
Democratic Processing
Mastering the complexity of communicating systems

� � � �
� � � �
✁ ✁ ✁ ✁
✁ ✁ ✁ ✁✂ ✂ ✂ ✂
✂ ✂ ✂ ✂
✄ ✄ ✄ ✄
✄ ✄ ✄ ✄

☎ ☎ ☎ ☎✆ ✆ ✆ ✆

Hylke W. van Dijk

Democratic processing
Mastering the complexity of communicating systems

Proefschrift

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 22 november 2004 om 13:00 uur

door

Hijlke Watze VAN DIJK

elektrotechnisch ingenieur

geboren te Wommels.

Dit proefschrift is goedgekeurd door de promotoren:

Prof.dr.ir. H.J. Sips

Prof.dr.ir R.L. Lagendijk

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter

Prof.dr.ir. H.J. Sips, Technische Universiteit Delft, promotor

Prof.dr.ir. R.L. Lagendijk, Technische Universiteit Delft, promotor

Prof.dr.ir. E.F. Deprettere, Universiteit Leiden

Prof.dr. P.H. Hartel, Universiteit Twente

Prof.dr.ir. P.H.N. de With, Technische Universiteit Eindhoven

Prof.dr. W.G. Vree, Technische Universiteit Delft

Prof.dr.ir. N.H.G. Baken, Technische Universiteit Delft

BIBLIOGRAFISCHE DATA

Dijk, H.W. van

Democratic processing: Mastering the complexity of communicating systems

H.W. van Dijk. -

Thesis Delft University of Technology – With references. – With summary in Dutch.

November, 2004

ISBN 90 6464 660 0

Subject headings: QoS; Context Aware Processing, Multidisciplinary optimisation

Multiobjective optimisation, Democratic Processing, Communicating systems

Copyright c© 2004 by H.W. van Dijk.

All rights reserved. No part of the material protected by this copyright notice may be reproduced or util-

ised in any form or by any means, electronic or mechanical, including photocopying, recording or by any

information storage and retrieval system, without permission from the author.

Printed in the Netherlands.

Contents

Contents i

Summary iii

1 Introduction 1

1.1 Communication systems . 2

1.2 Complex systems . 3

1.3 Democratic processing . 5

1.4 System Architect . 10

1.5 Outline . 11

2 Complex systems in perspective 13

2.1 Ontology . 14

2.2 Ubicom . 20

2.3 Discussion . 35

3 Negotiated Quality of Service 37

3.1 Views on QoS . 38

3.2 Adaptive Resource Contracts (ARC) 40

3.3 Related work . 45

3.4 ARC structures: compositionality 50

3.5 ARC Discussion . 56

3.6 ARC components . 59

4 Mathematical consideration of QoS 61

4.1 Vector problem definition . 61

4.2 Related Work . 65

4.3 ARC structures: compositionality 67

4.4 Case study . 70

4.5 Conclusion . 77

i

ii CONTENTS

5 Context-aware process networks 79

5.1 Kahn process networks . 85

5.2 Indeterminate processes . 89

5.3 CAPN semantics . 95

5.4 Analysis and application of CAPN . 98

6 Ubicom case studies 113

6.1 Cascade structure . 113

6.2 Parallel structure . 132

6.3 ARC interfaces: Ubicom . 138

7 Conclusions 141

7.1 Results . 141

7.2 Reflection . 143

7.3 Future improvements . 144

Bibliography 145

Index of citations 157

Samenvatting 161

Acknowledgement 163

Curriculum Vitae 164

Summary

MODERN communication systems tend to include more and more functionality

while offering the user the freedom of mobility. Context-awareness is regarded

a great asset for these type of devices. Great care must be taken when developing these

devices and their applications, since mobile devices must be small and consequently

have limited resources. Fortunately the active function repertoire of a mobile device is

smaller than the potential repertoire, hence functionality can be swapped on demand.

Given the current state of the technology, a successful development methodology for

these kind of systems therefore acknowledges the fact that communication systems

are in a constant state of flux. This is even more true when considering the changing

conditions of the immediate environment of the system.

Problem

In this dissertation we address the issue of the development and operation of complex

communicating systems. The complexity of a system is mainly attributed to irregular

relations among the heterogeneous components of a system. An important aspect of

a complex communicating system is its being in a constant state of flux. Given this

setting of the system we found that flexibility is as much a design parameter as for

instance power dissipation.

In this dissertation we focus on a multidisciplinary research programme, the Ubicom

(Ubiquitous communications) project [Lagendijk, 2000a]. This research project aimed

at developing visual mobile augmented reality, anytime, anywhere, anyplace. The

multidisciplinary character of the programme significantly complicates the interaction

among individual system components, because each discipline involved brings its own

culture, preferred development methodology, language, etc.

Our main goal is to develop a framework to organise the coordination among sys-

tem components of a communicating system. The Ubicom system is our motivating

case study.

iii

iv Summary

Approach

Our approach is based on a three notions. First, a system has many beyond our reach

properties, which are valued differently by different stakeholders. We adopt an “on-

tology of the world” [Bunge, 1977] to put in perspective different views and different

predicates of the system.

Second, we conjecture that a complex system of communicating entities should

be addressed as an organism with distributed coordination. Rather than applying a

hierarchical organisation we suggest a heterarchic organisation of the coordination,

where the dominance is demand driven. Components in the system therefore should

be able to abstract their distortion, capacity, and resource utilisation metrics, should

be able to adapt to changes in their milieu, and should be willing to cooperate with

components in their immediate environment; all components should, like the system,

be truly context aware. The above arguments are merged into a framework (ARC) for

coordinating a communicating system.

Third, the compositional property is an important aspect for the adequate devel-

opment of any complex system. However, context-aware components are necessarily

indeterminate and consequently lack the compositional property. In order to retain this

compositional property we develop a model of computation (CAPN) that concentrates

the context-dependency of an entity in a control stream. The autonomous processes in

this model are flexible in the sense that they can asynchronously adapt to and cooperate

with their milieu. We coined this type of operation “democratic processing”.

Results

The study of developing complex communicating systems is a multi-something prob-

lem, where something can be anything, ranging from disciplinary development to ob-

jective optimisation or from input to output. We succeeded in structuring the multi-

something problem in three themes and provide practical approaches and case studies

for each of them. The three themes are communication, coordination, and composition.

For communication we rely on a multi-view representation of the system. Each

view targeting specific concerns and conveying dedicated information.

For coordination we developed the Adaptive Resource Contracts (ARC) framework

that supports flexible designs with non-functional aspects made explicit: distortion, ca-

pacity, and resource utilisation. ARC component are truly context-aware; they imple-

ment abstraction, adaption, and cooperation.

For the compositional property, ARC isolates the indeterminate behaviour of a

component through a so-called oracle. Because of this isolation, the network retains

its compositional property. Our Context-Aware Process Network (CAPN) model is an

explicit model of computation that implements ARC concepts for the class of stream-

based applications with occasional event handling.

One

Introduction

THIS dissertation presents a framework for mastering the complexity of communic-

ating systems. The composition of a group of communicating systems is a sys-

tem1 again. This dissertation concentrates on systems that facilitate communication;

a typical system has a backbone network infrastructure and communicating mobile

terminals. The considered communication system is flexible in the sense that it1) sup-

ports multiple types of media and 2) can be applied in different scenarios. For each

scenario, the environment in which the system operates may vary and the expectations

a user has of the behaviour and performance of the system may change. Develop-

ing a communication system under these constraints is a real challenge. It requires

efficient coordination among the constituent subsystems. With the evolution of com-

munication systems, users have become spoiled and expect increasing performance.

As a result, systems require high-performance components, which complicates the de-

velopment process even further. We propose a development framework that respects

and values the potentials of individual subsystems and guides the coordination among

components. An asset of our development framework is its applicability throughout the

different stages of the life cycle of a system: during the exploration-time, design-time,

compile-time, and run-time stages.

In this introductory chapter we set the context of our research and sketch the con-

cepts of our development framework. The framework is the result of research con-

ducted in the Ubicom research programme. Throughout this dissertation the Ubicom

system, studied in this programme, serves as an example of a complex system for

communication. The development framework is based on three key notions: abstract

communication, context-aware coordination, and compositionality. It encourages the

self-assessment of individual subsystems and it distributes the responsibility for the

integrity of the system over the participating subsystems. Much of what you would

expect to find in a true democratic framework.

1If necessary to discriminate between either two appearances of a system, we refer to the constituent

systems as subsystems and to their composition as the compound system. A subsystems, thus is a component

of a compound system

1

2 Introduction

Synthesis
Actor

System
state

Sensor
Analysis

Milieu

Figure 1.1: Generic communication system structure

1.1 Communication systems

Communication systems interact with their immediate environment, their milieu. A

generic high-level structure of these interactions is given in Figure 1.1. The system de-

picted in this diagram is composed of four (sub)systems: Sensor, Analysis, Synthesis, and

Actor. The sensor system attributes selected properties of the immediate environment; it

senses the system context. The sensed information is transferred to the analysis system

which effectively transforms the external context to the System state. The system state

is shared by all subsystems involved and therefore contributes to the context of indi-

vidual subsystems. The synthesis system takes the system state, which is now in the

appropriate format, and prepares a proper (re)action of the system to its environment.

The actor system performs the necessary transformation to a suitable output format.

The composition of subsystems yields a system that interacts with its milieu, although

none of the individual subsystems has this property; it is an emergent property of the

communication system as a whole.

1.1.1 Ubicom

The Ubiquitous communication (Ubicom) research programme conducted at Delft

University of Technology provided the inspiring context for the research described in

this dissertation. The programme targeted visual augmented reality. To accomplish this

target, the programme brought together a wide range of disciplines. To give an idea,

experts from electrical engineering, computer science, physics, geodesy, and industrial

design worked together on the Ubicom system. Ubicom pursued the development of

a system for mobile visual augmented reality. A typical Ubicom application combines

entertainment and information. The enterprise view of this multidisciplinary research

programme is best introduced with an example. Example 1.1 presents a view on the

Ubicom system from the perspective of the “interested” user.

Example 1.1 (Visual augmented reality) The museum Boijmans van Beuningen is a multi-

faceted museum with a representative collection of old masters of modern art [Boijmans Van

1.2. Complex systems 3

Beuningen, 1849,1958]. Picture a visitor wearing the Ubicom terminal: a small device con-

nected to a see-through display. The device has a wireless interface to the hidden backbone of

the Ubicom system: ubiquitous computation and storage resources in the backbone network in-

frastructure. The system is context aware: it knows the position and orientation of the user as

well as the user’s preferences. The Ubicom system situates virtual graphical objects in overlay

with real-world artefacts by projecting them on the see-through display such that, from the point

of view of the user, the objects seem to be connected to real-world objects: visual augmented

reality.

The Ubicom system executes a tour guide application. A small virtual creature acts as a

guide who suggests possible interesting pieces of art. He leads the way to the old masters sec-

tion. Here, the visitor enjoys a painting called “De kwakzalver (The Quack)” by Dou [1652].

The painting is an exemplar of the so-called Dutch genre paintings, which are full of symbolic

references. When the visitor gazes at the painting, vivid animations clarify the scene pointing out

the symbols, which refer to the contrast between luxury and austerity, or indicate dim-wittedness

and deception. The visitor can alos choose to study the various hidden sketches which were the

basis of the painting as it is today. These so-called underdrawings can otherwise only be seen

separately using infra-red, ultrasound, or roentgenographic technology.

The new wing of the museum (author’s imagination) accommodates the D.I.Y. hall. Here

visitors are invited to sculpture and re-sculpture virtual objects of art. The room is equipped with

empty frames mounted to the wall and socles placed on the floor. With digital paint and digital

clay visitors make abstract works of art. The sculptures are left behind for others to enjoy or to

modify. Particular successful collective works of art are conserved and put on display.

The leitmotif of this dissertation is the development of a Ubicom system as a sys-

tem. The development does not take place in isolation; it is part of the Ubicom project,

which in turn is part of the aforementioned Ubicom research programme. The Ubicom

project addresses the technological issues of the research programme.

1.2 Complex systems

The development of a communication system in a multidisciplinary setting such as the

Ubicom project is inherently difficult; it is a complex system in a complex setting.

The complexity of any system is increased by the interplay of a number of aspects.

The following are a few outstanding ones, which when used in combination define a

complex system.

Scale Large-scale structures tend to obstruct a clear view.

Interaction Interactions among components may complicate their coordination.

Diversity The involvement of diverse technical domains (disciplines) induces hetero-

geneity in modelling and research approaches.

Irregularity Regular and homogeneous structures or interactions can be mastered by

good bookkeeping alone. Irregularity and inhomogeneity complicate systems.

Flux The immediate environment of a system demands that the system is in a constant

state of flux.

4 Introduction

The Ubicom system is composed of subsystems that originate from various discip-

lines. Consequently, the Ubicom project had many, often competing, challenges [La-

gendijk, 2000b]. Common in multidisciplinary projects is the tension between the indi-

vidual and the collective. Researchers want to compete with international top-research

institutes in their respective domain of expertise, while at the same time interdisciplin-

ary collaboration is desired. The project-wide commitment is to explore collaboration

and to have it result in a mobile augmented reality terminal, or even better, in a family

of mobile augmented reality terminals; each terminal being optimised for a specific

scenario.

The above challenges have in common that they target enabling technology rather

than providing new applications or developing novel services. Several scenarios of

possible application areas have passed in review during the exploratory stage of the

life cycle of the system [van der Schaaf, 1999]. Each scenario describes an application

and the context in which the system operates. The set of possible scenarios serves as

a focus point and it enables high-level communication between disciplines. Defining a

set of possible scenarios rather than a single scenario demands flexibility at all parts of

the project. Flexibility is required when the individual system components are designed

and flexibility is required when the system is assembled from these components. Proper

coordination of the offered flexibility is constrained by the role a component plays in

the entire system and the environment of the system. In short, systems must be aware of

their context, irrespective of whether the system is a subsystem or a compound system.

In this dissertation we address the problem of developing complex communica-

tion systems. We focus on the proper coordination among the constituent components,

because we belief that the integrity of a complex communication is significantly de-

termined by its coordination. We will argue that a feasible method of coordination a

ideally organised distributively, non-iteratively, and evolutionary. Since,1) Centralised

solutions are impractical, if not infeasible, due to the complexity of the system under

design. 2) Iterative solutions hinder timely designs due to the number of disciplines

involved in the system. 3) Newly derived results must be seamlessly incorporated in

the coordination framework. 4) Systems are in a constant state of flux.

In this dissertation we propose a democratic2 and distributed approach to the co-

ordination. Democratic because components must be aware of their context and ac-

knowledge the fact that in turn they participate in the context of other components.

Distributive because we want to support evolution and to capture expert knowledge.

Because of the complexity of the systems under consideration a hierarchical organisa-

tion of the coordination is less favourable. Instead we advocate an heterarchic organisa-

tion that allows, in contrast to an hierarchical organisation, for a temporarily inversion

of the dominance among communicating subsystems.

The heterarchic coordination is supported with the concept of abstract commu-

nication and compositionality. Abstract communication structures the system under

development by taking different perspectives in order to separate concerns, whereas

compositionality is essential for predicting the attributes of the compound system.

2Democracy [Procter, 2000]: “the belief in freedom and equality between people” in which we substitute

people for subsystems.

1.3. Democratic processing 5

1.3 Democratic processing

Our approach to master the complexity when developing a complex communication

system yields a development framework that implements democratic processing. The

development framework is organised around three themes: abstract communication,

heterarchic coordination, and composition.

i. Complex systems have a wide range of properties that are hard to value in a

single stroke. If one considers only a confined set of properties, the view of

a complex system usually shows many components. Structuring the view with

nested levels is a proven method to control the breadth of the view while keeping

the possibility to appreciate the depth of the view. However, during the develop-

ment of a complex system, one needs to change perspective frequently. Some-

times detailed aspects of the functional structure are important, whereas at other

times implementation and non-functional details prevail. Maintaining a consist-

ent view on the interdependencies of the two aspects is crucial for proper system

development. Our development framework provides an ontological model that

relates different views on the same complex system. The views communicate

concerns in an abstract way.

ii. Conveying clear information is essential for the coordination of a communicating

system. Communicating systems have inherently complex interaction patterns,

partly because of the close collaboration among subsystems. The definition of

clear information, therefore, is highly context dependent. The role and the ap-

plication of a subsystem – being part of the system as a whole – determines its

context. Our development framework includes a quality of service framework

(ARC) that provides an informational model to exchange functional and non-

functional aspects among subsystems. Common identifiers in this model are

distortion, capacity, and resource utilisation. The information model instruments

local optimisation methods for doing system-wide tradeoff analysis.

iii. Compositionality is an essential property of any non-trivial system; the ability of

constructing complex systems from its constituents. From a functional only per-

spective this is a solved issue. However when taking into account non-functional

aspects, compositionality is only guaranteed in under specific conditions; the

subsystem is either determined, or it can capture its context dependent beha-

viour. Our development framework provides the latter. Each subsystem has an

so-called oracle that captures its indeterminate part, thus retaining the composi-

tional property.

1.3.1 Abstract communications

The observation that different views use different definitions but are phrased in similar

terms is important. It is equally important to recognise that each view exists for a pur-

pose. The mere recognition of the underpinning problem is the first step of solving it.

We use Bunge’s systemic philosophical position and corresponding ontological frame-

work [Bunge, 1977, 1979] to interrelate multiple coexisting views on a system. Each

6 Introduction

view addresses one or more concerns (aspects) as articulated by the respective stake-

holder. Views are materialised through constructing a modelling language. Hence, a

view is a conceivable artifact of the system properties.

When navigating through a system, the perspective changes frequently. Sometimes

only functional properties are important, whereas at other times also non-functional

properties are important. On tour, it is very likely to encounter homonyms. This need

not pose a problem, since a given context resolves any ambiguity. Consequently, we

argue that it is not necessary to develop a metaframework that contains every possible

property of the system. Instead, it is sufficient to switch views when necessary. How-

ever, it is important to recognise a change of perspective.

In our view the system architect should be flexible in taking different perspectives

of the same system, which implies a frequent change of language. The required level

of completeness of each language depends on the purpose. Scope turns out be an im-

portant parameter. In a communicating system, for instance, neighbouring components

require a rigid language for their information exchange, whereas remote components

can suffice to use an informal language. In the Ubicom system, components located

in the vicinity of the user need not have a clear understanding of the communication

patterns in transceiver layers. A classical example from the Ubicom programme is

whether or not to bother the user with the current value of the so-called τrms or, vice

versa, whether or not to install a switch in the transceiver layers to notify the fact that

the user arrives at level 4 in his adventure game. Hiding the irrelevant properties (ab-

straction) is a useful tool to convey the essentials.

Similar observations have been made in various other disciplines. From the field of

artificial intelligence Gruber, for instance, observes that clear communication between

connecting agents is a prerequisite, but communication between remotely connected

agents can be less rigid [Gruber, 1993].

In software engineering, aspect-oriented or generative programming is an emerging

discipline [see e.g. Kiczales et al., 2001; Lieberherr et al., 2001; Ossher and Tarr, 2001;

Kiczales et al., 1997; Czarnecki and Eisenecker, 2000]. Lieberherr et al. advocate the

“Law of Demeter”, a set of guidelines that organises and reduces dependencies among

components. The law is inspired by the motto: “Only talk to your immediate friends”.

In addition, this programming paradigm facilitates the design of a family of systems

rather than a single system because of its ability to change aspects. To support multiple

aspects, individual component must show the necessary flexibility.

The above consideration are summarised in the following postulate.

Postulate 1.1 (No exhaustive metaframework)

In order to master the complexity of a system one needs only to develop a set of inter-

dependent views. It is not necessary to have a metaframework that disambiguates all

concepts of the system.

1.3.2 Heterarchic coordination

There are many ways of designing, composing, and coordinating complex communica-

tion systems. The traditional – hierarchical – way is to roll out a structure of related sys-

tem components and to assign an architectural team that specifies the context for each

1.3. Democratic processing 7

system component. The specification is input to the individual system designer. Within

this context the designer develops an implementation that is usually best-effort as well

as worst-case. The design is worst-case because it is dimensioned such that the spe-

cified functionality and performance is achieved under the worst possible conditions.

