, the set of variables inD that have the smallest

rank amongD with respect to�.
• DefineNA as the number of variables inD∗ that favorA

(i.e., that have value 1 inA and 0 inB) andNB , as the
number of variables inD∗ that favorB.

• If NA > NB , thenA is preferred. IfNA > NB , thenB
is preferred. Otherwise, they are equally preferred.

Example 2 Suppose� is the partial order{X2, X3} <
{X1} < {X4, X5}. Consider objectsA = [0, 1, 1, 0, 0] and
B = [0, 0, 1, 0, 1]. D is {X2, X5}. D∗ is {X2} becauseX2

is the smallest ranking variable inD with respect to�. X2

favorsA becauseA(X2) = 1. Thus, variable voting with�
prefersA overB.

Algorithm 2 presents the algorithmlearnVariableRank,
which learns a partial order� on the variables from a set
of observations such that variable voting with respect to�
will correctly predict the preferred objects in the observa-
tions. Specifically, it finds partial orders that define equiva-
lence classes on the set of variables. Initially, all variables
are considered equally important (rank of1). The algorithm
loops over the set of observations until the ranks converge.
At every iteration and for every pair, variable voting predicts
a winner. If it is correct, then the ranks stay the same. Oth-
erwise, the ranks of the variables that voted for the wrong
object are incremented, thus reducing their importance2. Fi-
nally, the algorithm builds a partial order�, wherex � y iff
x has a lower rank thany. We next provide an example and
some theoretical properties of variable voting.

Example 3 SupposeX = {X1, X2, X3, X4, X5} and
O consists of ([0, 1, 1, 0, 0],[1, 1, 0, 1, 1]), ([0, 1, 1, 0, 1],
[1, 0, 0, 1, 0]) and([1, 0, 1, 0, 0] ,[0, 0, 1, 1, 1]). Table 1 illus-
trates the ranks of every variable inX after each iteration
of the for-loop in line 3 of the algorithm learnVariableRank.
The ranks of the variables stay the same during the second
iteration of the while-loop, thus, the loop terminates. The
partial order� based on ranks of the variables is the same
as the order given in Example 2.

2In our empirical results, we also update the ranks when the
prediction was correct but not unanimous.

135

Algorithm 2 learnVariableRank
Require: A setof X of variables, and a setO of observations
Ensure: A partial order onX.
1: Π(x) = 1, ∀ x ∈ X
2: while Π can changedo
3: for Every observation(A, B) ∈ O do
4: LetD be the variables that differ inA andB
5: D∗ = {x ∈ D|∀y ∈ D, Π(x) ≤ Π(y)}
6: VA is the set of variables inD∗ that are 1 inA.
7: VB is the set of variables inD∗ that are 1 inB.
8: if |VB | ≥ |VA| then
9: for x ∈ VB such thatΠ(x) < |X| do

10: Π(x) = Π(x) + 1;
11: Return partial order� onX such thatx � y iff Π(x) < Π(y).

Table 1: The rank of the variables after each iteration of the
for-loop in line 3 of the algorithmlearnVariableRank.

Observations X1 X2 X3 X4 X5

Initially 1 1 1 1 1
[0, 1, 1, 0, 0], [1, 1, 0, 1, 1] 2 1 1 2 2
[0, 1, 1, 0, 1], [1, 0, 0, 1, 0] 2 1 1 2 2
[1, 0, 1, 0, 0], [0, 0, 1, 1, 1] 2 1 1 3 3

Correctness: Suppose� is a partial order returned by
learnVariableRank(X ,O). It can be shown that any LPM
L such that⊏L is a topological sort of� is consistent with
O. Furthermore,learnVariableRank never increments the
ranks of the relevant variables beyond their actual rank in
the target LPM. The ranks of the irrelevant variables can be
incremented as far as the number of variables.
Convergence: learnVariableRankhas a mistake-bound of
O(n2), wheren is the number of variables, because each
mistake increases the sum of the potential ranks by at least
1 and the sum of the ranks the target LPM induces isO(n2).
Thus, given enough observations,learnVariableRankwill
converge to a partial order� such that every topological sort
of � has the same prefix as the total order induced by the tar-
get LPM. If all variables are relevant, then� will converge
to the total order induced by the target LPM.
Complexity: A cursory inspection of the time complexity of
the algorithm yields a loose upper bound ofO(n3m), where
n is the number of variables andm is the number of obser-
vations.