The design is best-effort because all available resources are thoughtlessly acclaimed.

From the perspective of the individual subsystem developer such a design is quite an

achievement, but from the perspective of the system as a whole, more consideration is

required; best-effort is not good enough. Integration of best-effort subsystems yields

an aggregate, in the sense that the whole is most likely not an optimal system. The

problem stems from the fact that best-effort is defined from a dedicated perspective,

which not necessarily coincides with the system-wide perspective.

A structured view on the system includes a nested level representation, which is

typically considered a hierarchical representation, where higher levels dominate lower

levels of the structure. Components are included in multiple views and thus parti-

cipate in multiple hierarchical relations. Considering two system entities will show

viewpoint-dependent dominance relations. In one view, entity A dominates entity B,

whereas in a different view the dominance relations is reversed. Changing the dom-

inance relation among subsystems is known as an heterarchy [McCulloch, 1945; Dilts

et al., 1991; Hofstadter, 1985].

We recognise that a hierarchical, authoritative, and centralised design method has

proven its practical value, but we think that we can and should do better especially for

complex communication systems. For small-scale, homogeneous, and regular com-

municating (sub)systems, a hierarchical design approach is the preferred choice. To

strive for optimality in more complex systems, one needs to use an appropriate design

methodology that addresses a number of aspects. The following aspects relate to the

observation that complex systems are in a constant state of flux.

Evolution During the course of the design of a system, new research and develop-

ment results will arrive and should be considered for incorporation with the least

possible effort.

Flexibility The universal system idea does not hold. Instead the design should support

a family of systems each of which is suitable for a specific scenario.

Integrity It must be possible to value the integrity of a system family member with

respect to alternative designs as well as to its context.

Hierarchical (authoritative) design methods usually lack adequate support for most

of the above-mentioned aspects. One of the problems is their centralised coordination.

In order to master the complexity, hierarchical design methods abstract subsystems

by modelling their behaviour and performance in a fixed system-wide structure. The

structure and models are imposed by a central authority: the architecture team. In

effect the whole system is captured in a single (meta) framework. We object to this

style of design as articulated in Postulate 1.1. New developments, research results, or

new products put on the market will fit in as long as they do not trigger radical changes

of the system-wide model. The impact of changing the system-wide model can be quite

significant. Notorious are changes of the functional interface for a specific component.

8 Introduction

Viewed from an aggregate level, the Ubicom system of Example 1.1 has multiple,

often conflicting, objectives. The mobile terminal, for instance, must be small and

energy efficient yet it should offer a vast amount of information and breathtaking gra-

phics. A brute-force approach to solving the underlying multiobjective optimisation

problem is infeasible, if only considering the tremendous amount of decision variables.

Fortunately, the system is inherently structured and this structure can be exploited. Ex-

ploring the structure of the system implies a frequent change of the perspective to

effectively narrow the scope of the view and, more importantly, to reduce the number

of decision variables. The change of perspective partitions the initially large multiob-

jective optimisation problem in many small – but dependent – optimisations problems.

These smaller optimisation problems can be solved more efficiently than the large one,

if the large optimisation problem can be solved at all.

The development process of the Ubicom system inherently is a multidisciplinary

process. Stringent objectives imposed on the system make close collaboration among

subsystems, and therefore disciplines, unavoidable. The range of involved disciplines

is rather broad. There are subsystems for position recovery, graphics rendering, human

perception, and high-throughput wireless communication, to name just a few. At first

sight, mandatory collaboration among experts from various disciplines complicates

system development. But willing collaboration increases the integrity of the compound

system: the whole is more than the sum of its parts. Collaboration paves the way

for solving problems in the appropriate domain of expertise. A recurring issue is of

course making a tradeoff and finding the balance between partitioning and solving the

problem.

Figure 1.1 introduced the internal state of a system. The design of a system involves

the distribution and the coordination of the internal state. This state provides the context

of subsystems, yet at the same time the internal state depends on the behaviour and

performance of the subsystems. A change in appearance of one of the subsystems thus

affects the internal state and consequently changes the context of other subsystems.

Adapting to a change of context may be tedious, which is particularly true for systems

that involve many disciplines.

Our requirements for an appropriate design are summarised in the following postu-

late.

Postulate 1.2 (Design rationale)

In order to master the complexity of a complex multidisciplinary system, a design must

obey two principles

i. No global control (structure);

ii. Non-iterative control (coordination).

Let us reflect on Postulate 1.2 and the previously mentioned list of requirements:

system evolution, flexibility, and integrity. Evolution is key in competitive system

design [Andrade and Fiadeiro, 2001]. Advances in technology alone are not sufficient

to compete with alternative designs; Moore’s law [Moore, 1965] predicts that the num-

ber of transistors per integrated circuit doubles every 18–24 months. First, new con-

cepts at the circuitry level are necessary to put these transistors to use. Second, increase

1.3. Democratic processing 9

of resources alone is not sufficient to enhance system performance. New constructs are

a prerequisite to keep up with advancing technology and increasing demands.

Evolution of technology hits a philosophical topic. Different kinds of evolutionary

processes exist. The classical Darwinistic evolution principle involves mutations, slight

modifications of the characteristics of a component. Beneficial changes will remain,

while others die out: the survival of the fittest. Interesting enough [Gould, 1977], Dar-

win never used the word evolution because of the implications of order. According to

Darwin, there is no ranking of species. A more appropriate term of the theory known as

Darwin’s evolution theory would be “descend and modify” [Gould, 1977]; In Darwin’s

view, evolution is a random process which serves no purpose.

The term evolution is due to Spencer (1864) [Gould, 1977]. Spencer explicitly

defined progress as the cooperation among internal and external forces: the system and

its milieu. An evolutionary system is in a constant state of flux. Through continuous

changes, a system effectively adapts to changing conditions and objectives of its envir-

onment. The single most important process in a system therefore is the coordination

between subsystems. Gould refers to the coordination as “regulation”: the decision

and timing of control. Both aspects are crucial. The decision of how and when to use

a subsystem determines the behaviour of the eventual system and its emergent proper-

ties. Thus, given that a system is in flux, a timely decision is as important as an optimal

decision. Consequently, optimality is put in perspective. A suboptimal decision – from

a mathematical point of view – that is yet a timely decision may yield a perceptively

superior system than the other way around. So, a system in flux need not strive for first

time right.

Coordinating complex systems without a global, omniscient, controlling entity is

observed in daily life in numerous situations. Take for instance a city like New York

[example due to Holland, 1992]. Although there is no central controlling entity, shops

get stocked and citizens can usually do their daily shopping. In case of a calamity, the

balance may be disturbed for a while, but the system is self-recovering. At govern-

mental level we notice economists, politicians, and theologians trying to understand

the larger picture in order to control the community. In practice, they rule at an ab-

stract level. At best, governmental ruling facilitates the interaction between groups of

people while breaking the dominance. The famous Dutch “poldermodel” became a

classic example of breaking the hierarchy. The government no longer simply sets the

rules, but opens up the dialogue with business and non-profit organisations to arrive at

a consensus of good practice.

We refer to this type of distributed coordination as democratic processing. There

is a bidirectional flow of arguments. History proves that this type of organisations can

be very competitive. In Ubicom we have applied democratic processing throughout

the life-cycle stages of the system. During the exploratory stage, informal dedicated

groups gathered to exchange abstracted information. The contours of the context for

individual subsystems resulted from these meetings. We developed a framework for

negotiated quality of service (QoS) to capture and distribute the (inner) system context.

The QoS framework is named ARC: adaptive resource contracts. The framework is ap-

plied during the design-time stage as well as during compile-time and run-time stages.

ARC enhances the system context by making relations explicit. Explicit relations com-

bined with context-aware subsystems are the basis for a fruitful design.

10 Introduction

1.3.3 Compositionality

A proven method to develop complex systems is based on decomposition, e.g., ap-

plying a divide and conquer strategy. However in many practical situations the final

phase of system integration fails because of a false assumption that the set of system

components is indeed compositional.

One source for this false assumption is due to the limited number of system aspects

that are considered. For a complex system it is insufficient to consider only functional

aspects. Non-functional aspects such as capacity and resource utilisation are of equal

importance.

Another source of the wrong assumption is due to a limited awareness of the sys-

tem context. Only in the rare practical case that components are determinate their

compound is also determinate, hence compositional. In general the behaviour of an

indeterminate component depends on the context it is applied in. As an example con-

sider a real-time system that executes a set of tasks in a time-shared fashion. Tasks

are assigned a priority, which assists the system to find a schedule that can cope with

the individual real-time constraints of each task. At first sight, tasks seem to have a

determinate resource utilisation, e.g., CPU usage. However switching tasks consumes

resources as well and moreover the amount of resource utilisation of a task switch de-

pends on the current state of the task. The seemingly determinate task turns out to be

an indeterminate one after all and consequently the behaviour of the system becomes

schedule dependent.

Compositionality is a necessity for developing complex systems. In this disserta-

tion we implement two strategies, captured in the following postulate.

Postulate 1.3 (Compositionality)

The following two strategies can achieve compositionality:

i. The interface among cooperating components explicitly addresses non-functional

aspects such as capacity and resource utilisation.

ii. System components are truly context-aware. Any indeterminate system aspect is

made explicit, which allows for a determinate composition of system compon-

ents.

1.4 System Architect

The development of complex systems requires architecting and engineering. In [Rechtin

and Maier, 1997], architecting is considered an art, whereas engineering is considered

a discipline. The problem of proper coordination among system components is closely

interwoven with the responsibilities of a system architect. This dissertation takes the

perspective of a system architect.

It has been acknowledged that a universal recipe for development of complex sys-

tems does not exist. Rechtin and Maier give an exhaustive list of recipes and points of

particular interest [Rechtin and Maier, 1997]. Common to all methods is a hierarchy

of system architecting entities. At the top, the system architect, a generalist, dominates

1.5. Outline 11

a range of aspect architects [Muller, 2001]. Aspect architects in turn use other aspect

architects at a lower level. At the bottom of the hierarchy is the specialist, who is an ex-

pert in his domain. The above view is shared with the upcoming model-driven architec-

ture (MDA) of the object management group (OMG). MDA aims at connecting enterprise

(business) modelling with technology. By concentrating on modelling rather than im-

plementations MDA may combine common off-the-shelf components. In [Bézivin and

Gerbé, 2001], four principle levels of modelling are determined: meta-meta (corres-

ponds with the system architect), meta (corresponds with the aspect architect), model

(corresponds with the specialist), and implementation.

Our approach is different in the sense that we acknowledge aspect architects but

do not have a dominant system architect. In our philosophy the system architect is

the primus inter pares. At best the system architect mediates collaboration among

components and component owners. Since coordination of subsystems is the main

topic of this dissertation, we regard the system architect as a catalyst. In a recent

column, Fowler coined this type of architect the Architectus Oryzus as opposed to the

Architectus Reloadus who is the person that makes all the important decisions [Fowler,

2003]. We consider cooperation (heterarchy) an important aspect of our approach,

which is lacking in the above hierarchical structure. The main design flow of MDA is

top down. A bottom-up flow is forcefully introduced through reverse engineering.

1.5 Outline

This dissertation presents a development framework based on three themes: abstract

communication, heterarchic coordination and composition. Where communication and

composition are supporting themes for the heterarchic coordination.

In Chapter 2 (Complex systems in perspective) we address the topic of abstract

communications. In this chapter we discuss an ontology of the world that effectively

structures the concept of views and their relations. We deploy a recent initiative for the

development of complex systems: the IEEE-1471 standard [Maier et al., 2001].

In Chapters 3 and 4 we address the topic of heterarchic coordination. In Chapter 3

(Negotiated Quality of Service) we present the general concepts of this framework, in

Chapter 4 (Mathematical consideration of QoS) we consider the underlying multiob-

jective optimisation problem. ARC implements: abstraction, adaptation, and cooper-

ation. It conceptually distributes the coordination, yet leaves room for an implement-

ation with a global controller. ARC facilitates non-iterative control, it uses multiple

objectives as a tool to enlarge the scope of individual subsystems. Instead of having

a single point of operation, subsystems offer multiple non-inferior (or non-dominating

or Pareto) points. The net effect is that system components are aware of their context.

Awareness works both ways. Components adapt (inward) to changes of their envir-

onment, but also cooperate (outbound) with their environment. We have previously

reported on ARC and its applications in [van Dijk et al., 2000b,a; Taal et al., 2002].

In Chapter 5 (Context-aware process networks) we address the topic of composi-

tion. In this chapter we develop a model of computation: context aware process net-

works (CAPN). It introduces cooperation in a stream-based model that makes compon-

ents context aware. The CAPN model retains the compositional property for networks

12 Introduction

that are inherently indeterminate. Although CAPN is a specific instantiation of ARC, it

demonstrates that systems that implement ARC, capture their context-dependent beha-

viour and consequently have the composition property. A previous publication of the

CAPN model of computation can be found in [van Dijk et al., 2003].

In Chapter 6 (Ubicom case studies) we presents several Ubicom case studies to

demonstrate various aspects that have been developed in the abstract in Chapter 3. In

this chapter we quantify two important qualifications of a system that uses the ARC

framework: agility and efficacy. Finally, Chapter 7 concludes this dissertation.

Two

Complex systems in perspective

SYSTEMS and their associated architectures are often ill-defined notions, if defined

at all. Individuals, however, have proper intuitions about their view on a system

and its architecture. But more often than not, intuitions of individual stakeholders turn

out to be incompatible, which seriously hampers clear communication of concepts. In

this chapter we discuss a number of views on a system. A subset of these views is

demonstrated by using the Ubicom system as an example. All views are related to

the systemic framework developed in [Bunge, 1979], which proved a useful reasoning

framework for relating views and clarifying positions of domain experts. the chapter is

concluded with discussion on the aspects that are necessary for a proper coordinating

system.

In the development process of complex systems that involve multiple disciplines,

incompatible intuitions are bound to happen. In part the incompatibility is due to dif-

ferent concerns of different stakeholders. In a multidisciplinary environment it is of the

utmost importance to convey concepts in a proper and unambiguous way. Especially

since the integrity of the eventual system is the aim of the design process.

Recent literature recognises the discrepancy between various intuitive understand-

ings of concepts. IEEE and ISO have jointly developed standards, [IEEE-1471, 2000]

and [RM-ODP-10746, 1998] respectively, to address this very issue. Both standards

emphasise the existence of multiple views on the same property of a system: its archi-

tecture. The standards acknowledge that it is neither possible nor necessary to describe

all possible details of an architecture in a single stroke. A more suitable method is to

develop multiple interdependent views of the architecture. A view addresses a limited

set of system aspects. A view articulates and values a selected set of system aspects

through a so-called modelling language; this viewpoint model is a substantial artifact.

The interdependency of the various views on the system is important for the integrity

of the system. In this dissertation we apply the paradigm of interdependent views on

system development, Muller describes a multi-view method that applies the paradigm

to the entire life cycle of a system [Muller, 2004].

The various views on a system are linked, the rationale of these links are import-

13

14 Complex systems in perspective

ant for maintaining the consistency of the system. An interesting approach to identify

the interdependence between viewpoint languages is the development of an ontology.

Given a proper ontology, one can study the mapping of modelling language constructs

to ontological constructs. By comparing these maps for different views one can dis-

cover their interdependency. An analysis of the map itself may reveal possible discrep-

ancies of the modelling language [Wand and Weber, 1990].

We adopt the systemic position [Bunge, 1979]: an ontological view on systems.

The ontology developed by Bunge serves as a frame of reference for further discus-

sion. Bunge’s ontology puts into perspective the existence of multiple views of the

same system. Also, it is a reference framework to qualify individual views and their

applied viewpoint language. In this chapter, we use the Ubicom system to exemplify a

complex system which is described by multiple views. The terminology for the respect-

ive views is adopted from the ISO standard: “Information technology Open Distributed

Processing reference model” [RM-ODP-10746, 1998].

2.1 Ontology

Ontology is and has been the subject of many philosophical debates. Ontologists seek

to produce a unified picture of reality: the concrete world. In this section, we discuss an

ontological framework that will be the reference for relating various views on abstract

– beyond our reach – properties (or facts) of a system.

Bunge wrote an extensive treatise on basic philosophy. In [Bunge, 1977, 1979] he

develops the systemic position, “Systemism encourages attempts to analyze systems

into their composition, environment, and structure as well as to disclose the mechanism

of their formation and breakdown” [Bunge, 1979]. Systemism is a balance between

holism and atomism. Holism [see e.g. Healey, 1999] is the belief that every natural

thing is connected to every other thing; the thing is a whole, which is more than the

sum of its parts. Atomism, on the other hand, [see e.g. Irvine, 2001] regards the world

as consisting of a complex of atoms and their properties. When combined, these atomic

facts form complex compound objects.

Bunge derived his systemism ontology in a formal and mathematical way [Bunge,

1977]. Here we present an informal version of the model. Subsequent sections put

in perspective the IEEE-1471 standard and the modelling language evaluation method

of Wand and Weber. The recent “Recommended practice for architectural description

of software-intensive systems” [IEEE-1471, 2000; Maier et al., 2001] recognises the

mere existence of multiple frames of reference in the development of complex systems.

This position coincides with the systemic position. Wand and Weber have adopted

Bunge’s ontology to form an ontological framework for modelling language constructs.

Their so-called Bunge-Wand-Weber (BWW) model serves as a reference framework

that allows a conceptual analysis of several modelling languages.

2.1.1 Systemism, an informal introduction

Ontology tries to formalise a perception of the real world. A frequently quoted defini-

tion is that of Gruber: “An ontology is an explicit specification of a conceptualization”

2.1. Ontology 15

[Gruber, 1993]. Bunge’s systemism considers a universe that is inhabited with things.

In Bunge’s ontology, things are individuals, substantial or conceptual, with correspond-

ing properties. Properties (or facts) are generally beyond our reach, predication makes

a property conceivable; value the property of a thing from a dedicated frame of refer-

ence. A predicated property is called an attribute; a predefined reference frame (point

of view) is called a manifold. The manifold can be regarded an impartial but biased

spectator; it has dedicated concern and therefore often referred to as the stakeholder.

Example 2.1 (Manifold) Consider a pair of dice: white-coloured dice with black spots (a fact).

An observer who wears a pair of red-glassed spectacles will predicate the pair of dice as being

red. Dice are used for stochastic games. The ordinary interpretation (predefined manifold) is to

throw the dice and to count all top-view visible spots. For a pair of perfect dice, the consecut-

ive throws are stochastically independent. Each throw has a uniform probability mass function

(1 · · · 6). The stochastic aspects of a series of throws of the pair has a triangular probability mass

function (2 · · · 12). Other games may have different interpretations of the top-view visible spots.

In a game of poker, for instance, structure is the primary attribute and value a secondary one.

One can even go as far and make the interpretation itself the object of the game.

Different individuals (things) are related when they have mutual properties. Things

may have bonding (link) or non-bonding (mere) relations. A bonding relation implies

action, and possibly re-action of the things involved in the relation. The set of bonding

relations of a set of things is called their bondage. A non-bonding relation predicates

the relation itself; thing A is larger than thing B. The set of non-bonding relations of a

set of things constitutes their configuration.

The state of a thing is the aggregate of its predicates and henceforth viewpoint

dependent. An event (action/re-action) induces a state transition; a process is a state

transition trajectory: the course of events. The history (evolution) of a thing captures

the state transition trajectory. When two neighbouring things influence their respect-

ive evolution of their state transition trajectory, these things have a bonding relation,

otherwise their relation is non-bonding.

A compound thing is composed out of two or more things. A compound thing is

qualified as a system if the bondage of its constituents is non empty. Because of the

bondage, a system has emerging properties. For a bondage implies the invocation of

events. A compound thing of which the constituents only have mere (non-bonding)

relations is an aggregate. The environment of a system habitats things. Usually only

the immediate environment, or milieu, is of direct concern. The milieu constitutes

those things outside the system that participate in the bondage of the system under

observation. Note that the bondage is manifold dependent, for the bonding relation

links properties of individual things.

Example 2.2 (Milieu) Recall the pair of dice of Example 2.1. Let the ambient lightening be

red stained. Now, the dice appear to be red coloured even when watched without the specially

prepared spectacles. Suppose we add a third, somewhat larger die. The third die has a non-

bonding relation with each die of the primary pair: it is larger than each die of the pair. The

third die happens to be different in another aspect as well; The third die is a magnet, whereas the

pair is made of soft iron. Obviously, the stochastic properties of the individual throws of the pair

of dice change when the third dice enters the immediate neighbourhood (milieu) of the pair; a

throw of one die is no longer independent of that of the other dice.

16 Complex systems in perspective

Individual
Thing

properties

Thing

System

Individual
Thing

properties

properties
Individual

properties

Environment

Individual

properties

Manifold

Map

System Model attributes

Universe

Figure 2.1: Systemic frame work.

Figure 2.1 is a graphical interpretation of Bunge’s systemic position. The attribu-

tion of properties is context dependent. First, the environment of the system influences

the system. The immediate environment (milieu) inhabits properties that relate to sys-

tem properties. Second, the frame of reference (the manifold) determines the eventual

value assigned to a selected property. A system may be perfect in one scenario, while

useless when applied in a different scenario. But also, a system may be important from

one perspective (making money) while considered a trifle from, say, a technical point

of view. Given the ontological framework, the system context has a precise definition:

the context of a system is the attribution of environmental properties that are part of the

bondage of the system. The actual assigned value to a selected property depends on the

manifold.

Figure 2.1 visualises the fact that the systemic position recognises different views

of the same system without being discriminative. The manifold manifests the take

perspective; the concern by which the system is addressed. Also, Figure 2.1 emphasises

the fact that the context of a system plays an important role in the evaluation of the

performance and behaviour of the system.

A principal predicate of a system is the integrity of a system. A related notion is

the cohesion of a system: the degree of integration of the components of which the

system is composed. Two objects are coordinated when they jointly contribute to the

integrity of the system. Whether or not the coordination requires intervention of an

external controller is left unspecified. Integration and coordination are two separate

notions. When integration fails, structural breakdown is the result; when coordination

fails, functional breakdown is the result. The overall goal of the system architect is

to hit the structure that maximises the system integrity. We conclude with a postulate

[Postulate 1.8 Bunge, 1979]

The more cohesive each subsystem the less cohesive the total system.

2.1. Ontology 17

Environment System

Stakeholder

Architecture

Architectural

Description

Concern Viewpoint View

Model

influences

inhabits

has an

has 1..*
identifies

1..*

described by
1

is important to

1..*

has

1..*
selects

1..*

participates in
1..*

organized by

1..*
identifies

1..*

used to

cover 1..*

is addressed to

 1..*

conforms to

establishes methods for

1..*

aggregates

1..*

consists of
1..*

Mission

fulfills 1..*

Library

Viewpoint

Rationale

has source

0..1

provides

participates in

Figure 2.2: Conceptual model of the recommended practice for architectural descrip-

tion [IEEE-1471, 2000]

A cohesive total system implies rigidity, whereas we strive for flexibility. Following

Bunge we should aim at cohesively developed subsystems.

2.1.2 Recommended practice for architectural description

The growing awareness that complex systems cannot be described in a single view

triggered people to rethink their practice of architecting such systems. One example

is the recently emerging IEEE-1471 standard. The standard is consistent with Bunge’s

systemic position. The standard is best explained by Figure 2.2 [IEEE-1471, 2000,

Figure 1].

Figure 2.2 is in fact an instantiation of Figure 2.1. The system entity is the subject

of Figure 2.2. A system fulfils a mission and it serves a purpose. The system context

is important since it determines the properties of the system. The environment and the

system are linked through their mutual properties. The manifold defines the attribution

of properties. The system architecture is a principal property of the system. The archi-

tectural description (AD) of Figure 2.2 corresponds to the manifold of Figure 2.1. The AD

assembles the possible viewpoint and the concerns of selected stakeholders into a frame

of reference. The AD attributes the architecture property into a view: a conceivable ar-

tifact. The standard manifests the syntax and semantics of the modelling (viewpoint)

language; the model entity of Figure 2.2.

18 Complex systems in perspective

IEEE-1471 recognises that the architecture is an important property of a system.

In [IEEE-1471, 2000], an architecture is formally defined as: “the fundamental organ-

ization of a system embodied in its components, their relationships to each other and

to the environment and the principles guiding its design and evolution”. The informal

definition from the accompanying frequently asked questions sheet is even more close

to our observation that it is a property that is generally beyond our reach, but tacitly

available: “So, what is an architecture? We’re not sure, but we know one when we see

one”.

The appendix of [IEEE-1471, 2000] refers to [RM-ODP-10746, 1998], a recent

reference model for open distributed processing. This ISO standard describes in detail

the concerns, the stakeholders, and the applied modelling languages. The disciplines

in Ubicom have a broader scope than distributed processing, however; the viewpoints

developed in [RM-ODP-10746, 1998] offer a suitable starting point for an accurate

description of the Ubicom system. We adopt their terminology, but with a slightly

different interpretation. Each of the views considers the scope of a limited set of system

properties.

Enterprise view A high-level view from the perspective of users and owners. The en-

terprise view concerns the coordination among disciplines and their requirements

for flexibility and adaptation.

Informational view A view on the semantics of information. The informational view

concerns data, context, and operational information.

Computational view A view on the structure of information processing. The compu-

tational view concerns policies to support distributed implementations, e.g., for

offloading computational intensive tasks.

Engineering view A view on the mechanisms and functions to support distributed

implementations.

Technical view A view on incorporated standards and applied technology.

The identification of views is important for two reasons: the views help to maintain

the consistency of the system under development and the views help to structure the

necessary coordination among subsystems. In Section 2.2 we present the identified

views, taking the Ubicom system as a representative example. Relations between views

are important. Making relations explicit allows individual stakeholders to navigate

different aspects of the system, while exploiting the benefits of maintaining a limited

scope. In Chapter 3 we use the above views to develop a framework for coordinating

subsystems.

2.1.3 Bunge-Wand-Weber and modelling languages

Wand and Weber used Bunge’s work to construct an ontological framework to compare

the expressiveness of modelling languages. Their framework is known as the Bunge-

Wand-Weber (BWW) model [Wand and Weber, 1990, 1995; Wand et al., 1999]. The

BWW model acts as a reference framework for modelling languages. It is a suitable

2.1. Ontology 19

instrument to predicate (qualify) the accuracy of a modelling language. The basic idea

is to evaluate the mapping of constructs from the modelling language under observation

to corresponding constructs of the BWW model.

Modelling languages must strive for semantic disambiguation. Recall that a view is

a conceivable artifact expressed in an appropriate modelling language. A proper view

thus conveys clear information. A language construct can only convey clear informa-

tion if it has a unique semantical interpretation. A true ontology is unambiguous; the

BWW model is conjectured to be a true, possibly incomplete, ontology. Modelling

languages, with respect to the BWW model, thus must be free of [Wand et al., 1999]:

Construct overload A single modelling construct representing two or more ontolo-

gical constructs (N to 1 map).

Construct redundancy Two or more modelling constructs representing the same on-

tological construct (1 to N map).

Other publications [Green and Rosemann, 2000; Wand and Weber, 1995], in ad-

dition impose avoidance of two less destructive properties that lack a one-to-one rela-

tionship between the modelling and the ontological constructs: construct excess and

construct deficit. Construct excess indicates modelling constructs exist with no equi-

valent ontological construct, while construct deficit indicates the opposite. These two

discrepancies hamper completeness, but do not jeopardise precise conveying of inform-

ation.

Various researchers have evaluated a wide range of modelling languages with re-

spect to the BWW ontological model. Green and Rosemann analysed the integrated

process modelling [Green and Rosemann, 2000], Wand et al. themselves analysed the

entity-relationship model, and [van der Aalst, 1999] evaluated the event-driven pro-

cess chain model. Process models, in particular the event-driven process chain model,

play an important role in enterprise modelling, whereas entity-relationship models are

important in information system modelling. A striking result of the aforementioned

research is that all evaluated models have discrepancies, yet reputable design method-

ologies have been built on these modelling languages. Construct overload is detected

in all cases, most notably in the event-driven process chain model, which is the basis

of SAP R/3 and ARIS, leading products in the field of work flow management and

business process re-engineering [van der Aalst, 1999]. Green and Rosemann place a

critical note: whether or not the observed discrepancy is a deficiency of the ontological

model or a deficiency of evaluated modelling grammar is open for debate [Green and

Rosemann, 2000].

Recently, the BWW model has been applied in object-oriented designs [Opdahl

and Henderson-Sellers, 2001]. Opdahl and Henderson-Sellers use a so-called facet

modelling language for this purpose. The modelling constructs of this language are

interpreted and analysed in relation to the BWW model. Possible semantic deficiencies

are resolved by reformulating the facet language constructs. Hence an unambiguous

modelling language remains.

The BWW model provides a suitable tool to analyse the modelling language of a

viewpoint. In this dissertation however we choose not to take this formal direction.

Ambiguities are resolved through close cooperation among subsystem developers.

20 Complex systems in perspective

Pose Analysis

Pose Synthesis

GIS Rendering Analysis

Application

Rendering Synthesis

Source codingSource coding

Protocols

Channel coding

Baseband processing

Analogue front−end

Channel

User

Figure 2.3: Conceptual model of the Ubicom mobile terminal system.

2.2 Ubicom

In Section 2.1 we presented an ontological view on complex systems. In this section

we use the Ubicom system to illustrate the introduced views on complex systems. We

claim that the Ubicom system is sufficiently generic to make the views an integral

part of our framework. The views presented in this section do not yield an exhaustive

description of the Ubicom system. Emphasis is on concepts rather than on details. The

views are interdependent; when appropriate we will emphasise these relations, whereas

at other times we will use transparency to hide irrelevant details.

2.2.1 Enterprise view

The enterprise view is a high-level view on the Ubicom system. It represents the

Ubicom system from the broad perspective of owners, user groups, and designer col-

lectives. A general introduction on the Ubicom system and as such part of the enterprise

view is given in Example 1.1 on Page 2.

An abstract illustration of the Ubicom system is the jigsaw diagram of Figure 2.3.

The diagram represents a functional/conceptual model of a mobile terminal. The mul-

tidisciplinary character is indicated by the disciplines associated with specific system

components. The system context is attributed by the user objectives and the channel

conditions. Possible objectives are: a long operation time with a perceptively poor

quality, or a short operation time with a perceptively good quality. An example of pos-

sible conditions is (assuming a fixed throughput): low transmit power and low signal-

to-noise ratio (SNR) or high transmit power and high SNR.

Figure 2.3 has two orthogonal flows. The application flow from left to right and the

support flow (for communication and control) from bottom to top.

2.2. Ubicom 21

The application flow (c.f. Figure 1.1 on Page 2) starts at the left-hand side with

a positioning component that uses sensors, whose output is analysed to determine the

position and orientation of the user. Subsequently, the application drives a 3D graphics

synthesis component, which prepares graphical representation of the intended reply,

whose perspective is correct from the viewpoint of the user. A see-through display

outputs the virtual graphics in overlay and aligned with real-world objects. The see-

through display is on the right-hand side of the diagram.

The support flow implements communication and control and supports the applic-

ation flow. The communication flow allows for offloading of computation and storage-

intensive tasks and it facilitates retrieval of causal information from a backbone sup-

port system. The control flow incorporates the human user in the loop. In order not to

complicate the system description unnecessarily we assume the availability of infinite

resources at the backbone infrastructure. Also we will not address multi-user commu-

nication explicitly. Fluctuating channel conditions may hamper timely availability of

resource capacity at the backbone. At the top of the diagram the user is in control. He

or she finalises the constraints on the overall quality of the provided service and the

limitation of resource utilisation of the terminal application. The constraints reflect the

objectives as specified by the user.

The enterprise view necessarily employs an informal modelling language. The

enterprise view fulfils the role of an intermediate among a wide range of disciplines

and consequently offers a broad view on the system. The main concerns addressed in

the enterprise view include

❍ Demonstration of mobile augmented reality.

❍ Distributive organisation of the system.

❍ Ability of the system to adapt to context changes; changes of user objectives and

variations of environment conditions.

❍ Coordination among components that originate from a wide range of disciplines.

❍ Efficient implementations of a Ubicom mobile terminal: low power and small

form factor.

Mobile augmented reality has been introduced in Example 1.1 on Page 2. The

example also introduces a distributed implementation. Distribution of functionality is

necessary because of the foreseen computation-intensive and storage-intensive applic-

ations and services. It is generally conjectured that technology will never be advanced

enough to implement all possible services on a mobile device given the current energy

consumption and form factor constraints. The minute we resolve one issue, another one

will pop up. The exponential increase of demands and expectations of a communica-

tion system is a good indication of the validity of this postulate. Offloading of services

to a backbone system is an obvious solution. Another important reason for opting for

a distributive approach is the causal relation between the generation and presentation

of information. It simply might not be possible to assemble a mobile system carrying

all necessary information, because such as system has not been generated yet (c.f. the

D.I.Y. hall of Example 1.1).

22 Complex systems in perspective

The Ubicom system is a true system, not a mere aggregation of components. Being

a system, it must have emergent properties; the whole is more than the sum of its parts.

The most important emergent property of the Ubicom system is being context aware;

it is aware of its relation with its immediate environment (milieu). The system context

consists of varying user objectives and changing environment conditions. User object-

ives change from one application to the other, or better, from one application mode to

the other. Environment conditions can be highly fluctuating. The distributive organisa-

tion implies the application of a wireless link between a backbone support system and

the mobile terminal. Wireless links are notorious for their quality fluctuations.

Energy is the fundamental, yet scarce, resource in a mobile terminal. The use of

storage, computation, and communication resources draws energy from the battery.

The distribution of the energy budget over the various components in the system is

crucial for the eventual performance of the system. In case of a context-aware system,

thus with emergent properties, the distribution is not a static one. The assignment of

energy to a component and the consequent contribution of the component to the system

integrity depends on the system context and the role of the component in the structure

of the system, i.e., the component context. There is a clear role for coordination to

effectuate the assignment of energy.

Energy-efficient implementations require a malleable system assembly, at compile

time and preferably also at run time. At compile time the appropriate version of a com-

ponent must be selected. At run time the distribution of energy of the components must

be coordinated. The jigsaw diagram of Figure 2.3 therefore is not a materialised one

but a malleable one; the outline of the jigsaw as well as that of the individual pieces

change with the objectives, conditions, composition, and structure of the system. In the

ideal case, the jigsaw has closely fitting pieces without any gaps. This can only be ac-

complished with careful coordination among components. Because of the interaction

of neighbouring components in the system, we may regard them as individual com-

ponents with overlapping environments when pulled apart, figuratively speaking. One

component inhabits the context of the other component and vice versa. In Chapter 3

we will pursue this concept further.

Although not in all possible detail, the enterprise view reveals part of the computa-

tion structure of the system. Neighbouring components in Figure 2.3 will interact, for

better or for worse. Being neighbours indicates collaborative design of1) the compound

functionality and 2) the interfacing between the components . The enterprise view is

vague enough to indicate the role of a component in the system and consequently the

view indicates high-level consequences of changing system objectives and varying sys-

tem conditions. The enterprise view mediates in the collaboration between designers

from a wide range of disciplines.

2.2.2 Informational view

The informational view concentrates on the semantics of the information flow. The

view is particularly concerned with the information exchange between neighbouring

components. We consider local communications more important than global ones.

First, because effective global communications require a global (or meta) modelling

2.2. Ubicom 23

language of a viewpoint, which contradicts Postulate 1.1 on Page 6. Second, since

neighbouring components inhabit each others milieu, collaboration is effective here.

Figure 2.3 loosely introduced the component structure of the Ubicom system. In

this section we concentrate on the application flow of the Ubicom system. The support

flow is described in more detail in Section 2.2.3. The application flow is a filter, from

a sensor device through an analysis and synthesis phase to an actor device. The filter

adapts to changing objectives and varying conditions.

The diagram of Figure 2.4 presents a high-level view of the application flow. At

the top, a user interface (userIface) captures the user preferences and translates them

into objectives for the application manager (applicationMgr). Concurrently a position-

ing (positioning) component determines the whereabouts [Persa and Jonker, 2000] of

the system. The application manager uses approximate location information, whereas

the graphics processor uses more accurate position information and also orientation

information (graphicsProc).

The aforementioned application manager combines user preferences and user loc-

ation information to generate a so-called scene graph (SCENEGRAPH). The scene graph

is a construct which describes 3D graphical objects and their relations to each other as

well as their relation to real-world coordinates. The real-world coordinates are taken

from the positioning component. A scene graph can, for instance, position virtual

graphical objects in the real-world connected to real-world objects: a virtual sculp-

ture on a real pedestal (Example 1.1). The scene graph is the common construct, with

a defined interpretation for communication between the application manager and the

graphics system. The scene graph provides an informational view on the generated

reply of the application.

The graphics system takes the position and orientation of the user as a starting

point for rendering the scene graph. The resulting rendered view is a 2D map of the

scene graph ready for display (display). Depending on the applied see-through display

technique, some filtering (processing) is necessary in order to properly overlay the

virtual world on the real world. An example of such a filter is matching the field of

view of the display with the provided 2D map [Dijkhoff et al., 2000]. The structure

of the filter is an aspect of the computational view. The performance and resource

utilisation of the filter are aspects of the informational view. These latter aspects are

exposed through the RENDEREDVIEW construct.

Graphical objects often have texture, still image, or video textures. The graphics

system uses a source transformer (sourceCodec) to acquire textures (VIDEO) information

in the appropriate format. From the perspective of the graphics processing part it is

irrelevant whether the source transformer uses a pre-recorded or live video source.

The main concerns addressed in the informational view include:

❍ The semantics of the information flow between consecutive components.

❍ Specification of the immediate environment; conditions and objectives.

We address these concerns using three universally applicable selecting mechanisms:

abstraction, adaptation, and transparency.

Abstraction combines and organises the relevant properties to convey information

about components in a clear and well-defined way. The scene graph object for instance,

24 Complex systems in perspective

applicationMgr

state gis

graphicsProc

positioning

sourceCodec

userIface

preference

filter

SCENEGRAPH

Photometry

database

Query

Manager

SKELETONOCCLUSION

sensors

CAMERA

processing

POSITIONING

VIDEOREQ display

VIDEO

transform

Manager

TRANSMITREQ TRANSMIT

VIDEOSRC

filter

OBJECTIVES

USER

Figure 2.4: Ubicom application flow.

(SCENEGRAPH), models the virtual world by using language constructs and semantics.

Although the application manager and the graphics system components may attribute

different predicates to properties of the scene graph, they share a mutual understanding

about a predefined set of properties. From the perspective of the graphics system, the

nature of the process of how to derive a particular scene graph is irrelevant. However,

the intentions of the scene graph must be clear. Vice versa, the application manager

is not interested in the details of how graphical objects are eventually offered to the

user, but only in maintaining the proper intention of their shape and relation. As an

example consider a message to be conveyed to the user: “Battery low, immediate action

required.”. The graphics system must understand the priority of this message. Whether

it chooses to use speech synthesis or a text display with contrasting colours is irrelevant

to the application manager.

Adaptation is the natural process to react to a changing context, because prac-

tical components never operate in isolation. Capturing all possible states (the con-

text boundaries) of the environment in a so-called scenario is usually not particularly

useful, if at all possible. This is especially the case with the human user in the loop.

A more practical approach is to allow for context changes, let the component observe

them, and let the system adapt its mode of operation consequently. This way, the

composition yields a flexible system that can be applied in a wide range of scenarios

without the need for an explicit (and precise) definition of every possible state of the

environment.

Transparency hides structural details and properties of a component. In this in-

formational view we are concerned with the informational constructs (SCENEGRAPH,

POSITION) rather than any processing construct (filter). The computational view (next

2.2. Ubicom 25

section) reveals more details of the processing structures.