Model Voting
The second method we present employs a Bayesian ap-
proach. This method randomly generates a sample set,S,
of distinct LPMs, that are consistent with the observations.
When a pair of objects is presented, the preferred one is pre-
dicted using weighted voting. That is, eachL ∈ S casts a
vote for the object it prefers, and this vote is weighted ac-
cording to its posterior probabilityP (L|S).

Definition 2 (Model Voting) Let U be the set of all LPMs,
O be a set of observations, andS ⊂ U be a set of LPMs that
are consistent withO. Given two objectsA and B, model
voting prefersA overB with respect toS if

∑

L∈U

P (L|S)V L
(A>B) >

∑

L∈U

P (L|S)V L
(B>A), (1)

Algorithm 3 sampleModels
Require: A set of variablesX, a set of observationsO, and

rulePrefix, an LPM to be extended.
Ensure: An LPM (possibly aggregated) consistent withO.
1: candidatesis the set of variables{Y : Y /∈ rulePrefix |

∀(A, B) ∈ O, A(Y) = 1 orA(Y) = B(Y)}.
2: while candidates6= ∅ do
3: if O = ∅ then
4: return(rulePrefix, ∗).
5: Randomly remove a variableZ from candidates.
6: Remove any observation(C, D) from O such thatC(Z) 6=

D(Z).
7: ExtendrulePrefix:rulePrefix= (rulePrefix, Z).
8: Recomputecandidates.
9: returnrulePrefix

whereV L
(A>B) is 1 if A is preferred with respect toL and

0 otherwise.V L
(B>A) is defined analogously.P (L|S) is the

posterior probability ofL being the target LPM givenS,
calculated as discussed below.

We first assume that all LPMs are equally likelya priori.
In this case, given a sampleS of sizek, the posterior prob-
ability of an LPML will be 1/k if and only if L ∈ S and 0
otherwise. It is generally not feasible to have all consistent
LPMs—in practice, the sample has to be small enough to be
feasible and large enough to be representative.

To satisfy these conflicting criteria, we introduceaggre-
gated LPMs, which exploit the fact that many consistent
LPMs share prefixes in the total order that they define. An
aggregated LPM,(X1, X2 . . . , Xk, ∗), represents a set of
LPMs that define a total order with the prefixX1 < X2 <
. . . < Xk. Intuitively, an aggregated LPM states that any
possible completion of the prefix is consistent with the ob-
servations.

The algorithmsampleModels(Algorithm 3) uses a “smart
sampling” approach by constructing an LPM that is consis-
tent with the given observations, returning an aggregated
LPM when possible. We start with an arbitrary consistent
LPM (such as the empty set) and add more variable order-
ings extending the input LPM. We first identify the variables
that can be used in extending the prefix—that is, all variables
Xi such that in every observation, eitherXi is 1 in the pre-
ferred object or is the same in both objects. We then select
one of those variables randomly and extend the prefix. Fi-
nally, we remove the observations that are explained with
this selection and continue with the rest. If no observations
remain, then we return the aggregated form of the prefix,
RunningsampleModelsseveral times and eliminating dupli-
cates will produce a set of (possibly aggregated) LPMs.