The SCENEGRAPH object specifies graphical objects and their relations in a dialect of

the virtual reality modelling language (VRML), which is a technological aspect. VRML

[VRML-97, 1997] is an universally accepted modelling language with suitable con-

structs to clearly convey information. The POSITION construct describes the position in

worldly coordinates and orientation in hemisphere coordinates. Accuracy of the offered

coordinates is an important aspect of the POSITION construct. The attribution of accur-

acy though, is highly context dependent. A scenario that assumes a slowly moving user

allows for less frequent updates of the positioning coordinates than a scenario in which

users are very active, e.g., playing games. With respect to Example 1.1 on Page 2, the

accuracy of the user coordinates must be precise enough to be able to overlay virtual

graphics with real-world objects. Other applications may be suited with approxim-

ate coordinates, e.g., the room the user is in. Accuracy itself thus has multiple aspects:

space and time. The discussion demonstrates that implementation matters. The inform-

ational view necessarily contains computational and engineering aspects. Depending

the computational structure the impact of more accurate or less accurate coordinates is

significant. Depending on the engineered organisation, coordinates become available

in time or lag behind. Both aspects have their influence on the integrity of the system as

a whole. In Section 2.2.5 (Technical view) we will come back to the applied standards

in the Ubicom system.

2.2.3 Computational view

The computational view concentrates on the structure of how information and data is

processed. It corresponds to a functional decomposition of the system. The concerns

addressed in this view include

❍ The distribution of functionality over the disciplines involved in the system.

❍ The flow of information and data.

❍ Adaptation to a changing environment: conditions and objectives.

In Figure 2.5, the source coder receives a request for providing a video texture. The

specifics of the request are specified through an informational construct: VIDEOREQ. The

general manager of the source coder handles the request. It outsources the transforma-

tion, from a video source format (VIDEOSRC) to the specified video format (VIDEO). The

transformation system which performs the actual transformation is generally composed

of an encoder and decoder; the encoder translates the video source into an intermediate

format, while the decoder translates the intermediate format to the externally requested

texture format (VIDEO). Typically, the path from encoder to decoder includes a trans-

mission system. In case of the Ubicom system, the transmission system is a wireless

communication system that implements the support flow, see Figure 2.7.

The computational view of the graphics system (Figure 2.6) shows similar con-

cepts to the view of the source coder. An analyser takes the incoming scene graph

(SCENEGRAPH) and attributes properties to selected objects in the graph. Based on this

analysis, the subsequent compilation phase synthesises a description of the scene graph

26 Complex systems in perspective

in an intermediate format. The compiler description is targeted towards the eventual

thin-client 3D rendering [Pasman and Jansen, 2002]. The basics of the compiler de-

scription is a decomposition of the scene graph in polygon objects (frame description)

and animated textures. The polygon description (ASSEMBLEDSG) and textures (VIDEO)

(informational constructs) follow two separate routes to the rendering phase. The

rendering phase does the final composition of the scene and projection to the two-

dimensional (2D) space. This 2D coordinates space (RENDEREDVIEW) is mapped to the

display coordinates in the display system. In the terminology of the graphics system

[Pasman and Jansen, 2001], the interpreter and the compiler are referred to as the front

end (frontEnd) and back end (backEnd), respectively. Bear in mind that the rendering of

the scene graph is position and orientation dependent. The presentation filter [Ooster-

hoff and de Ridder, 2000] is an interesting component of the graphics system. Recall

the alert message: “Battery low, immediate action required”. If the graphics system de-

cides to implement this as contrasting text, then the characteristics of the background

on which the text is to be displayed has to be known and hence the camera construct.

The property of the text is alerting. The precise attributes of the text (colour, size, face)

are set by the presentation filter in a “late binding” fashion.

The geographic information system, (GIS), models real-world objects [Zlatanova,

2001]. The positioning system uses a skeleton view on real-world objects to carry out

image-based position recovery. The skeleton (SKELETON) construct is dependent on the

current position and orientation of the user for reasons of efficiency. Similarly, the GIS

system provides the graphics system with a model of the real-world object that possibly

obstructs a clear view of virtual objects: occlusion. The GIS system maintains a data-

base of real-world objects. Two types of representations are used to address different

aspects of real-world objects and their relations [Oosterom et al., 2002]: a geometrical

and a topological representation. The geometrical representation is particularly suited

for automatic incorporation of new data This representation stores separate objects as

list of unique points. The topological representation is a representation with hierarch-

ically structured objects. A house, for instance, is composed of a list of faces; faces

can have sub-faces (doors and windows) etc. The topological representation is suited

for generating virtual views of real-world objects. The informational objects SKELETON

and OCCLUSION of Figure 2.7 are extracted from the topology database.

Figures 2.5 and 2.6 specify, to some extent, the structure of two selected compon-

ents. It is important to realise that so far nothing has been said about their implementa-

tions; their engineering aspect. In particular, we anticipate that for certain applications,

distribution (off-loading) of processes is required. The link between an encoder and

decoder in Figure 2.5, for instance, will typically be implemented as a wireless trans-

mission link. The encoder part of the source coder therefore can be situated at the

backbone system and assigned ample resources. The decoder part will remain at the

mobile terminal, which has only limited resources.

Figure 2.7 is a high level view on the structure that allows for transferring inform-

ation back and forth a backbone system: the support flow (Section 2.2.1). The support

flow uses a wireless channel as transmission medium. Like the source coding com-

ponent, the components in the communication system have an encoder and decoder

part for sending and receiving, respectively. The terms used for encoding and decod-

ing are different though for each component. The encoding part of the channel coding

2.2. Ubicom 27

sourceCodec

transform

receiver sender

Motion

compensation

IDCT

Manager

TRANSMIT

Dequantise

RLD

Manager

Motion

compensation

RLE coding

TRANSMITREQ

DCT

Motion

estimation

IDCT

Quantise

Dequantise

VIDEO Manager

VIDEOREQ

VIDEOSRC

Figure 2.5: Source Coding com-

ponent detailed.

graphicsProc

processing

backEnd

Presentation

Rendering

frontEnd

filter

Render

Manager

Polygon

buffer

Texture

buffer

Render

Engine

RENDEREDVIEW

ASSEMBLEDSG

analyser

compiler

VIDEOREQ OCCLUSION

POSITIONING CAMERASCENEGRAPH

VIDEO

Figure 2.6: Graphics Processing component de-

tailed.

28 Complex systems in perspective

basebandCodec

channel

channelCodec

protocols

radioFe

Manager

BASEBANDRCV

sender

BASEBANDSND

CHANNELRCV

receiver

CHANNELSND

Manager

RADIORCV

transfer

RADIOSND

Managersender

PROTRCV

receiver

PROTSND

Manager

Managersender

receiverManager

TRANSMITREQ TRANSMIT

receiverManager

Managersender

Figure 2.7: Ubicom communication

system (support flow).

Manager

D/A

Manager

Frequency

convertor

up

PASubtract

RADIOSND

BASEBANDRCV

A/D

RADIORCV

LNA

Frequency

convertor

down

Band pass

filter

BASEBANDSND

Figure 2.8: Ubicom analogue (adaptive)

radio front end.

component, e.g., is referred to as (channel) encoding and decoding, while the baseband

processing refers to its coders as modulation and demodulation with OFDM coding and

decoding. The radio front end refers to encoding and decoding as carrier modulation

and carrier demodulation.

Figure 2.8 illustrates in some more detail the computational view on the radio front

end. The adaptive radio structure [Verhoeven and van den Bos, 2001] transfers a base

2.2. Ubicom 29

band signal over a wireless channel. Adaptivity is twofold: First, changes in the condi-

tions of the wireless channel automatically induce calibration of filter parameters, i.e.,

the feedback control loop in the receiver part. Second, a tradeoff is possible between

the reliability of data transmission and the power dissipation. This tradeoff is the res-

ult of combining flexible components. In [Tasic and Serdijn, 2002b], e.g., a method

is introduced to visualise the tradeoffs possible when designing a voltage-controlled

oscillator (VCO), which is a substantial part of the frequency converter (Figure 2.8).

Obviously the computational view details the processing of constructs from the

informational view. As an example, in Figures 2.5 and 2.6, details of the underly-

ing information processing structure are shown, which are hidden in Figure 2.4. The

computational view also elaborates on the available option to map constructs from the

computational view (processes) to constructs of the engineering view (processors).

2.2.4 Engineering view

Taking an engineering view on the Ubicom system reveals details about the imple-

mentation of computational constructs. The engineering view introduces the necessary

mechanisms to assign functionality to processing components, i.e. mapping. Mapping

of computational constructs to engineering constructs is a prerequisite for evaluating

performance.

The integrity of the eventual system is determined by many aspects. The engineer-

ing view on the system maintains two important properties with respect to the fitness

(suitability) and the perceptive quality of a Ubicom mobile terminal: energy consump-

tion and form factor. Both properties are subject to coordination. One can regard the

form factors being either the consequence of or the constraint to mapping and techno-

logy choices. Similar considerations apply to energy consumption and energy capacity.

It is instructive to start the discussion of the engineering view with some practical

cases. During the course of the Ubicom project, three implementations were realised:

1) Strawman platform, 2) Paper platform (literature survey), and 3) Experimental plat-

form.

The Strawman platform [van Dijk and van Reeuwijk, 1999] is functionally com-

plete yet has limited mobility. The Strawman is a PC-based platform that uses a posi-

tion recovery technology with confined coverage area, and offers mobility on a string.

A literature survey [Pouwelse et al., 1999] showed that at the time of writing of the

survey it was indeed possible to compose a system that covers the basic functionality

and has an acceptable form factor. Estimates of the energy consumption of the Paper

platform were promising. The survey covers a limited (fixed) scenario and circumvents

operational issues.

The Experimental platform is an heterogeneous platform with various interconnec-

ted processing cores. The basis of the platform is formed by the Lart; a dedicated

low-power platform [Bakker et al., 2001] designed especially for this purpose.

Mapping of functionality links constructs of the computational view to constructs

of the engineering view. All three platforms implement similar computational and

informational graphs. However, different choices have been made, as each platform

was designed with different concerns.

30 Complex systems in perspective

CPU

monitor

speaker

hard disk

Radio Tx

TI C60 EVM

TI C60 EVM

Radio Rx

IR front end

Voodoo2

Voodoo2

TriMedia camera

arbiter
keyboard

video adapter

audio card

ethernet

IDE

mouse

Memory

PCI

I−tracker

HMD

IMAP camera

RS232

Figure 2.9: Strawman mobile terminal [van Dijk and van Reeuwijk, 1999].

Ethernetwireless comm

LART

LART

PC/104

positioning

rendering

Figure 2.10: Experimental platform

[Bakker et al., 2001].

User interface

Processor

Positioning

Wireless

connection

See through

HMD

Image

rendering

compression

Video

Camera

Inter

connect

Figure 2.11: Literature survey platform

[Pouwelse et al., 1999].

The Strawman mobile terminal is a single-bus architecture (Figure 2.9). The bus

connects a high-performance general purpose CPU with dedicated peripherals such as

a positioning system (I-tracker), rendering hardware (Voodoo2), source decoding accel-

erators (TriMedia), and baseband processing accelerators (TI C60). The Strawman im-

plementation uses infrared communication. The mapping of computational constructs

is straightforward. Constructs with dedicated hardware are mapped accordingly. All

other constructs, except the video source and the corresponding encoding (Figure 2.5)

are mapped to the mobile terminal CPU. The operating system (OS), which executes on

the CPU, is an integral part of the engineerings view. The OS facilitates apparently par-

2.2. Ubicom 31

allel execution of multiple computational constructs on the same CPU core. We delib-

erately write “apparently”; the OS effectively implements mutual exclusion synchron-

isation between independent threads of control to intertwine execution of computation

constructs. In the abstract, the process is observed as a true parallel implementation.

However, particular choices of OS will influence performance and behaviour (informa-

tion constructs). The Strawman uses a Linux kernel.

The Paper terminal that resulted from the literature survey takes a similar approach

with respect to the mapping (Figure 2.11). The distribution of computational constructs

is based on the graph of the computation view and an estimate of the limitations of

applied engineering constructs (hardware components). In particular the on-terminal

data transmission is considered a bottleneck.

The Experiment platform takes a more distributed approach. More functionality

has been off-loaded from the terminal to a backbone system. The application man-

ager as well as the graphics system front end is transferred to the backbone [Pasman

and Jansen, 2001]. Also the texture sources and corresponding encoder are situated in

the backbone, as is the case of the Strawman platform. Off-loading of computation-

and storage-intensive tasks is necessary to arrive at a feasible mobile terminal layout

(Figure 2.10), given external constraints such as a limited financial budget and available

manpower. The position recovery system of the Experiment platform combines inform-

ation from multiple sensors. The sensors reside at the terminal and the processing of

their measurements is also done at the terminal. Envisioned, but not included in the

current positioning system is image-based position recovery. Consequently the posi-

tioning system has a moderate performance and corresponding power dissipation. The

Experiment platform runs Linux as its core operating system; the back end (rendering)

part of the graphics system uses a real-time version of Linux. Computationally intens-

ive tasks are assigned to dedicated processing units, which are connected with dedic-

ated links. In Figure 2.10 Ethernet is used for these dedicated links. More suitable low

power solutions are under construction; in particular a technique known as low-voltage

differential signalling (LVDS) is considered.

The differences in choices for mapping and consequently the differences in engin-

eering graphs has multiple sources. The differences can be ascribed to:

❍ Difference in attribution of properties.

❍ Evolution of technology.

Each platform attributes different values and priorities to possible performance

properties. In general the design of any platform is a multiobjective optimisation prob-

lem. Assigning a weight (prioritise) to each of the performance properties reduces

the multiobjective problem to a single-objective optimisation problem. Deriving the

weight factors, explicitly or implicitly, is not a trivial task. An example of a process

that derives these weight factors is the analytic hierarchy process (AHP) [Saaty, 1990].

Here, we took a pragmatic approach for each of the three presented platforms. The

Strawman emphasises speed while neglecting accuracy, whereas the Experiment plat-

form does the reverse. Mobility is essential for the Experiment platform, the Strawman

only needed proof of concept. The engineering view introduces resource utilisation

into the design. The mapping of constructs of the computational view to constructs of

32 Complex systems in perspective

engineering view thus effectively relates performance to resource utilisation: Quality

of Service (QoS).

The evolution of technology (see also Section 2.2.5) opens up options that used to

be beyond the budget. One aspect of advancing technology is covered by Moore’s law

(faster and smaller), another aspect is increase of functionality. The mechanism of how

to enable evolution either by exercising mutationalism [Gould, 1977] or endosymbiosis

[Margulis and Fester, 1991] is beyond the scope of this dissertation. What is important

is the policy to incorporate and apply newly arrived technology.

In retrospect, the three platforms presented above show the exploitation of three

types of advances:

i. Re-mapping of functionality (Algorithmic advances).

ii. Modification of efficiency curves (Technological advances).

iii. Extension of efficiency curves (Conceptual advances).

The essence of the system development problem is that implementations of com-

putational constructs combine resources and functionality with a non-linear efficiency-

capacity curve. As an illustration, consider Figure 2.12. From a development per-

spective, the ideal (or utopia) curve is a linear one. In that case algorithmic tradeoffs

(mappings) can be freely made. However, in reality (typical a resource has only a small,

usually non-linear, operation space. At best, a resource offers a number of opera-

tion points, e.g., through a composition of multiple modalities. Consider a wireless

communication system that implements a range of commodity devices like short-range

infra-red communication, medium-range Wi-Fi (IEEE 802.11B) communications, or

long-range GSM communication. Technological advances extend the working area of a

resource as well as they and improve the capacity and efficiency of resources (extended

in Figure 2.12). A recent example is dynamic voltage scaling (DVS) of processing cores

[Pouwelse et al., 2001]. Traditionally, a processing core offers two operation points:

on (running) and off (idle). Technological evolution, Moore’s law in particular, has in-

creased the efficiency of the “running” operation point. People realised that processors

are overprovisioned for most of their application areas, so a discrete set of operations

points is now offered: idle, doze, sleep, etc. A proper combination of these operation

points effectively lets the processor operate at quarter, half, or full speed, with corres-

ponding energy savings. The obvious direction of evolution is to offer a continuous

operation space. The dynamic voltage scaling paradigm offers a tradeoff between effi-

ciency and capacity that may be exploited algorithmically. We comeback to this subject

in Section 3.2.

The engineering view includes many more constructs than the two examples presen-

ted here. In Ubicom we introduced the concept of generic buffers. Generic buffers are

flexible implementations of first-in-first-out (FIFO) uni-directional data paths. The idea

of generic buffers is twofold. First, the computational view on the Ubicom system sug-

gests a dominant data flow with occasional (control) events, see also Chapter 5. Second,

generic buffers offer the flexibility to allow for simple remapping of constructs from a

computational view to constructs of an engineering view, i.e., resources. Generic buf-

fers are a significant part of so-called run-time systems. The run-time system provides

2.2. Ubicom 33

E
ff

ic
ie

n
c
y

Capacity

typical

extended

ideal

Figure 2.12: Efficiency Curve (trend)

means to execute a parallel program, particularly on heterogeneous hardware. Flexible

run-time systems are extensively used for automatic mapping of computational con-

structs. SPAR [van Reeuwijk et al., 2001] is an example of such an automatic mapping

and execution tool. SPAR is a Java extension that specifies computational constructs (a

sequential program), which are mapped onto constructs of an engineering view. The

run-time system is the “glue” for parallel execution.

We stressed the relation between the computation view and the engineering view as

a mapping of computation constructs to engineering constructs. However there is also

an action in the opposite direction. Engineering constructs (or resources) have limit-

ations. In a context-aware system, the capacity of resources influences the behaviour

of computational constructs. The necessary information about available resource ca-

pacity is communicated through informational constructs. The informational view that

results from the link between engineering and computational constructs is generally

known as performance modelling. As an example, van Gemund has developed an ana-

lytical performance modelling methodology [van Gemund, 1996]. The method takes a

computation model, an engineering model, and their mapping and derives an analytical

performance model. The strength of an analytical model obviously is its potential to

swiftly explore a broad design space and to perform optimisations. Other researchers

developed methodologies based on extensive simulations. The methodology of Kien-

huis automatically generates executable simulation models based on a computation

model, an engineering model, and their mapping. Because of the automatic generation,

a method known as design space exploration is possible through repeated simulation

runs [Kienhuis, 1999]. We will return to this matter in Section 3.1, in particular in

Example 3.1 on Page 38.

34 Complex systems in perspective

2.2.5 Technical view

A technical view addresses the technological aspects of a Ubicom system. Technolo-

gical aspects are dominated by practical issues, like the availability of standards, soft-

ware, and hardware, but also limitations to, for example, time and manpower budgets

play an important role. Flexible designs require flexible technology. Research pro-

jects like the Ubicom project therefore rely on open standards, open source, and free1

technology: hardware and software. Closed (or proprietary) systems can be applied,

but usually at the cost of wrapping and consequent inefficiencies. Through wrapping –

encapsulation of the closed standard (endosymbiosis) – one can achieve the necessary

flexibility; this proved a suitable approach, albeit a suboptimal one.

Technological aspects were briefly considered in the views discussed above. With

respect to standards, the internal video format (Figure 2.5 on Page 27) is a DCT-based

compression format, e.g., ITU-T H.263, ISO MPEG-2/4. The SCENEGRAPH informa-

tional object (Figure 2.4 on Page 24) is an ISO VRML 97 dialect. A system that com-

plies to standards offers the advantage of reuse of components developed elsewhere,

and the disadvantage of limited flexibility. In Ubicom the applied VRML dialect extends

the standard VRML language with dynamic constructs.

The support flow (Figure 2.7) uses OFDM coding and QAM modulation for each (or-

thogonal) carrier. This technique has been chosen because it offers high throughput and

requires little (frequency) bandwidth. OFDM coding effectively mitigates sincere chan-

nel fluctuations caused by multi-path interference. The choice for this type of modu-

lation imposes additional constraints on the behaviour of the radio front end (radioFe).

In particular, linearity of amplifiers [van den Bos, 1999] is crucial for correct channel

demodulation and decoding.

It is not necessary to give an exhaustive list of all standards and techniques applied

in the Ubicom system here, but a few more examples are appropriate though. The

consulting radio front end [Verhoeven and van den Bos, 2001], for instance, applies

an approach of combining multiple designs. At run-time, the system adapts to varying

conditions and powers up only the appropriate design. This results in a slightly larger

silicon area, but with improved performance and decreased power dissipation. Like-

wise, channel coding combines convolutionary and block coders at the encoding side

with so-called turbo decoding techniques at the decoder side. Again, on the basis of

design-time and run-time considerations the appropriate parameter settings are chose

to arrive at efficient implementations. As a final example we mention database organ-

isation of the geographic information system. Designing and implementing a database

system from scratch is in most cases not feasible. Commercial, and thus propriet-

ary, solutions are available, however. The implementation of the aforementioned geo-

metrical and topological organisation of geographical data is based on a commercial

database system (Oracle database server). Notwithstanding the wrapping penalty, the

performance of queries is satisfactory.

1Free as in “free speech; not free beer” [Foundation, 1984].

2.3. Discussion 35

2.3 Discussion

The preceding sections introduced an ontological inspired framework that relates dif-

ferent views on the same (beyond our reach) architecture of a system. We used the

Ubicom system to exemplify a set of related views. A recurring concern is the interde-

pendency among constructs part of the same view and among constructs from different

views. To develop a proper system, one needs to achieve clear coordination among sub-

systems. Without proper coordination a system degrades to a mere aggregate. Proper

coordination ensures the integrity of the system and prevents a functional breakdown.

We identified three important aspects for organising coordination properly:

❍ Abstraction

❍ Adaptation

❍ Cooperation

Regarding a system in the abstract, limits the set of predicated properties. Abstractions

were first introduced in the informational view. But in a sense every view is an abstrac-

tion. The ability of a system to adapt to its immediate environment implies that the

system values the properties it has in common with the environment. Constructs of the

computational view apply adaptation directly. A system reacts to a change in the envir-

onmental conditions. An indirect example of adaptation is found in our discussion of

the engineering view. We discussed the three platforms and saw that the performance

of engineering constructs caused a change of behaviour in computational constructs.

The selection of an engineering construct and the consequent adaptation of a computa-

tional construct is reflected in an informational construct. Equipping systems with an

awareness of changes in its properties can contribute positively to the system integrity:

cooperation. Cooperation implies that a system is aware of the influence that changes

in properties have on its environment. In a way, cooperation is the return path of adapt-

ation. Adaptation is an inbound bonding relation from the milieu to the system (which

implies action) and cooperation is an outbound bonding relation from the system to its

milieu (reaction). So, together adaption and coordination create interaction.

The presented views do incorporate collaboration to some extent, but only in an

implicit way. The developed viewpoints are the product of an authoritative and central-

ised design method. In the case of the described system in this chapter we maintained

a database of dependent views from which the individual views are extracted. A view-

point defines the concerns that select entities and relations from the database. These

entities and relations form consequently a view. The viewpoints are perfectly suited

for analysing and reasoning about the system. In fact this is a requirement in order

to guarantee the consistency of the database. Flexibility, however, is all in the mind

of a single entity: the system architecture team. In the following chapter, views are

developed collaboratively by the respective developers of individual subsystems.

Three

Negotiated Quality of Service

QUALITY of service (QoS) is an overloaded term. Definitions of QoS greatly de-

pend on what view is chosen on this subject. We restrict our treatment to two

basic views on QoS: an informational view and a computational view. An informa-

tional view on QoS attributes predicates to selected properties of constructs from an

engineering view on the system, which makes non-functional aspects explicit. Typical

examples are the capacity of a channel and the distortion of signals (signal-to-noise

ratio, SNR). A computational view on QoS concerns the protocols for exchanging and

handling predicates from the informational view. Both views are significant for our

observation that a QoS framework implements the coordination among components in

a communicating system.

In this chapter we derive the relevant aspects of such a QoS framework. Sub-

sequently we present a compliant framework: adaptive resource contracts (ARC). In

Chapter 2, we concluded that any coordinating framework must support the follow-

ing three aspects: abstraction, adaptation, and cooperation. The reason for developing

yet another QoS framework is that existing frameworks do not satisfactorily cover the

cooperation aspect. Even though modern QoS protocols [Aurrecoechea et al., 1999] fa-

cilitate negotiations, their information exchange is unidirectional and, what is more, the

information usually does not include the non-functional aspects of resource utilisation.

The flow of information of existing protocols for QoS either communicates predicates

from constructs of the engineering view of a system to constructs of the computational

view of a system or the other way round, but never both ways. This unidirectional

sharing of information would support adaptation, however; bidirectional sharing of in-

formation is required to properly support cooperation. Effective cooperation requires

that components are truly context aware. Another reason for developing ARC is that

resource utilisation metrics have only recently been included in the informational con-

structs of QoS frameworks [Yuan and Nahrstedt, 2001].

In Section 3.3 we will use the developed views on QoS to compare the develop-

ment choices made in ARC with related work. In part the comparison is made using

an conceptual QoS framework. We conclude with a discussion on the applicability of

37

38 Negotiated Quality of Service

ARC to coordinate components in a complex system. ARC trades off costs and be-

nefits, which is a multiobjective optimisation problem that any QoS framework must

solve. Optimisation is the topic of Chapter 4.

3.1 Views on QoS

Our approach to quality of service (QoS) follows our observation that a QoS frame-

work implements the coordination among the components of the communicating sys-

tem. Two aspects of a QoS framework are important, what qualitative information is

handled by the QoS system and how is this information being exchanged. The former

is elucidated in an informational view on QoS and the latter is elucidated by a compu-

tational view on QoS.

In Section 3.1.1 we argue that non-functional aspects must be shared among com-

ponents and in Section 3.1.2 we argue that the effective sharing must be implemented

distributively. As a consequence we conclude that cooperative components in a QoS

framework are necessarily context-aware. A component must be aware of the fact that

components in its immediate environment may change their state. Equally important, a

component must be aware of the fact that a change of its own state may affect the state

of other components.

3.1.1 Informational view on QoS

In Chapter 1 we have discussed the issue of cooperation and the eternal struggle for

balance; performance, behaviour, and resource utilisation. Making a proper tradeoff

implies making a well-informed tradeoff. The following example indicates what in-

formation is required for finding the balance.

Example 3.1 (Scaling) Recent – software-only – video decoders support mechanisms to main-

tain real-time decoding while sacrificing quality. Low-latency decoding, which suggests real-

time behaviour, can be guaranteed continuously at the expense of increased distortion (through

skipping video frames). Given a high-performance platform, with ample access to CPU and

memory resources, it is quite possible for a video decoder to display all frames of a selected

video stream. Two possible sources causing disturbance of the decoding process are apparent:

access to resources and availability of resources. If for some reason the availability of CPU or

memory resources is insufficient, then actions have to be taken in order not to delay the decoding

process. In this example we assume active skipping of frames. Access to resources, in particu-

lar access to memory, is predominantly determined by the organisation of the encoded stream.

Complex encoded streams have complex interdependencies and therefore require a high memory

bandwidth [Patterson and Hennessy, 1990]. Selective skipping of frames reduces the workload

on the memory bandwidth. To reduce the utilised memory size, a different selection of frames to

be skipped is required. Both selection schemes result in real-time decoding.

Implementation matters. The quality of a displayed video does not only depend on

how it is perceived by the client, but also on the capabilities of the platform on which

the decoding process is executed. An informational view on QoS therefore must in-

clude aspects from computational and engineering views on, in case of the example,

3.1. Views on QoS 39

the video decoding system. Informational QoS constructs thus require at least met-

rics for distortion and capacity. In the example, a client to the video system requires

information about the signal-to-noise ratio (SNR) of the video sequence after transmis-

sion and decoding. The video decoder, being a client of the processing platform, is

interested to have information about the available CPU and memory capacity.

Still, there is additional information that must be shared. The following example

illustrates that sharing of information about resource utilisation is of particular interest

among the subsystems of a communicating system.

Example 3.2 (Sharing) Assume an application that combines a day view and a night view on

a scene. The application uses two concurrent software-only video decoders from Example 3.1.

The first decoder decodes the day-view stream and the other decodes the night-view stream.

Note that the characteristics of the streams are hugely different. Assume an application that is

best suited with both views presenting a comparable display quality. When the resources of the

platform are limited, the individual decoders have to sacrifice quality. The application coordin-

ates the tradeoffs; either explicitly or implicitly. Basically the application assigns a budget of

available resources to the individual video decoders.

The above example illustrates once more that implementation matters. When re-

sources are shared, information about the resource utilisation of individual components

must be conveyed. Neglecting this information will jeopardise the integrity of the sys-

tem.

In retrospect, looking at the informational QoS constructs we deduce that a com-

putational view on the system contributes a metric for distortion, an engineering view

on the system contributes a metric for capacity, and the mapping of computation to

engineering constructs contributes resource utilisation. Recall that the creation of the

informational QoS construct was inspired by the design constraint to support evolu-

tion and to organise coordination in a distributive and non-iterative way (see problem

description on Page 4). In effect, the informational QoS construct abstracts the beha-

viour and the performance of individual subsystems and instruments their adaptation

and cooperation.

3.1.2 Computational view on QoS

Example 3.2 considered a straightforward system: one application, two concurrent

video decoders, and a single CPU. Already in this clear arrangement, exchange of

information is required for proper coordination. There are many ways to organise co-

ordination. A practical procedure, however, must be1) non-iterative and 2) distributive.

The non-iterative requirement has two grounds. First, for a run-time implement-

ation with real-time constraints, an iterative procedure is less attractive. Second, in

a communicating system in which subsystems possibly stem from very different do-

mains of expertise, iterative methods will fail to result in prompt delivery of designs.

This is caused by the possible long turnaround times of the design methodologies that

are applied in the respective domains.

The distributive requirement is a direct result of the complexity of the system. De-

veloping a central coordinating entity would require a single framework that models all

40 Negotiated Quality of Service

subsystems concurrently. In the preceding chapter we already argued against describ-

ing a system in a single stroke. Another argument in favour of a distributive procedure

is the fact that complex systems are in constant state of flux. A possible central author-

ity would be required to continuously adapt the framework in which the coordination

is evaluated. Or hypothetically, it would require a metaframework that encompasses all

possible scenarios of system composition. In these cases, a distributive coordination

framework is more practical, since it has necessary flexibility to adapt itself. The un-

derlying metaframework presumably exists, but will never be manifest. Obviously bid-

irectional and cooperative sharing of information among the components of the system

is required. The applied QoS protocol thus must support bidirectional (cooperative)

information exchange. QoS negotiations protocols are typically applied to coordinate

systems that are in a constant state of flux.

3.2 Adaptive Resource Contracts (ARC)

A QoS framework that complies with the preceding contemplation of a proper frame-

work for implementing the various aspects of QoS is Adaptive Resource Contracts

(ARC). The framework presumes a system with democratically interacting subsystems,

an heterarchy [Dilts et al., 1991]. Sharing of information among distributed subsys-

tems (peers) are typical client-server interactions. One subsystem offers services (the

server), which are applied by another subsystem (the client). However, it is not at all

obvious whether the offered or the requested service is authoritative, even if it were

obvious then the situation may change during operation. In addition, subsystems are

part of a larger composition, so they act as a client as well as a server and consequently

will have has a client-side as well as a server-side interface. Thus subsystems are indi-

vidually responsible to maintain the necessary domain knowledge but they have joined

responsibility for the integrity of the system as a whole.

The ARC framework eventually establishes contracts between client-server pairs.

A contract combines two basic kinds of contracts: resource contracts and adaptive

contracts. Resource contracts implement the requirement of going beyond an abstract,

functional-only, QoS interface between client and server. ARC explicitly incorporates

resource utilisation metrics in its interface parameters. Adaptive contracts implement

the coordination protocol among clients and servers. A client and server establish a

bipartite contract through a three-sweep protocol of request–offer–select. If necessary,

either of the two parties may initiate renegotiations.

The ARC framework has the required transformational properties. Because every

subsystem plays twin rôles – being a client as well as a server – it effectively translates

and interprets the context offered by its employed services into the context of its clients.

The translation and interpretation process includes the contribution of the subsystem to

the system properties as a whole. Thus at the cost of showing context awareness, sub-

systems can concentrate on domain specific issues and still contribute to the integrity of

the system; a significant step in mastering the complexity of communicating systems.

3.2. Adaptive Resource Contracts (ARC) 41

[
S

e
rv

e
r

]

objectives

milieu

conditions

milieu

[
C

lie
n
t
]

Workload

Operation space

Client Server

Client subsystem Server subsystem

δδδ

ρρρ

σσσ

qqq qqq

Figure 3.1: ARC informational view.

3.2.1 Resource Contracts

In a communicating system, communication amongst subsystems is between clients

and servers. The client takes services from the server while inducing a workload on

that server. The shared milieu of client and server is captured (attributed) by their mu-

tual so-called operation space. The composition of the client and server systems yields

a system again with a client interface and a server interface. At the client interface the

newly composed system requests services, i.e., the conditions under which to operate.

Whereas at the server interface, the newly composed system offers services, i.e., the

objectives with which the system must comply. Figure 3.1 shows a diagram of a com-

pound system: a client, a server, and their operation space. These constructs constitute

the informational view of ARC.

The operation space of the ARC framework attributes the mutual milieu of the

client and server under observation. The operation space of ARC is a tuple with three

classes of attributes (parameters), each class being a vector: distortion (δδδ), capacity (σσσ),

and resource utilisation (ρρρ). The division of parameters in three distinct classes has a

practical cause. Observations during system development of collaborations amongst

subsystems in different application areas showed that the aforementioned parameters

are often recurring identifiers. ARC, however is not strict in imposing this set of para-

meters, but for the sake of the discussion we refer to the tuple 〈δδδ, σσσ , ρρρ〉 as parameters

spanning the operation space.

An operation space is a parameter space with operation points, which specify an

optional contract between client and server. An operation point corresponds to a mode

of operation of the combined client and server subsystem. From the perspective of

the client, an operation point is a model of the service in terms of its performance and

behaviour: it shows how good the service is, how much of it is supplied, and at what

cost. From the perspective of the server, the operation point is a model of the workload.

An operation space typically consists of more than one option. There exist more

42 Negotiated Quality of Service

ways in which a client and a server can cooperate, since both support a range of scen-

arios. As a result the emerging properties of the compound system (combined client

and server system) are affected by the selected operation point. The emerging proper-

ties themselves contribute to the operation space of the compound system, and as such,

model the quality and resource utilisation of the compound system. The attribution

of these emerging properties is context dependent; the role the compound system has

in the total system determines the manifold from which its properties are valued. As

an example, some types of applications benefit from a video communication system

that supports a progressive range of video quality sequences, whereas other types of

applications adhere to an all-or-nothing strategy. Now consider a particular video com-

munication system that offers an operation point at its server side (conditions) with

moderate quality at low resource utilisation. The first type of application will value

this specific system as suitable whereas the second type of application will value this

specific system as useless.

To state the foregoing more formally: when offering an operation point, a flexible

system component must be aware of the varying objectives of its clients. In general,

generating a single operation point is inadequate, since a single operation point would

only be sufficient in the rare case that the conditions offered by the server exectly match

the objectives imposed by the client. A single proper operation point thus implies de-

tailed knowledge about the internals of the client and the context of the client. Instead,

a flexible component may generate a whole set of operation points, each point not dom-

inating the others. The set circumvents the need for in-depth knowledge of its clients.

The set of operation points is the solution to a so-called multiobjective optimisation

problem [Miettinen, 1999]. A set of non-inferior (or non-dominant) points is usually

referred to as a set of Pareto points [Pareto, 1896]. Note that it takes expert know-

ledge to generate such a set. At first sight, having a set of points rather than a single

point in the operation space may seem an example of overprovisioning. However, a

set broadens the scope of the client and therefore reduces the number of communica-

tion iterations; it is a prerequisite for non-iterative implementations (Postulate 1.2 on

Page 8).

The operation space is the result of the collective of a client and a server: both con-

tribute parts to the operation space. Their individual contributions are the result of an

internal evaluation process. The client as well as the server collects (decision) variables

in a vector qqq , see also Figure 3.1. Different settings of these variables (vector entries)

transform to different entries in the operation space. A straightforward optimisation

that makes communications more efficient is to offer only those operation points that

are Pareto points, so operation points that are optimal in at least one dimension of

the operation space. A more mathematical discussion on ARC will be presented in

Chapter 4.

The immediate environment (milieu) of a system component affects the precise

value of operation points. The milieu of a system component includes its objectives

and conditions as set by the larger system. In the diagram of Figure 3.1 the objectives

of the compound system are part of the milieu of the client subsystem. Similarly, the

conditions for the compound system are part of the milieu of the server subsystem.

Internally, the client and server have an overlapping milieu; they share an operation

space. The system of Figure 3.1 effectively translates (transforms and conveys) its

3.2. Adaptive Resource Contracts (ARC) 43

capacity

d
is

to
rt

io
n

capacity

d
is

to
rt

io
n

capacity

d
is

to
rt

io
n

Server interface

select

offer

Client interface

request

[Client interface]

[Server interface]

server sub system

client sub system

q

q

Figure 3.2: ARC three-sweep protocol.

objectives and its conditions.

The operation space is the result of the cooperation between a client and a server; it

is an explicit account of the context awareness of system components. Efficiency reas-

ons often contribute to the eventual appearance (scope and dimension) of the operation

space. For instance, in [Lieverse et al., 1999], high-level design space explorations are

applied to deliberately limit the scope of operation space parameters. Another example

is making the interdependence of operation space parameters explicit. At design time

the relative precedence of parameters can be set [Saaty, 1990], which makes run-time

implementation more efficient. By exploiting the static precedence among parameters,

one can effectively limit the dimensions of the operating space; an example of this can

be found in Section 6.1.3.

3.2.2 Adaptive Contracts

In this section we present a protocol that implements adaptive contracts. ARC applies

a three-sweep protocol: request–offer–select, which is outlined in Figure 3.2. In the

first sweep the client subsystem issues a request to the server subsystem. The server

responds – second sweep – with an offer. The client subsequently selects in the third

sweep an appropriate operation point, which finalises the terms of a contract.

44 Negotiated Quality of Service

A request, typically, contains a range of objectives. A request defines an (open)

interval in the operation space. Given the objectives and given the conditions, a server

subsystem can evaluate the consequences of setting decision variables (qqq of Figure 3.2).

Evaluating the decision variables for a range of settings yields a set of Pareto opera-

tion points: the offer. The contract, finally, specifies a small interval round a selected

operation point from the offer. The interval leaves room for both the client and server

to perform local adaptations without negotiating a new contract. The example below

illustrates the ARC protocol in a heterarchic structure.

Example 3.3 (Video communication) Consider a mobile video communication system [Taal

et al., 2002]. A mobile terminal is equipped with a camera. The video sequence taken from this

camera is encoded, transmitted to a base station, and decoded again; all in real time. Assume

a straightforward engineered mobile terminal: a battery-powered terminal with a single CPU

running a multi-threaded operating system. For the sake of the example, the operation spaces

between the various computation constructs are simple.

Figure 3.3 combines the informational, computational, and engineering views on the system.

At the top of the diagram, the user requests an interval of distortions. The manager translates the

objectives of the user into an interval of distortions and video resolutions. The source codec eval-

uates the source characteristics, takes into account the objectives, and evaluates internal decision

variables. This results in a specification of an interval of throughput and bit error rate (BER)

objectives. The specification is put as a request to a channel codec. The channel codec uses a

similar approach to translate (cast) incoming objectives into a request for data transmission to

the transmitter.

Finally, the radio front-end (transmitter) senses the wireless channel conditions. These con-

ditions together with the request from the channel codec make up the context in which the radio

front-end solves its multiobjective design problem. The result is an offer to the channel coding

layer. The offer from the radio front-end to the channel codec completes the context of the chan-

nel codec and therefore provides sufficient conditions to solve its multiobjective design problem.

Offers ripple up the heterarchy.

Eventually the user receives an offer with multiple fully-determined operation points. The

user selects an appropriate one and establishes a contract with the manager. The manager knows

the settings of its internal decision variables that correspond to the selected operation point. The

manager also knows the correspondence to the operation point of the offer it previously received

from the video encoder. Contracts and settlement of internal decision variables ripple down

the heterarchy until finally the radio front-end receives the contract information; processing can

begin.

The ARC three-sweep protocol compares to an intuitive approach for exchanging

context information, which can be observed during the exploratory stage of system de-

velopment, especially when this development takes place in a multidisciplinary setting.