Example 4 Consider the same set of observationsO as
in Example 3. The LPMs that are consistent withO are
as follows: (), (X2), (X2, X3), (X2, X3, X1, ∗), (X3),
(X3, X1, ∗), (X3, X2) and (X3, X2, X1, ∗). To illus-
trate the set of LPMs that an aggregate LPM represents,
consider (X2, X3, X1, ∗), which has a total of 5 exten-
sions:(X2, X3, X1), (X2, X3, X1, X4), (X2, X3, X1, X5),
(X2, X3, X1, X4, X5), (X2, X3, X1, X5, X4). Every time
sampleModels is run, it randomly generates one of

136

the aggregated LPMs:(X2, X3, X1, ∗), (X3, X1, ∗), or
(X3, X2, X1, ∗).

An aggregate LPM in a sample saves us from enumerat-
ing all possible extensions of a prefix, but it also introduces
complications in computing the weights (posteriors) of the
LPMs as well as their votes. For example, when comparing
two objectsA andB, some extensions of an aggregate LPM
might vote forA and some forB. Suppose there aren vari-
ables andL is an aggregated LPM with a prefix of lengthk.
Then, the number of extensions ofL is denoted byFL and
is equal tofn−k, wherefm is defined to be:

fm =
m

∑

i=0

(

m

i

)

× i! =
m

∑

i=0

(m)!

(m − i)!
. (2)

Intuitively, fm counts every possible permutation with at
mostm items. Note thatfm can be computed efficiently and
thatfn counts all possible LPM’s forn variables.

Consider a pair of objects,A and B. We wish to de-
termine how many extensions of an aggregate LPML =
(X1, X2, . . . , Xk, ∗) would vote for one of the objects. We
will call the variablesX1 . . . Xk the prefix variables. IfA
andB have different values for at least one prefix variable,
then all extensions will vote in accordance with the smallest
such variable. Suppose all prefix variables are tied andm is
the set of all non-prefix variables. Then,m is composed of
three disjoint setsa, b, andw, such thata is the set of vari-
ables that favorA, b is the set of variables that favorB, and
w is the set of variables that are neutral.

An extensionL′ of L will produce a tie iff all variables
in a andb are irrelevant inL′. The number of such exten-
sions isf|w|. The number of extensions that favorA over
B is directly proportional to|a|/(|a| + |b|). The number of
extensions ofL that will vote for A over B is denoted by
NL

A>B :

NL
A>B =

|a|

|b| + |a|
× (fm − f|w|). (3)

Thenumber of extensions ofL that will vote forB overA
is computed similarly. Note that the computation ofNL

A>B ,
NL

B>A, andFL can be done in linear time.

Example 5 SupposeX and O are as defined in Exam-
ple 3. The first column of Table 2 lists all LPMs that
are consistent with O. The second column gives the pos-
terior probabilities of these models given the sampleS1,
which is the set of all consistent LPMs. The third column
is the posterior probability of the models given the sam-
ple S2 = {(X2, X3, X1, ∗), (X3, X1, ∗), (X3, X2, X1, ∗)}.
Given two objectsA = [0, 1, 1, 0, 0] andB = [0, 0, 1, 0, 1],
the number of votes for each object based on each LPM is
given in the last two columns.

Algorithm 4 (modelVote) takes a sample of consistent
LPMs and a pair of objects as input, and predicts the pre-
ferred object using the weighted votes of the sampled LPMs.
Returning to Example 5, the reader can verify that model
voting will preferA overB. Next, we will present our theo-
retical results forsampleModelsandmodelVote.
Complexity: The time complexity ofsampleModelsis
bounded byO(n2m), wheren is the number of variables

Table 2: The posterior probabilities and number of votes of
all LPMs in Example 5.