During the exploratory stage there is regular interaction among component owners; in-

dividual owners try and establish the context of the component they are responsible for.

During these interactions, vague requests are made, offers are expected in return, and

sensible operation areas are selected.

For reasons of efficiency, run-time implementations usually limit their scope and

flexibility. The ARC framework is suitable for determining where flexibility can be

sacrificed. One option is to exploit the possibility that similar evaluations take place

during all stages of the development. For example, during system analysis, the system

3.3. Related work 45

Manager

Source codec

Transceiver

Channel codec
B
at

te
ry

CPU

Power
Distortion

Distance
Noise level

camera

Throughput

BER

Power

Throughput

PER

Power

Distortion

Power

Resolution

Figure 3.3: Video communication system.

is submitted a scenario. Subsequent evaluation may show that a component uses only

a limited number of its potential operation modes. It therefore is sufficient to support

only those modes of operation that are actually used at run-time.

Possible changes in system objectives or system conditions will propagate the het-

erarchic structure of the system. The reach of the changes may differ, though. Some

changes affect the entire system, whereas others vanish while traversing the structure.

Less significant context variations can be resolved locally, exploiting the ability of a

component to adapt to a changing milieu. More significant context variations require

the collaboration of more than one component; in that case renegotiations must be

started.

3.3 Related work

In this section we give an overview of the vast amount of literature on the subject of

negotiated QoS. In the ARC framework we advocate cooperation as the means to cap-

ture the dynamics of a system so as to coordinate resources and services among system

components. This specific topic and its relation to existing literature is discussed in

Section 3.5.1. We do not intend to be exhaustive in referring to related work, yet relev-

ant concepts are put into perspective. References in this section might prove useful for

run-time implementation of the concepts laid out in this chapter.

Quality of service has been addressed by a large number of researchers, general

surveys of QoS architectures and QoS concepts are presented in [Aurrecoechea et al.,

1999; Nahrstedt et al., 2001]. A common technological argument against implementing

QoS architectures is overprovisioning; when implementing an abundance of resources,

sharing of resources is never necessary. Nahrstedt gives in [Nahrstedt, 1999] three

arguments against overprovision: greedy applications might block a resource entirely,

46 Negotiated Quality of Service

conditions

qs

Ts
Server

Optimiser

qc

TcClient

objectives

�✁�✁��✁�✁��✁�✁��✁�✁�

✂✁✂✁✂✂✁✂✁✂✂✁✂✁✂✂✁✂✁✂
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎

contract

✆✁✆✁✆✁✆✁✆✁✆✝✁✝✁✝✁✝✁✝✁✝

✞✁✞✁✞✁✞✁✞✁✞✞✁✞✁✞✁✞✁✞✁✞
✟✁✟✁✟✁✟✁✟✁✟✟✁✟✁✟✁✟✁✟✁✟

Figure 3.4: Generic negotiated QoS constructs.

head-of-line applications in a FIFO queue may block time sensitive applications down

the queue, and last-mile problems hinder end-to-end QoS guarantees.

In Section 3.1 we developed two views on QoS, an informational view and a com-

putational view. The relevant issues addressed in these views are visualised in the

diagram of Figure 3.4. The diagram shows a client and a server. Both the client and the

server export multiple multi-modal parameters at their QoS interface. The predication

of these parameters is done in the context of the respective components; the objectives

of the client and the conditions of the server. The interface parameters, in turn, are

input to an optimisation process that yields a bilateral contract. The contract is an ex-

plicit account of a reservation. In the generic case, the optimiser continuously monitors

the current state of the exposed interface parameters; feed forward from the client and

feedback from the server.

In Section 3.3.1 we regard the related work from an informational perspective,

concentrating on the operation spaces and generic coordination. In Section 3.3.2 we

take a computational perspective and review a number of systems for negotiated QoS.

3.3.1 Informational view on QoS

Adaptive schemes

Figure 3.4 represents a reservation-based QoS scheme with an explicitly established

contract, whereas schemes with implicit contracts are referred to as adaptive schemes.

Typically, adaptive schemes do not have a separate optimiser and lack communica-

tion of context information in a proper format. Instead, adaptive schemes use ex-

tensive processing to derive the context of the underlying optimisation problem and

then effectively adapt to changes in their immediate environment. Steenkiste identi-

fies two distinct “adaptation models” (performance-based and model-based ones) and

a hybrid one (a feature-based model) [Steenkiste, 1999]. The performance-based ad-

3.3. Related work 47

aption model corresponds to a traditional control loop, where the adaptable process

monitors the performance of employed services. This type of modelling corresponds

to the adaptive schemes mentioned before. Secondly, Steenkiste recognises a model-

based adaptation model, where the adaptive process models its interior process based

on external service performance parameters. We successfully applied the model-based

adaptation model in a video-over-wireless experiment [Taal et al., 2002].

Adaptive schemes for QoS assurance that are based on feedback control are suited

for analysis. In literature a number of control theoretical approaches have been repor-

ted. Abdelzaher et al. for instance, equipped a web-server with a classical (determin-

istic) proportional integral (PI) controller [Abdelzaher et al., 2002]. Another example

of feed-back control is found in [Li and Nahrstedt, 1998], which uses a classical pro-

portional integral derivative PID controller and more recently they include prediction

by means of a Kalman filter [Li et al., 1999]; see e.g. [Kailath et al., 2000] for an

introduction of Kalman filters. The experiments in [Li et al., 1999] demonstrate that an

(artificial) tracking system breaks down without adaptation, whereas with adaptation

the system maintains its specified tracking precision even under harsh conditions. In

[McNamee et al., 2000], the QUASAR QoS framework is described, which considers

streaming applications: a cascade of pipelined processes. The choice of controller is

again a PID controller, which is a generic part of their encapsulated feedback frame-

work: SWIFT. In [Steere et al., 2000] the SWIFT framework is applied in an ex-

periment with a simple two-stage cascade. In [Koliver et al., 2002] feedback control

loop is implemented with a so-called fuzzy controller. The advantage of fuzzy control

over deterministic control, e.g., implementing a PID controller, obviously is its ability

to dynamically adapt the behaviour of the controller. A disadvantage is the lack of a

theoretical framework to reason about the performance of the system.

Chen et al. compare an adaptive scheme with a reservation- based QoS scheme

[Chen et al., 2001]. It turns put that either scheme can be used in their situation; the

adaptive scheme requires little initialisation work and much work during operation,

whereas the reservation-based scheme does most of the work during initialisation and

operation becomes simple. The researchers eventually favour the adaptive scheme.

However they pass over the issue of evolution and exceeding domain knowledge.

Format and exchange

QoS assurance requires effective communication of information. In the ARC frame-

work the specification of this information is left open. The specification is very ap-

plication dependent, a universal form for all specifications in a complex system would

therefore be impractical. Bhatti and Knight take a similar approach in [Bhatti and

Knight, 1999]. They communicate context information through so-called QOSSPACES,

which form overlapping compatibility requests.

Other researchers implemented different quality-description and quality-modelling

languages, QDL and QML respectively. In [Loyall et al., 1998] a plethora of QDL

dialects is developed for describing contracts, structure, and resources. Each QDL dia-

lect has been designed with a specific application area in mind: multi media streaming

applications. Also their examples are oriented towards structures with two layers: the

application layer and the network layer. This makes them less suitable for every QoS

48 Negotiated Quality of Service

interface in a complex system. QML has been developed in [Frølund and Koistinen,

1998], which is similar to QDL but apparently more flexible. QML has three main con-

structs: contract type, contract, and profile. A contract type defines the QoS category

(reliability or performance) and its dimension (set or enumerated). A contract is an in-

stantiation of a contract type. A profile associates contracts with interface entities. As

a final example of a quality description language is a QoS model based on the formal

specification language Z [Staehli et al., 1995]. Staehli et al. defines three concepts:

content, view, and quality. Content is an characterisation of the source, view an ideal

presentation of the content and quality is a measure of the distortion of the eventual

presentation. The QUASAR QoS model of [Walpole et al., 1999] refines the QoS model

of Staehli et al..

QoS assurance through QoS adaptation requires a measure of optimality. Most

frameworks implement this through value functions. Value functions map QoS related

parameters to normalised predicates, they appear in various forms in literature. To give

some examples. Chatterjee et al. use in their QUASAR project benefit functions to

predicate the benefit of a selected mode of operation Chatterjee et al.. The QUASAR

QoS model is another example that uses utility functions, a normalised measure of use-

fulness [Walpole et al., 1999]. As a final example the Q-RAM project applies utility

functions that combine a resource consumption surfaces with a utility surface [Rajku-

mar et al., 1997]. Both surfaces are a function of one or more QoS parameters. The

resulting utility function effectively trades off resource usage and (user) utilisation.

3.3.2 Computational view on QoS

QoS architectures, in particular their run-time implementations, are presented as mid-

dleware [Agha, 2002; Tripathi, 2002]. The underlying idea is to clearly separate

concerns of functionality and performance optimisations; a form of aspect-oriented

programming [Elrad et al., 2001; AOSD-web, 2001–2002]. The QoS functionality is

implemented in what Schmidt refers to as “common middleware services” [Schmidt,

2002]. Basically it is a set of programming interfaces for QoS and resource coordina-

tion that is common to a specific range of application areas. Because middleware ser-

vices have a strong orientation on run-time implementations, they lack the flexibility

that is required in complex systems. Existing middleware implementations therefore

target specific, limited, application areas. In [Tripathi, 2002], the research community

is challenged to develop true “policy driven middleware for computer supported co-

operative work”; ARC might very well prove to be a good start.

Reflective middleware [Kon et al., 2002] is a generalisation of middleware. This

class of middleware has the ability to reflect, that is, to access, reason about, and alter

its own interpretation. Reflection requires a metasystem as implied by Gödel’s incom-

pleteness theorem1 [Hofstadter, 1985]. We already rejected this approach for ARC.

As mentioned before, there are many schemes for negotiated QoS; some are heur-

istical whereas others are more organised. In Figure 3.4 we presented a generic frame-

work for negotiated QoS with distinct components for distinct concepts. Practical

frameworks for negotiated QoS usually combine and confine concepts as not every

1 “If the formal system P is consistent, its consistency is unprovable within P” [Braithwaite, 1962].

3.3. Related work 49

concept maps to a distinct component and not every concept is implemented in all its

possible detail. The ARC framework, e.g., combines the optimiser and client-side op-

eration space with the client-side evaluation. Figure 3.5(a) is a conceptual diagram of

the ARC framework drawn in the generic negotiated QoS framework of Figure 3.4. In

this section we review a number of frameworks for negotiated QoS.

The most straightforward negotiation scheme is call admission. At the time of es-

tablishing a service employment, the client specifies its requirements; the server tries

to allocate the necessary resources on the route to the final service and reports suc-

cess or failure. Call admission is visualised in Figure 3.5(b). The client provides a

single request. The underlying server simply matches its current state with the request

and acknowledges or rejects the request. Call admission does not support negoti-

ations during a call, so applications tend to be greedy and allocate enough throughput

to accommodate their most demanding mode of operation. Usually this worst-case

allocation behaviour locks up network resources that could be used by others.

Value functions are applied in multiple frameworks. Value functions propagate

information down the structure, which is generally not a good idea. Information accu-

mulates in the bottom layers of the system, and consequently decisions have to be taken

at a distinct location. Moreover, the time scale in the bottom layers is much smaller

than the scale at layers higher up the structure. Examples of systems that apply value

functions are QUASAR [Chatterjee et al., 1997], ERDOS [Lee and Sabata, 1999], and

Q-RAM [Hansen et al., 2001; Lee et al., 1999b; Rajkumar et al., 1997]. In [Bianchi

et al., 1998], value functions are applied for utility-fair scheduling. The corresponding

QoS structure uses local server-specific adaptations. See the diagram of Figure 3.5(c)

for a conceptual view; systems that are based on value functions, typically implement

some sort of centralised control.

The classical control loop applies feedback control, thus effectively propagating in-

formation up the structure. Given the argument on the grain size of time above, this is

a potentially better approach than feedforward. However, because of the difference in

time granularity between the top levels and bottom levels, controlling the lower com-

ponents from a distinct top-level component remains awkward. Feedback control can

be useful though in situations where services can be characterised with one parameter

and have relatively small fluctuations. Both the AQUA [Lakshman and Yavatkar, 1996]

project and the SWIFT [Goel et al., 1999] project implement generic support for feed-

back control. See Figure 3.5(d) for a diagram.

Quality events [West and Schwan, 2001] is a framework with monitors and hand-

lers. Whenever a monitor detects a QoS flaw, an event will be triggered for the corres-

ponding service handler. The quality events framework corresponds to the diagram of

Figure 3.5(e).

A hybrid concept that combines feedback and feedforward is more generally ap-

plicable.

A conceptual example of a hybrid framework is presented in [Bhatti and Knight,

1999]. Feedback is given in terms of application-specific parameters. The applica-

tion specifies its own so-called QOSSPACE defined as an orthogonal combination of

parameters. The parameters are selected such that each mode in which the applic-

ation may operate can conveniently be described as a sub-space (e.g. a cube in a

3-D parameter space). The network performance feedback is then mapped into the

50 Negotiated Quality of Service

QOSSPACE, signalling the compatibility of each sub-space under current conditions.

Since the feedback is in application-specific terms, adapting to changes amounts to

selecting the mode associated with the best sub-space; see Figure 3.5(f) for a diagram.

QUALMAN [Nahrstedt et al., 1998] is a client/server brokerage-based platform for

QoS-aware resource management. QoS contracts are negotiated based on QoS pro-

files that either are provided by the client or probed by the server at run time; see

Figure 3.5(c) and 3.5(d) for the respective diagrams.

3.4 ARC structures: compositionality

ARC components (subsystems) are suitable building blocks for composing larger struc-

tures, which form a system again. In complex communication systems like Ubicom,

many different structures coexist, some more complex than others. In this section, we

consider two basic structures: a cascade structure and a parallel structure. Both struc-

tures implement distributive coordination to control shared resources. In this section,

we study the consequences of the structure of the compound system. We consider their

interfaces and the structure of the emerging multiobjective design problem.

As an introduction, consider the following, abstract, example of a generic content

presentation system. More practically oriented examples can be found in Chapter 6

(Section 6.1 and Section 6.2).

Example 3.4 (Content presentation) Consider Figure 3.6, which shows a generic diagram of a

content presentation system, which is mapped onto a generic communication system (Figure 1.1

on Page 2). Think of an infotainment system that offers information to a human user in an

entertaining way. We presume an analysis system (not shown in the diagram) that generates an

information stream U . This stream is optimally encoded through a maximum entropy coder.

The consecutive synthesis system transfers an appropriate portion of U while disregarding the

portion 5U . The remaining information X is used by the actor system to present information

appropriately. The actor system typically adds redundancy in order to make the information

understandable for the user. Redundancy can be added in the time domain (lengthy rehearsals),

in the spatial domain (vivid animations), or both. The final phase is the interpretation of the

information by the user (the sensor system). The sensor is a selective device; the user only

appreciates part of the offered information. Aspects that play a role in the interpretation process

are the patience of the user, the ability of the user to concentrate and focus, etc. Consequently,

only a part of the information as offered in Y is effectively transferred to the user V .

The example illustrates the relation between communication systems and inform-

ation theory [Shannon, 1948; Goldie and Pinch, 1991; Verdu, 1998]. The measure of

information contained in a stream U is referred to as entropy, denoted as H(U). The

efficacy of a communications system depends on the ratio H(V)/H(U) and the latency

of the transfer (can be infinite).

Entropy is defined as an expectation [Goldie and Pinch, 1991]. Let pi be the prob-

ability that the a symbol uuui is an element of U , then the entropy of U is defined as

H(U) = −E(log2 pi) (3.1)

3.4. ARC structures: compositionality 51

conditions

qs

Ts
Server

Optimiser

qc

TcClient

objectives

�✁�✁��✁�✁��✁�✁��✁�✁�

✂✁✂✁✂✂✁✂✁✂✂✁✂✁✂✂✁✂✁✂
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎

contract

✆✁✆✁✆✁✆✁✆✁✆✝✁✝✁✝✁✝✁✝✁✝

✞✁✞✁✞✁✞✁✞✁✞✞✁✞✁✞✁✞✁✞✁✞
✟✁✟✁✟✁✟✁✟✁✟✟✁✟✁✟✁✟✁✟✁✟

(a) ARC.

conditions

qs

Ts
Server

Optimiser

qc

TcClient

objectives

�✁�✁��✁�✁��✁�✁��✁�✁�

✂✁✂✁✂✂✁✂✁✂✂✁✂✁✂✂✁✂✁✂
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎

contract

✆✁✆✁✆✁✆✁✆✁✆✝✁✝✁✝✁✝✁✝✁✝

✞✁✞✁✞✁✞✁✞✁✞✞✁✞✁✞✁✞✁✞✁✞
✟✁✟✁✟✁✟✁✟✁✟✟✁✟✁✟✁✟✁✟✁✟

(b) Call admission.

conditions

qs

Ts
Server

Optimiser

qc

TcClient

objectives

�✁�✁�✁�
�✁�✁�✁�
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂

✄✁✄✁✄✄✁✄✁✄✄✁✄✁✄✄✁✄✁✄

☎✁☎✁☎☎✁☎✁☎☎✁☎✁☎☎✁☎✁☎

contract

✆✁✆✁✆✁✆✁✆✁✆✝✁✝✁✝✁✝✁✝✁✝

✞✁✞✁✞✁✞✁✞✁✞✞✁✞✁✞✁✞✁✞✁✞
✟✁✟✁✟✁✟✁✟✁✟✟✁✟✁✟✁✟✁✟✁✟

(c) Value functions.

conditions

qs

Ts
Server

Optimiser

qc

TcClient

objectives

�✁�✁��✁�✁��✁�✁��✁�✁�

✂✁✂✁✂✂✁✂✁✂✂✁✂✁✂✂✁✂✁✂
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎

contract

✆✁✆✁✆✁✆✁✆✁✆✝✁✝✁✝✁✝✁✝✁✝

✞✁✞✁✞✁✞✁✞✁✞✞✁✞✁✞✁✞✁✞✁✞
✟✁✟✁✟✁✟✁✟✁✟✟✁✟✁✟✁✟✁✟✁✟

(d) Feedback.

conditions

qs

Ts
Server

Optimiser

qc

TcClient

objectives

�✁�✁��✁�✁��✁�✁��✁�✁�

✂✁✂✁✂✂✁✂✁✂✂✁✂✁✂✂✁✂✁✂
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎

contract

✆✁✆✁✆✁✆✁✆✁✆✝✁✝✁✝✁✝✁✝✁✝

✞✁✞✁✞✁✞✁✞✁✞✞✁✞✁✞✁✞✁✞✁✞
✟✁✟✁✟✁✟✁✟✁✟✟✁✟✁✟✁✟✁✟✁✟

(e) Quality events.

conditions

qs

Ts
Server

Optimiser

qc

TcClient

objectives

�✁�✁��✁�✁��✁�✁��✁�✁�

✂✁✂✁✂✂✁✂✁✂✂✁✂✁✂✂✁✂✁✂
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎

contract

✆✁✆✁✆✁✆✁✆✁✆✝✁✝✁✝✁✝✁✝✁✝

✞✁✞✁✞✁✞✁✞✁✞✞✁✞✁✞✁✞✁✞✁✞
✟✁✟✁✟✁✟✁✟✁✟✟✁✟✁✟✁✟✁✟✁✟

(f) Application Adaptation functions.

Figure 3.5: QoS concepts.

52 Negotiated Quality of Service

Synthesis Actor Sensor
XU Y V

5U 5Y

Figure 3.6: Content representation system.

The synthesis and sensor systems of Example 3.4 discard a portion of the available

information. In general the mutual information of the incoming stream S and the out-

going stream T of a system is defined as

I (S ∧ T) = H(S)− H(S | T), (3.2)

where the conditional entropy, H(S | T), is referred to as the equivocation of S about

T , thus the uncertainty about S when T is received.