LPMs P (L|S1) P (L|S2) NL

A>B NL

B>A

() 1/31 0 0 0
(X2) 1/31 0 1 0
(X2, X3) 1/31 0 1 0
(X2, X3, X1, ∗) 5/31 5/26 5 0
(X3) 1/31 0 0 0
(X3, X1, ∗) 16/31 16/26 7 7
(X3, X2) 1/31 0 1 0
(X3, X2, X1, ∗) 5/31 5/26 5 0

Algorithm 4 modelVote
Require: A setof LPMs,S, and two objects,A andB.
Ensure: Returns either one ofA or B or tie.
1: InitializesampleSize to the number of non-aggregated LPMs

in S.
2: for every aggregated LPML ∈ S do
3: sampleSize+=FL.
4: Vote(A) = 0 ; Vote(B) = 0 ;
5: for every LPML ∈ S do
6: if L is not an aggregate rulethen
7: winner is the objectL prefers amongA andB.
8: IncrementVote(winner) by 1/sampleSize.
9: else

10: if A andB differ in at least one prefix variable ofL then
11: L∗ is an extension ofL referring only the prefix.
12: winner is the objectL∗ prefers amongA andB
13: Vote(winner) += FL/sampleSize.
14: else
15: Vote(A) += NL

A>B/sampleSize.
16: Vote(B) += NL

B>A/sampleSize.
17: if Vote(A) = Vote(B) then
18: Return atie
19: else
20: Return the objectobj with the highestVote(obj).

and m is the number of observations. If we callsample-
Modelss times, then the total complexity of sampling is
O(sn2m). For constants, this bound is still polynomial.
Similarly, the complexity ofmodelVoteis O(sn) because
it considers each of thes rules in the sample, counting the
votes of each rule, which can be done inO(n) time.
Comparison to variable voting: The set of LPMs that is
sampled vialearnVariableRankis a subset of the LPMs that
sampleModelscan produce. The running example in the pa-
per demonstrates thatsampleModelscan generate the LPM
(X3, X1, ∗); however, none of its extensions is consistent
with the partial orderlearnVariableRankreturns.

Introducing Bias
In general, when there are not many training examples for
a learning algorithm, the space of consistent LPMs is large.
To overcome this problem, we can introduce bias (domain
knowledge), indicating that certain solutions should be fa-
vored over the others. In this section, we propose a bias
in the form of equivalence classes over the set of attributes.
These equivalence classes indicate the set of most important

137

attributes, second most important attributes, and so on.

Definition 3 (Learning Bias) A learning biasB for learn-
ing a lexicographic preference model on a set of variables
X is a total order on a partition ofX. B has the form
E1 < E2 < . . . < Ek, where∪iEi = X. Intuitively, B
defines a partial order (�B) on X such that for any two
variablesx ∈ Ei andy ∈ Ej , x < y iff Ei < Ej .

Definition 4 Suppose thatX = {X1, . . . Xn} is a set of
variables,B a learning bias, andL an LPM.L is consistent
with B iff the total order⊏L is consistent with the partial
order�B.

Intuitively, an LPM that isconsistentwith a learning bias
respects the variable orderings induced by the learning bias.
The learning bias prunes the space of possible LPMs. The
size of the partition determines the strength of the bias; for
example, if there is a single variable per set, then the bias de-
fines a specific LPM. In general, the number of LPMs con-
sistent with learning bias (E1 < E2 < . . . < Ek) can be
computed with the following:

G([e1, . . . ek,]) = fe1
+ e1! × (G([e2, . . . ek]) − 1), (4)

where ei = |Ei| and the base case for the recursion is
G([]) = 1. The first term counts the number of possible
LPMs using only the variables inE1, which are the most
important variables. The definition of consistency entails
that a variable can appear in⊏L iff all of the more important
variables are already in⊏L, hence the terme1!.

We can generalizelearnVariableRankto utilize the learn-
ing bias defined above by changing only the first line of
learnVariableRank, which initializes the ranks of the vari-
ables. Given a bias of the formS1 < . . . < Sk, the new
algorithm assigns the rank 1 (most important rank) to the
variables inS1, rank|S1| + 1 to those inS2, and so forth.

The algorithmmodelVotecan also be generalized to use
a learning biasB. In the sample generation phase, we use
sampleModelsas presented earlier, and then eliminate all
rules whose prefixes are not consistent with the bias. Note
that even if the prefix of an aggregated LPML is consistent
with a bias, this may not be the case for every extension of
L. Thus, in the algorithmmodelVote, we need to change any
references toFL andNL

A<B (or NL
B<A) with FB

L andNL,B
A<B

(or NL,B
B<A), respectively, where:

• FB
L is the number of extensions ofL that are consistent

with B, and

• NL,B
A<B is the number of extensions ofL that are consistent

with B and preferA. (NL,B
B<A is similar.)

Suppose thatB is a learning biasE1 < . . . < Em. Let Y
denote the prefix variables of an aggregate LPML andEk

be the first set such that at least one variable inEk is not in
Y . Then,FB

L = G([|Ek − Y |, |Ek+1 − Y |, . . . |Em − Y |]).
In counting the number of extensions ofL that are con-

sistent withB and preferA, as inmodelVote, we need to
examine the case where the prefix variables equally prefer
the objects. SupposeY is as defined as above andDi de-
notes the set difference betweenEi andY . Let Dj be the
first non-empty set andDk be the first set such that at least

one variable inDk has different values in the two objects.
Obviously, only the variables inDk will influence the pre-
diction of the preferred object. If

• di = |Di|, the cardinality ofDi, and

• a is the set of variables inDk that favorA, b is the set of
variables inDk that favorB, andw is the set of variables
in Dk that are neutral,

thenNL,B
A>B , the number of extensions ofL that are consis-

tent withB and preferA, can be computed as follows:

NL,B
A>B =

|a|

|a| + |b|
× (FB

L − G([dj . . . dk−1, |w|])). (5)

Experiments
We empirically evaluated the described algorithms, using a
metric ofprediction performance,P , with respect to a set of
test observations,T :

performance(P, T) =
Correct(P, T) + 0.5 × Tie(P, T)

|T |
(6)

whereCorrect(P, T) is the number of observations inT that
are predicted correctly byP andTie(P, T) is the number of
observations inT thatP predicted as a tie. We will useMV ,
V V , andG to denote the model voting, variable voting, and
the greedy approximations (respectively) of an LPM.

Given sets of training and test observations,(O, T), we
measure theaverageandworst performances ofV V , MV
and G. When combined withlearnVariableRank,V V is
a deterministic algorithm, so the average and worst perfor-
mances ofV V are the same. However, this is not the case
for G or MV with sampling. To mitigate this, we ranG 200
times for every(O, T), andMV 10 times for each(O, T)
pair. ForMV , we calledsampleModelsS times per run.

For our experiments, the control variables areR, the num-
ber of relevant variables in the target LPM;I, the number
of irrelevant variables;NO, the number of training observa-
tions; andNT , the number of test observations. ForMV
experiments, we usedS = 50 andS = 200. larger sam-
ple sizes (e.g. 800) improved performance slightly, but are
omitted for space. For fixed values ofR and I, an LPM
L is randomly generated. We randomly generatedNO and
NT pairs of objects, each withI + R variables. Finally, we
labeled the preferred objects in accordance withL.

Figure 1a shows the average performance ofG, MV with
two different sample sizes andV V for R = 15, I = 0, and
NT = 20, asNO ranges from 2 to 20. Figure 1b shows
the worst performance for each algorithm. In these figures,
the data points are averages over 20 different pairs of train-
ing and test sets(O, T). The average performances ofV V
andMV are better than the average performance ofG, and
the difference is significant at every data point. Also, the
worst case performance ofG after seeing two observations
is around 0.3, suggesting a very poor approximation of the
target. V V andMV ’s worst case performances are much
better than the worst case performance ofG, justifying the
additional complexity of these two algorithms. We have ob-
served the same behavior for other values ofR andI, and

138

Figure 1: The average and worst prediction performance of
thegreedy algorithm, variable voting and model voting

Figure 2: The effect of bias on VV and G.

have also witnessed a significant performance advantage for
MV overV V in the presence of irrelevant variables when
training data is scarce (omitted for space).