The actor system of Example 3.4 adds redundancy so as to ease decipherability for

the subsequent sensor system. Additional bits can be used to reorganise the stream X ,

such that deciphering of Y becomes simpler. A theoretic example is a prefix-free code,

which allows deciphering without implementing lookahead. Additional bits can also

be used to transfer the information multiple times, preferably in different shapes. In

view of the example, think of an audio-only presentation, a video-only presentation, or

a full-fledged multimedia presentation, possibly supported with 3D rendered graphics.

The content presentation system of Example 3.4 is a cascade structure when viewed

from a distance. However, the description of the subsystems suggest that there are

underlying parallel structures. For instance, the actor system has a choice of a wide

range of displays. Optimal coding, in the sense that the user apprehends most of the

information, must be entertaining in order to keep the attention of the user. This op-

timal coding requires close collaboration between a wide range of disciplines, ran-

ging from multimedia coding to multimedia processing, and even to multimedia art.

The artistic oriented subsystems will encapsulate the engineering oriented subsystems

(symbiosis), whereas typical engineering subsystems will combine different techno-

logies for presenting information. The latter process typically requires a minimum

amount resources, but also has the danger that one display technique masks the other

(epistasis).

3.4.1 Cascade structure

A cascade structure is a concatenation of components. Example 3.3 on Page 44 and

Figure 3.3 contain an example of a cascade filter structure. The coordination of the

shared resources, energy in the example, is organised through sharing the relevant

information through the ARC (QoS) interfaces of the involved components. This

resource-related information is captured in a resource vector ρρρ. Each component in the

cascade (chain) observes, and possibly updates, the resource utilisation vector. How-

ever, detailed information of a resource is only required on a need-to-know basis. From

3.4. ARC structures: compositionality 53

cL−1

cℓ

co

c′ℓ

c′
L−1

U

Y

U ′

Y ′

xρ̂c′ℓ;x
ρ̂cℓ;x

Figure 3.7: Typical cascade structure: workload on x .

the perspective of a particular component in the cascade, the resource vector ρρρ may

bear information about engineering constructs that it is unfamiliar with. This particular

entry in ρρρ can safely be ignored, but must be passed on. An object-oriented approach

to handling the resource vector comes to mind. The object class contains the resource

vector and provides specialised access methods for updating and querying the vector.

This form of abstraction allows for handling of non-linear behaviour of resources and

hiding of irrelevant aspects (the need-to-know basis).

A typical cascade structure is given in Figure 3.7. The layered system transfer

an information stream U into U ′ while using the resource x . A layer ℓ applies an

encoder cℓ and a decoder c′ℓ that induce a load on resource x of respectively ρ̂cℓ;x and

ρ̂c′ℓ;x . As an example, consider x being the latency. Layer ℓ regards the lower layers

({o · · · ℓ − 1}) as a non-ideal channel that also induces a workload on the resource,

namely the aggregation of the individual encoders and decoders. The channel is non-

ideal as layers may discard information or add redundancy.

Obviously, an ARC enabled channel can generate an offer which allows the en-

coder/decoder pair at level ℓ to do a tradeoff between the amount of effectively of

transferred information (I (Y ∧ Y ′) (3.2)) and the total amount of resource utilisation

(
∑ℓ−1

i=0 ρ̂ci ;x + ˆρc′i
; x)). The offered operation space of the channel provides the neces-

sary conditions for a layer to generate an offer of its own.

A more complicated aspect of cascade structures emerges when we consider struc-

tures with dependent sources. In that case it is necessary to effectively characterise

the source from one level to the other, which usually requires domain-specific expert

knowledge. As an example, consider Figure 3.8. In this diagram, a source uL (inform-

ation stream H(uL)) is to be coded for transport by a cascade of coders cℓ. A coder

cℓ is offered a source uℓ+1 with entropy H(uℓ+1) of which a portion H(ŷℓ) is offered

for transport. The remaining H(uℓ+1 | ŷℓ) is offered as a source to the remainder of

the cascade, i.e., H(uℓ+1 | ŷℓ) = H(uℓ). A coder cℓ must know the distortion left by

the remainder of cascade in order to make a proper tradeoff about which portion of the

source it can encode effectively and which portion it may pass on. Let yℓ be the set

of encoded streams from coder cℓ down to co; yℓ = {ŷℓ, ŷℓ−1, · · · , ŷo}. The distor-

tion sought after is thus the equivocation [Shannon, 1948] of yℓ about uℓ: H(uℓ | yℓ).

54 Negotiated Quality of Service

H(uℓ+1 | yℓ+1)

H(uℓ+1)

H(uℓ | yℓ) H(uo|yo)H(uL | yL)

H(uℓ) H(uo)

H(ŷℓ)H(ŷL−1) H(ŷo)

H(uL)

cL−1 cℓ co

Figure 3.8: Cascade filter structure with dependent sources.

Hence the distortion as offered by the cascade as a whole equals H(uL | yL).

Each system component, cℓ, offers a so-called rate-distortion curve. The aim is

to derive the rate-distortion curve of the whole system; the aggregated bit rate of

{H(ŷo) · · · H(ŷℓ) · · · H(ŷL−1)} versus, H(uL | yL), the accomplished system-wide

distortion . The rate-distortion curve allows a client of the compound system to trade

off the bit rate (throughput) against the possible degradation of the source. An applic-

ation of this method is proposed in [Heusdens et al., 2001] for implementing a scalable

near-optimal audio codec. Each filter component implements a different strategy to

encode the source information efficiently. If a cascade of these filter components is

implemented, the input to the next stage obviously depends on the choices made in the

previous stage. Still the system as a whole has to distribute a rate budget over the filter

components.

The challenge of the system in Figure 3.8 is twofold. Individual components must

be suitable to evaluate their options in a variable context. In addition, the characterisa-

tion of the dependent sources must be sound. The context of a component is identified

by the imposed objectives (characterisation of the source that is offered for transport

and the desired level of distortion from the preceding component in the cascade) and

the conditions (characterisation of the dependent distortion by the following compon-

ent in the cascade). Proper characterisation (modelling) of sources and distortion is

crucial, as we observed already in Example 3.4.

3.4.2 Parallel structure

Another common filter structure is the parallel structure of Figure 3.9. There are two

basic types: a select structure (XOR-relation) and a merge structure (AND-relation). The

select structure chooses one service from a set of offered services, whereas the merge

structure joins all services in the set. An example of a select structure is a manager

of a multi-modal radio transceiver. Depending on the availability of a wireless net-

work and the characterisation of a requested communication, an appropriate service

(WiFi, GSM-900 MHz, GSM-1800 MHZ, IrDa, etc.) is invoked. All other services

are shut down. The manager offers the instantaneous power-optimised solution to the

application, while taking into account the application request for a specific type of

communication. An example of a merge structure is the combination of multiple visual

objects in one scene. Example 3.2 combined multiple video streams. One can also

think of a 3D graphics scene that combines multiple graphical objects. The position of

3.4. ARC structures: compositionality 55

H(yo)

H(xo|yo)

H(xo)

H(yℓ)

H(xℓ|yℓ)

H(xℓ)

H(xL−1|yL−1)

H(xL−1)

H(yL−1)

H(y)

Figure 3.9: Merge filter structure.

each object (short range, medium range, or long range) determines the relative accur-

acy with which individual objects must be modelled [Pasman and Jansen, 2001], such

that the overall scene shows a comparable distortion for all objects contained.

The select structure is a true abstraction of similar services. Each service has a

specific, usually static, behaviour, performance, and resource utilisation. By combining

services we sacrifice area but extend the operation space, hence incorporate flexibility,

see Figure 2.12 on Page 33 for an example. Because of the similarity of the services,

abstractions can be captured in a common model, which makes combining of services

relatively simple.

Merge structures require sharing of information among subsystems. In a complex

system with heterogeneous filter components, however, it is not a priori clear how to

format this information. An authoritative framework that models the necessary in-

formation is less attractive due to inhomogeneity of the system and the requirement to

support evolution.

The fundamental difference between the specification in the merge structure and

the specification in the cascade structure is their interaction with their context. In the

cascade structure, components utilise the shared resource directly without adaptation.

The result of their individual evaluations is cooperatively propagated to the rest of the

structure. In the merge structure, components adapt their evaluations to the estimated

aggregated use of all other components in the structure. Their respective offers to the

top-level component encompasses their cooperative intend. The top-level component

guards the integrity of the aggregated resource utilisation and thus the validity of offers.

The structures of Figure 3.8 and Figure 3.9 are the result of addressing dedicated

aspects of components in a particular view, namely those components that share a par-

ticular resource (engineering view) and/or implement a particular functionality (com-

putational view).

56 Negotiated Quality of Service

3.5 ARC Discussion

So far, the ARC framework followed the natural course of development in a democratic

setting. The coordination is established through cooperation among subsystems based

on equality, rather than on dominance and subjection. The argument for such an heter-

archic approach is also observed when complex systems are considered from a broader

perspective.

3.5.1 Coordination and cooperation

The ARC framework we developed in this chapter and the views developed in Chapter 2

advocate a cooperative way of organising coordination. Coordination is the process of

composing, regulating (the protocol), and arranging systems, with a strong emphasis

on the fact that an aggregate is a system only if it has emergent properties; the whole is

more than the sum of its constituents. Cooperation implies inseparability and the work-

ing together of autonomous components; “we” instead of “me” and “you”. Cooperative

coordination thus is distributed, shows mutual respect, and has joint responsibility for

the integrity of the system. Hence subsystems necessarily are intelligent.

In Chapter 5 we develop a model of computation that supports autonomous pro-

cesses. The model, amongst others, allows processes to be specified in an imperat-

ive language. A coordination model integrates separate activities into an ensemble

[Papadopoulos and Arbab, 1998]. Here we review a selection of articles from liter-

ature that address the issue of coordination and cooperation. Quite a number of the

referenced articles originate from disciplines outside the scope of complex systems

(e.g. Ubicom), addressed in Section 2.2. Contributions from the field of anthropology,

philosophy, and artificial-life sciences are included.

In [Malone and Crowston, 1994] coordination is defined as managing dependencies

between activities. It is observed that similar coordinating constructs exist in various

disciplines. In order to transport concepts from one discipline to another, we must de-

velop a framework. Case studies from very different disciplines are evaluated. Malone

and Crowston conclude, amongst others, that there is no single right way to identify

components of coordination. They mention as an example the process of forcing a

group decision by authority, majority voting, or consensus. It has been observed that

ecosystems are often the result of heterarchic interactions rather than hierarchical in-

teractions [Crumley, 1995]. A mathematical approach to coordination is from the field

of game theory. The so-called “Prisoner’s dilemma” is a non zero-sum game that offers

a choice between cooperation and independent action [Salhi et al., 1996]. In Ubicom,

decisions are initially by made consensus, but when time progresses and deadlines are

immediate, decisions are made by authority.

An analysis of what it takes to have distant humans coordinate their actions in a co-

operative way can be found in [Introna, 2001] dealing with tele-coordination and tele-

cooperation. Tele-coordination is only effective when the coordinating parties share a

situated language. That is, the parties share a mutual understanding of intentions. In

ARC we observed a similar issue: component developers typically originate from dif-

ferent disciplines. These developers do not necessarily share a common understanding

of each other’s intentions. A way to overcome this problem is the use of a “situated lan-

3.5. ARC Discussion 57

guage”, a concept originally developed by Wittgenstein in [Wittgenstein, 1963]. Here

a representational view on language and meaning is emphasised. Depending on the

situation (culture, discipline, etc.), words receive a meaning. Development of a local

language (dialect) therefore is regarded a necessity rather than a complication. A suit-

able language supports interaction. The underlying problem is that knowledge is tacit,

thus only available subconsciously. The articulation of tacit knowledge is tedious if

not impossible; for example, try to explain in clear way how to ride a bicycle [Introna,

2001].

Introna has a case for ambiguity. Cooperation requires exchange of information

so as to distinct context and content. There is however no definite way to make the

distinction. Local situations require local solutions. For similar reasons we argued

that a metaframework should not be defined. The following warning proves to very be

true however: “discovering misunderstandings is very difficult”[Introna, 2001]. Ambi-

guity serves a productive role, and multidisciplinary cooperation is a definite asset in

this. Different disciplines have different views, but during the process of developing a

situational dialect, novel coordination methods may evolve.

The study of complex systems combines the classical computational approach and

dynamic systems theory: the theory of structure and the theory of change respectively.

In the ARC framework, coordination resembles a determinate computational approach

and cooperation resembles the indeterminate dynamical approach. In the Chapter 5

we present a concrete example of the rapprochement of the theory of structure and the

theory of change.

3.5.2 Stability

The ARC framework is based on consensus, which is achieved through negotiations. A

recurring issue of this type of coordination frameworks is their stability. Stability is not

guaranteed. In fact instability is lurking in every closed-loop control system [see e.g.

Dorf, 1989]. Many theoretical and practical applicable results have been derived for

linear systems with feedback control. A number of important parameters influence the

stability of the resulting controlled system. Variations in the gain parameter, the closed-

loop gain, and the transient gain affect the relative stability of a system. The frequency

response of a system determines the stability under excitation of time-varying input.

Known disturbance can be counteracted by taking appropriate measures. A particular

form of disturbance is delay or lag. The measurements from a sensor, or the actions

of a control system, may lag behind. When this is known, appropriate measures can

be taken. Otherwise this disturbance increases instability. In Section 6.2 we present a

case study that incorporates lag of sensor data.

With respect to the ARC framework we observe that components typically do not

satisfy the linear system conditions: superposition and homogeneity. On the other hand

we know from operational research that a less stringent property, monotonicity, suffices

to locate an optimum. Combining these observations we conjecture that instability can

be prevented in the ARC framework when

❍ operation spaces are monotone,

❍ the time scale of components increases with the level (index) in the composition.

58 Negotiated Quality of Service

In practical situations, components have often monotone operation spaces. Operation

points can be located such that the abstraction of behaviour, capacity, and resource

utilisation is monotone. One may argue that monotonicity is the result of being cooper-

ative. It is very hard to reason about non-monotone components.

Oscillations and possible instability, frequently occur when a system is iteratively

controlled. However, when operation spaces are monotone, the coordination process

can locate the equilibrium. In the compositional structures, as considered in Sec-

tion 3.4, components apply services from lower-level components, maintaining mono-

tonicity implies an increase of the time scale and an increase of the impact of com-

ponents higher up the structure. In case of a mobile video communication system

(Example 3.3 on Page 44) the impact of the video encoder is larger than the impact

of the channel modulator. If the video encoder switches operation from 30 frames per

second (FPS) to 8 FPS, this is highly noticeable. If the channel modulator switches from

256 quadrature amplitude modulation (QAM) to 16 QAM on the other hand, the resulting

throughput changes dramatically, but the impact of this switch may be hidden by the

rest of the system. However switches from 256 QAM to 16 QAM can occur more fre-

quently, at a significantly smaller time scale, than switches from 30 to 8 FPS, given the

same relative overhead.

The ARC framework allows for ambiguity in the sense that there is no metaframe-

work. Ambiguities, if any, must be resolved locally. The underlying paradigm of

keeping communications local has been articulated in various places in literature. In

case of ARC, the main reason for local communications is the support of evolution.

Satyanarayanan advocates local communications because of scalability of a design. In

[Lieberherr et al., 2001] a run-time implementation of aspect-oriented programming is

described that obeys “The law of Demeter”: Objects should only have knowledge of

closely related objects.

The balance between the volume of an ARC interface and global optimisations has

similar considerations as partitioning a complex system in its constituent components.

It is generally accepted that components must be substantial yet not too complicated.

The same applies to ARC interfaces: a practical limit of ARC interface parameters is

4, which we found to be suitable for many practical situations [Taal et al., 2002; van

Dijk et al., 2000a; Pasman and Jansen, 2001].

There are a number of situations in which parties feel the need for more than these

4 interface parameters. For example, if the underlying optimisation problem of a com-

ponent can be very complex then partitioning is a logical step. A canonical (min-

imal) coding of the information that is to be communicated yields a minimum number

of (near) orthogonal parameters. However, in the occuring situation the optimisation

problem became less complex by introducing redundancy in the information model.

An operation space may be implicitly structured. In occurring cases, a server and a

client interpret the operation space similarly (c.f. the manifold of Section 2.1.1). In that

case, they assign equal, implicit, dependencies to parameters in the operation space,

which circumvents the use of additional parameter that make the implicit interpretation

explicit. An example of such an efficiency operation can be found in [Taal et al., 2002].

Designing a proper ARC interface is not a trivial task. Obviously the client lacks

information which the server may be able to provide and vice versa. The goal is to

find a proper tradeoff. Not only the information must be cast into a clear format, but

3.6. ARC components 59

it must also fulfil the need for information. Overprovisioning is a waste. Recent ad-

vances on collaborative sensor networks [Kumar et al., 2002; Zhao et al., 2002] take an

information theoretic approach, which is arguably less suited towards practical imple-

mentations, but certainly an interesting angle.

3.6 ARC components

ARC components are context aware and cooperative. They supply and employ services

of which the behaviour is established through negotiated (QoS) contracts. Clients are

serviced through their server-side interface, and servers are employed through their

client-side interface. At the same time, component often have uncoordinated input and

output relations as well. Example 3.3 on Page 44 showed an example of an uncoordin-

ated input relation. There the characteristics of a video source are monitored (sensed),

as they contribute to the context of a component. An example of an uncoordinated

output relation involves a component that is allowed to employ services from a CPU

without establishing a contract.

Whether or not a component will monitor the performance of employed services

is a matter of trust. Likewise, the policing [Rathgeb, 1991] of the induced workload

from serviced clients is also a matter of trust. In a true democratically coordinated

communicating system, trust is a matter of course. A true democratic system thus

circumvents the need to implement tedious monitoring and policing instruments and

gains efficiency. In the sequel, we ignore any out-of-contract performance or workload

numbers. Obviously, if a component uses the input from an uncoordinated interface,

monitoring is required.

Being cooperative, the developer is well aware of the fact that a certain behaviour

of the component may influence the rest of the system in an unspecified way. A con-

ceptual diagram of an ARC component is given in Figure 3.10. The Figure presents

a jigsaw piece, indicating that the component is part of a larger system of cooperating

and communicating components, e.g. compare it with Figure 2.3 on Page 20. The com-

ponent in Figure 3.10 also encompasses a generic communication system from sensor

to actor, e.g., compare it with Figure 1.1 on Page 2. Compositionality of an ARC com-

ponent is due to its context awareness, which is implemented by a local coordinating

entity that autonomously takes decisions. In Chapter 5 this entity is referred to as an

oracle.

60 Negotiated Quality of Service

Request

Offer

Server(s)

Client(s)

contract

contract

ActorSensor

Figure 3.10: ARC context-aware component.

Four

Mathematical consideration of QoS

THE ARC framework of the previous of the chapter defines an optimisation problem.

The milieu of a system component defines the (local) context in which the com-

ponent evaluates its optimisation problem. Internal decision variables must be selected

such that imposed objectives are met and that imposed conditions are not violated. The

optimisation problem is in essence a multiobjective or vector optimisation problem,

which in general requires expert knowledge to solve it successfully.

In this chapter we introduce a mathematical interpretation for the emerging optim-

isation problem. We refer to related work (Section 4.2) for an overview of available

technology to evaluate the optimisation problem. In Section 4.3 we analyse the con-

sequences for the optimisation problem when components are used in composition.

This chapter is concluded with a case study, which demonstrates that even in a simple

setting multiobjective optimisation problems are tedious. A fully mathematical imple-

mentation of ARC therefore is not feasible for practical reasons.

4.1 Vector problem definition

ARC components solve a multiobjective optimisation problem. In general, a multiob-

jective optimisation problem [Haimes et al., 1989] (or vector optimisation problem) is

defined as in (4.1), where fff (xxx) is the objective function and ggg(xxx) and hhh(xxx) partition the

solution space in a feasible and an infeasible part. ggg(xxx) identifies a half-space, whereas

hhh(xxx) identifies a subspace. Note that hhh(xxx) is a convenience function that could have

been included in ggg(xxx).

min
xxx∈X

yyy = min
xxx∈X

fff (xxx) = min
xxx∈X
{ f0(xxx), f1(xxx), . . . , fm−1(xxx)}

subject to, X = {xxx |ggg(xxx) ≤ 000, hhh(xxx) = 000 }
(4.1)

61

62 Mathematical consideration of QoS

where,

yyy = m-dimensional objective vector,

xxx = n-dimensional vector of decision variables,

X = the parameter space; the set of feasible solutions.