Figure 2 shows the positive effect of learning bias
on the performance of voting algorithms forR = 10,
I = 0, and NT = 20, as NO ranges from 2 to
20. We have trivially generalizedG to produce LPMs
that are consistent with a given bias. The data points
are averages over 20 different pairs of training and test
sets (O, T). We have arbitrarily picked two biases:
B1 : {X1, X2, X3, X4, X5} < {X6, X7, X8, X9, X10} and
B2 : {X1, X2, X3} < {X4, X5} < {X6, X7, X8} <
{X9, X10}. The performance ofV V improved greatly with
the introduction of learning biases.B2 is a stronger bias than
B1 and prunes the space of consistent LPMs more thanB1,
resulting in a greater performance gain due toB2. The dif-
ferences between the bias curves and the non-bias curve are
statistically significant, except at the last point of each. Note
that the biases are particularly effective when the number
of training observations is small. For both biases, the worst
case performance ofG is significantly lower than the per-
formance ofV V with the corresponding bias. We obtained
very similar results withMV (omitted for space).

Related Work
Lexicographic orders and other preference models have been
utilized in several research areas, including multicriteria
optimization (Bertsekas and Tsitsiklis 1997), linear pro-
gramming, and game theory (Quesada 2003). The lexico-
graphic model and its applications were surveyed by Fish-
burn (1974). The most relevant existing works for learn-
ing and/or approximating LPMs are by Schmitt and Mar-
tignon (2006) and Dombi, Imreh, and Vincze (2007), which
were summarized earlier. In addition, the ranking problem
as described by Cohen, Schapire, and Singer (1999) is simi-
lar to the problem of learning an LPM. However, that line
of work poses learning as an optimization problem, find-
ing the ranking that maximally agrees with the given prefer-
ence function. Our work assumes noise-free data, for which
an optimization approach is not needed. Another analogy
(Schmitt and Martignon 2006), is between LPMs and de-
cision lists (Rivest 1987). Specifically, it was shown that
LPMs are a special case of 2-decision lists, and that the al-
gorithms for learning these two classes of models are not
directly applicable to each other.

Conclusions and Future Work
We presented two democratic approximation methods,vari-
able votingandmodel voting, for learning a lexicographic
preference model (LPM), We showed that both methods
can be implemented in polynomial time and exhibit much
better worst- and average-case performance than the exist-
ing methods. Finally, we have defined a learning bias for
when the number of observations is small and incorporated
this bias into the voting-based methods. In the future, we
plan to generalize our algorithms to learn the preferred val-
ues of a variable as well as the total order on the variables.
We also intend to develop democratic approximation tech-
niques for other kinds of preference models.

Acknowledgments
This work was supported by DARPA/USAF through BBN
contract FA8650-06-C-7606.

References
Bertsekas, D., and Tsitsiklis, J. 1997.Parallel and distributed
computation: numerical methods. Athena Scientific.

Cohen, W.; Schapire, R.; and Singer, Y. 1999. Learning to order
things.Journal of Artificial Intelligence Research10:243–270.

Dombi, J.; Imreh, C.; and Vincze, N. 2007. Learning lex-
icographic orders.European Journal of Operational Research
183(2):748–756.

Fishburn, P. 1974. Lexicographic Orders, Utilities and Decision
Rules: A Survey.Management Science20(11):1442–1471.

Quesada, A. 2003. Negative results in the theory of games with
lexicographic utilities.Economics Bulletin3(20):1–7.

Rivest, R. 1987. Learning decision lists.Machine Learning
2(3):229–246.

Schmitt, M., and Martignon, L. 2006. On the complexity of
learning lexicographic strategies.Journal of Machine Learning
Research7:55–83.

139