The objective vector yyy contains the set of non-inferior or Pareto points. A de-

cision xxx⋆ is said to be an non-inferior solution of (4.1) if and only if there does not

exist another x̄xx such that f j (x̄xx) ≤ f j (xxx⋆),∀ j , with strict inequality for at least one

j . Note that practical implementations offer a subsampled set of Pareto points [Morse,

1980; Rosenman and Gero, 1985]. The ARC framework is a mediator. It provides

concepts, but does not prescribe a generic methodology for solving the emerging non-

linear multiobjective optimisation problems. There exist many solution methods for

these types of problems, but a universal solution has not yet been found. The chosen

solution method is in general very domain dependent. A recent overview of approaches

to multiobjective optimisation problems can be found in [Miettinen, 1999].

With respect to Figure 3.10 on Page 60, an ARC component approaches the mul-

tiobjective optimisation problem in two phases. The first phase is executed after a re-

quest has been received from the client and results in a request to any of the employed

services. Since requests define a partial context, the first phase boils down to a partial

evaluation of the underlying optimisation problem. The second phase starts after the

reception of offers from all employed services. At this stage the context is fully determ-

ined and thus allows for an evaluation of the full optimisation problem. The resulting

solution yields the offer that will be issued to the client of the ARC component.

Figure 4.1 specifies the parameters involved in the multiobjective optimisation

problem for ARC components. The vectors ũuu and ỹyy are the incoming and the gen-

erated requests, respectively. Similarly, the vectors uuu and yyy are the received and the

generated offers. The vector www is the observed, uncoordinated, sensor data. The actor

data, although explicitly assigned to a vector vvv in the diagram, will be mostly ignored

in the rest of this section. We regard vvv as noise, which interferes with the rest of the

system. The internal decision parameters of the component are gathered in the vector

qqq . Parameters from qqq refer in part to algorithmic options and in part to choices of how

computational constructs are mapped to engineering constructs. Not every utilisation

of engineering constructs (resources) will be contracted and thus accounted for in ỹyy

and uuu. During system design, one may decide to utilise a resource without informing

the rest of the system, so implicitly through the actor interface vvv . As long as the noise

is within bounds, efficiency is gained while the system integrity is not jeopardised. A

typical example is the uncoordinated use of a CPU.

The set of named vectors of Figure 4.1 abstracts the behaviour, performance, and

resource utilisation of a component. Separation of concerns [Ossher and Tarr, 2001] of

the set into subsets emphasises the distributive aspect of ARC. We address the adaption

and cooperation aspects of the component. The sensor data, www, provides information

necessary for successful adaptation to a changed environment. The offered operation

space uuu also contributes to the adaptation process. Cooperation of the component with

its immediate environment is achieved through making options explicit through the

generated offer yyy. The actor output, vvv , potentially provides information to the environ-

4.1. Vector problem definition 63

request

offer

client−side

server−side

Optimisation

ỹyy

ũuu yyy

uuu

vvvwww

qqq

Figure 4.1: ARC component parameter interface.

ment in a cooperative way, if it is made explicit. The incoming (ũuu) and outgoing (ỹyy)

requests facilitate efficient communication between components.

Operation spaces at either side of an ARC component have natural partitions. Both

yyy and uuu are tuples of distortion, capacity, and resource utilisation: 〈yyyδ, yyyτ , yyyρ〉 and

〈uuuδ, uuuτ , uuuρ〉, respectively. As indicated previously, the emerging multiobjective op-

timisation problem is evaluated in two stages. The first stage transforms server-side

requests (ũuu) into client-side requests (ỹyy). The second stage evaluates the fully defined

multiobjective optimisation problem, given in (4.2).

We will first analyse the fully defined problem of the second stage and then return

to the problem of the first stage, which can be seen as a partial definition of the problem

definition of the second stage.

min
(qqq,uuu)

yyy = min
(qqq,uuu)

fff (qqq, uuu, www) = min
(qqq,uuu)

{

fff δ(qqq, uuu, www), fff τ (qqq, uuu, www), fff ρ(qqq, uuu, www)
}

subject to,
{

(qqq, uuu)
∣

∣ggg(qqq, uuu, ũuu, www) ≤ 000, hhh(qqq, uuu, ũuu, www) = 000
}

(4.2)

The decision variables, xxx in (4.1), have been partitioned in (4.2). The optimisation

algorithm must decide on the internal decision parameters qqq and select an entry from

the offered operation space uuu. The objective functions fff (·) also take into account

uncontrolled observations www. The feasible solution space X of (4.1) is specified in (4.2)

by the functions ggg(·) and hhh(·). These functions can be decomposed into functions

gggγ (·) ⊂ ggg(·) and hhhγ (·) ⊂ hhh(·), with γ ∈ {a, b, · · · }. The subfunctions gggγ (·) and

hhhγ (·) address specific concerns. Each concern corresponds to specific constraints on

incoming requests ũuu and offered options uuu. What follows is an enumeration of specific

concerns. Implementation of these concerns are exemplified in Chapter 6.

Decision space Individual decision parameters are bound by the internal process. These

bounds usually have a physical origin. The range of a variable capacitor, for example,

is simply limited by the applied technology. The feasible range of settings for each

64 Mathematical consideration of QoS

decision variable is identified by a subset of ggg(·) and hhh(·), denoted as ggga(·) and hhha(·),
respectively. These subsets of functions are independent of the context of the compon-

ent. The feasible range of settings for decision variables, limited by the decision space,

is specified in (4.3).

{

qqq
∣

∣ggga(qqq) ≤ 000, hhha(qqq) = 000
}

(4.3)

Consistency The causal effect of setting a decision variable must be consistent with

the context of the component. The context of a component is partly determined by the

incoming request, ũuu, and partly by the incoming offer, uuu.

Incoming requests are specified as half spaces. In practical situations, requests of-

ten specify a region bound by two parallel planes: upper and lower bounds. The subset

gggb(·) of ggg(·) defines the range of settings of decision variables such that consistency is

guaranteed. The range is specified in (4.4).

{

qqq

∣

∣

∣ggg
b(qqq, uuu, www, ũuu) ≤ 000

}

(4.4)

Offers received from employed services specify the optional behaviour and per-

formance of these services. A fully determined operation point, however, also specifies

the workload imposed by the client on the server. The consistency of a component with

an offer uuu can be expressed through a subset hhhb(·) of hhh(·). The corresponding discrete

range of settings of decision variables is specified in (4.5).

{

qqq

∣

∣

∣hhh
b(qqq, www, uuu) = 000

}

(4.5)

Compatibility In practical situations, some resources are coordinated in an authorit-

ative manner from a central entity, particularly those resources that are less sensitive

to interference, often because of a surplus of available resources. The usage of these

resources is accounted for in the noise vector vvv . In occurring situations, the central

coordinating entity will assign a budget ρ̂ρρ to individual components for uncoordinated

use. The effect of selecting decision variables must be compatible with any assigned

budgets. As before, a subset gggc(·) of ggg(·) can be constructed for this purpose. The

resulting range of settings of decision variables is specified in (4.6).

{

qqq
∣

∣vvv = gggc(qqq, uuu, www, ρ̂ρρ) ≤ 000
}

(4.6)

Above, we outlined the two-stage evaluation process of the optimisation problem

from (4.2). The first stage (request) generates ỹyy and the second stage (offer) generates

yyy. Let ûuu denote a relaxation (rough approximation) of uuu. The eventual offer uuu has

precise operation points, whereas ũuu relaxes each operation point to an operation vicin-

ity. Typically vicinities coalescence to the operation area covered by the eventual offer.

The goal is to recover the boundaries of the operation area of all offers such that the

constraints (4.3) through (4.6) are met, with uuu substituted by ûuu. Subsequent evaluation

of (4.2) yields the boundaries of the operation area, hence it yields ûuu. The request ỹyy

then simply boils down to putting ỹyy = ûuu. Note that the derivation of ûuu from the con-

straints is not a trivial task. The consistency constraint (4.4), for example, requires the

4.2. Related Work 65

existence of the inverse of gggb(·) with respect to uuu, or at least a close approximation.

Modelling of performance, behaviour, and resource utilisation therefore is crucial for

true context-aware components.

4.2 Related Work

In this section we give an overview of the vast amount of literature on the subject

multiobjective and multidisciplinary optimisation. The references in this section might

prove useful for analysis and run-time implementations of concepts laid out in this

chapter.

Individual aspects of multiobjective hierarchical multidisciplinary design optim-

isation problems can be found in literature. It is interesting to notice that references

originate from a wide range of disciplines, which sometimes differ widely from the

disciplines involved in a communicating system design. Communicating systems have

multilevel structures (with nests) as a natural organisation. Multiobjective optimisation

is an upcoming research issue for mono-disciplinary or at best oligo-disciplinary com-

ponents in communicating system design. Multidisciplinary design optimisation (MDO)

and multidisciplinary design analysis (MDA) are emerging methodologies in hard en-

gineering disciplines like mechanical engineering and aeronautics [Livne, 1999]. Un-

fortunately they usually address a single objective and lack the notion of a multilevel

system.

Our method of decomposing a large-scale multiobjective optimisation problem is

indirectly related to emergent behaviour analysis. The main reason for this is that we

use aspect decomposition of the communicating system [Papalambros and Michelena,

2000]; see also Section 2.2. Control theory [Stoilov and Stoilova, 1999] is an example

of a discipline that applies similar approaches.

4.2.1 Multiobjective optimisation

The formulation of multiobjective optimisation problems dates back to the 1960s. Only

recently applications have emerged in the area of design for embedded systems. Most

projects, however, address mono-disciplinary research. A distinct example is HP’s pro-

gram in chip out (PICO) project. In [Schreiber et al., 2000] a methodology is presented

that explores the design space of a network of non-programmable processor elements.

The methodology is based on combining the Pareto operations spaces of the constituent

components. The underlying method is explained in [Abraham and Rau, 2000]. The

necessary control implementation is described in [Aditya and Rau, 2000].

Recent publications demonstrate multiobjective design criteria for individual com-

ponents. Zitzler and Thiele use genetic algorithms, see [Zitzler and Thiele, 1999] and

references therein, to explore the design space of implementing a H.263 video decoder.

A tradeoff is made between real-time performance and resource utilisation. Numer-

ous other examples exist, but always with a single optimisation problem formulation

and methods to solve the problem. Noteworthy examples are MOSES [Coello Coello

and Christiansen, 1999], a tool for engineering optimal designs and [Mottahed and

Manoochehri, 2000], who address a multidisciplinary approach for optimal packaging

66 Mathematical consideration of QoS

of electronic systems. Yet another discipline is power load management in electric dis-

tribution networks [Jorge et al., 2000]. Notwithstanding its use of genetic algorithms,

multiobjective optimisation has gained recent research interest, with promising results

[Coello Coello, 1999].

Value functions typically define a single objective optimisation problem, while a

multiobjective optimisation problem is expected. QoS addresses multiple concerns

and is based on multiple parameters (dimensions). Implicit in most value functions is

an ordering through weighing of objectives; in multiobjective optimisation theory this

is referred to as the utility function. A utility function effectively maps the multidimen-

sional objective space to a one-dimensional space. Structured methods to accomplish

this not so trivial task exist. The analytical hierarchy process (AHP) [Saaty, 1990] is ex-

plicitly mentioned in [Lee et al., 1999a]; another example is Pareto race [Karaivanova

et al., 1995].

Unfortunately, in complex systems the weights that effectively order the objectives

are dynamic too, which is especially true for those systems that are in a constant state

of flux. Value functions are not particularly suited to handle this kind of dynamics.

Consider a service that uses a value function with a fixed utility function. As the

service does its optimisations based on the value function, the service is considered

a best-effort service. Ergo, best-effort services are not good enough for being used for

systems in flux.

4.2.2 Multidisciplinary optimisation

There exist several formulations of problems in multidisciplinary design and accom-

panying methods for solving these problems [Alexandrov and Lewis, 2000a,b]. With

respect to our problem formulation, collaborative optimisation [Braun and Kroo, 1997;

Kroo and Manning, 2000] is the most attractive one. Collaborative optimisation is a bi-

level decomposition of a large optimisation problem. The system level (level 0) optim-

ises the system-wide objective. It issues design targets to the subsystems (constituent

disciplines) at level 1. The subsystems form an optimisation program that optimises

the discrepancy of the inter-disciplinary consistency constraints. The complement of

collaborative optimisation is the decomposition method called “ optimisation by linear

decomposition”: it maintains interdisciplinary consistency at system level and minim-

ises violations of the disciplinary design constraints at subsystem level. An illustrative

example of collaborative optimisation with a disciplinary design alternative (concep-

tual design) is presented in [Balling and Rawlings, 2000].

In [Kim et al., 2000] a system with more than two hierarchical levels is presen-

ted. Unfortunately the system does not adapt to changing environment conditions; it is

merely a top-down approach. In [Tappeta et al., 2000] a design strategy is developed

supporting multiple objectives and incorporating multiple disciplines.

In [Sobieszczanski et al., 1998; Kodiyalam and Sobieszczanski, 2000] a method

called bilevel integrated system synthesis (BLISS) is introduced. The authors claim that

problems tend to grow prohibitively large during system synthesis since collaborat-

ive optimisation combines design optimisation and design analysis. “Ultimately one

needs both domain-exploring methods, and path-building methods”. BLISS provides

such a framework by switching between two different perspectives when appropriate;

4.3. ARC structures: compositionality 67

BLISS/A evaluates the partial derivatives of the coordination variables versus the system

variables, whereas BLISS/B applies Lagrange multipliers for doing the coordination.

Another noteworthy effort is the design of an co-evolutionary architecture [Nair and

Keane, 1999, 2000] for distributed optimisation of complex coupled systems. Although

this is in essence a bilevel optimisation procedure, it is appealing. Due to its usage of

evolutionary algorithms, it circumvents precise mathematical functions by not relying

on any gradient method.

The aforereferenced multidisciplinary approaches all have in common that they

start from the general optimisation problem and solve it in a distributed, possibly con-

current manner, whereas in our approach the general optimisation problem is the res-

ult of analysis afterwards, after the system has been structured and connected. The

coordination methods that emerge from the ARC framework share with the aforemen-

tioned methods that domain experts keep their autonomy in the design process. This is

the crucial factor in acceptance of any multidisciplinary design optimisation method.

4.3 ARC structures: compositionality

Similar to our contemplation in Section 3.4 we consider in this section compositions

of system components. We are especially concerned with the consequences on the

underlying optimisation problem.

4.3.1 Cascade structures

The cascade structure is a concatenation of components. In this section we study, by

means of an example, the consequences of this structure for the individual components.

Consider a system that applies the ARC framework to coordinate the utilisation of a

particular resource x (Figure 4.2). The load of a component cℓ (ℓ ∈ {0, 1, · · · , L − 1})
on resource x in a cascade co · · · cL−1 is given by ρ̂ℓ;x . Let ρℓ;x be the partial sum of

the workloads up to ℓ, with ρ−1;x = 0, thus

ρℓ;x =
ℓ
∑

i=0

ρ̂i ;x

ρℓ;x = ρ̂ℓ;x + ρℓ−1;x

.

We define the sum of all partial workloads as ρx = ρL−1;x . The cascade structure

propagates the partial sum ρℓ;x . At the top level, component cL−1 selects the initial

contract and therefore determines (implicitly) the distribution of the power budget (and

the distribution of x) over the components in the cascade.

Suppose the resource x has a power dissipation relation

P(ρx) = (ρx)
α (4.7)

for some α > 0. A trivial power relation is a linear relation (α = 1). Then the value

and the update of ρℓ
x is simple. Each component cℓ specifies the amount of power it

dissipates through P(ρ̂ℓ;x) and propagates the partial sum; ρℓ;x = P(ρ̂ℓ;x)+ρℓ−1;x . In

68 Mathematical consideration of QoS

cℓ

ρ̂ℓ;x

cL−1 ρℓ;x ρℓ−1;x c0

x

Figure 4.2: Cascade structure: workload on x .

most cases, however, the power-workload relation is nonlinear. The power dissipation

of an integrated circuit with optimal supply voltage, for instance, is proportional to

the cubed clock frequency (α = 3). In that case the propagation of the partial power

dissipations is suboptimal. The problem is that components down the cascade have

“cheaper” energy than components up the cascade. Consequently, components down

the cascade will make a different tradeoff than components up the cascade structure,

simply because components down the cascade have a smaller offset. The actual power

dissipation for a component cℓ amounts to:

P(ρ̂ℓ;x) = P(ρℓ;x)− P(ρℓ−1;x)

= P(ρℓ−1;x + ρ̂ℓ;x)− P(ρℓ−1;x)

=
(

ρℓ−1;x + ρ̂ℓ;x
)α −

(

ρℓ−1;x
)α

. (4.8)

With α = 1, (4.8) reduces to P(ρ̂ℓ;x) = ρ̂ℓ;x as we saw before. But with α = 2,

(4.8) expands to P(ρ̂ℓ;x) = (ρ̂ℓ;x)2+ 2 ρ̂ℓ;x ρℓ−1;x . The second (offset) term increases

with ℓ. For α > 2 the offset term increases even more rapidly with the level of com-

ponents.

In the ideal situation it is possible to evaluate the relative performance of all com-

ponents in the structure. Thus all components have a similar context, in this case a

similar offset. There is a straightforward way to accomplish this. From the perspective

of component cL−1 the exact distribution of the available resource budget is irrelevant.

It is the same whether cℓ1
or cℓ2

consumes the better half of the budget; what matters is

the total resource utilisation ρx . Instead of propagating the power function evaluation,

one propagates a specification of ρρρ. As a result, individual components can, as before,

add their partial resource usage to the running sum. Only the top-level component will

evaluate the power dissipation function, i.e., (4.7). Individual components do their op-

timisation in a void context, that is, apply P(ρ̂ℓ;x) directly without any offset. As an

example, in Example 3.3 on Page 44 the propagated resource utilisation is in cycles per

second; only the top level component evaluates the power dissipation. Note that in a

system with a CPU that supports frequency and voltage scaling, the top-level compon-

ent sets the system wide target, and thus becomes the only explicit (contracted) user of

the resource.

4.3.2 Parallel structures

A commonly applied scheme for partitioning of an optimisation problem in a paral-

lel structure is illustrated in Figure 4.3. In this diagram two levels are recognised: a

4.3. ARC structures: compositionality 69

λ

ρ̂o;x ρ̂ℓ;x

λ

L0

L1

ρx

λ

ρ̂L−1;x

Figure 4.3: Parallel optimisation structure.

top-level, Lo, and a set of independent filter components cℓ at level L1. The context

in which each filter component does its optimisations is controlled by the top level

component. Typical schemes require a number of iterations to find the global optimum

(a single operation point). Using the ARC scheme, we circumvent iterations through

the use of multiobjective operation spaces rather than of a single operation point. The

abstraction of the system as a whole is done by the top-level component, based on

information provided by the filter components at level L1.

In [van der Schaaf et al., 2000], a typical optimisation scheme is discussed for an

application with homogeneous filter components: a merge of identical video coders.

The concurrent video coders are coordinated through the application layer Lo. The

global constrained optimisation problem is partitioned and distributed over the filter

components. The coordinating component determines the optimal so-called Lagrange

multiplier λ. The Lagrange multiplier1 carries the shared information for all filter com-

ponents. Given λ, individual filter components solve their rate-distortion problem in

a unique way. The result (ρ̂ℓ;x) is fed back to the top level. If necessary the top level

component adjusts the λ factor – effectively distributing the resource budget – and in-

vokes a new iteration. The scheme assures that the individual filter components do

their optimisations in a common context. In particular the collective of components

arrives at operation points that expose similar distortion for each video stream, while

controlling the cumulative bit rate (resource utilisation).

For a parallel structure with heterogeneous filter components, the operation spaces

of the individual components typically do not nicely match. Distribution of a Lagrange

multiplier therefore is nor straightforward nor generic. Yet a very similar approach is

feasible. Recall the problem of distributing a resource x over the filter components. In

Section 3.4.1 we distributed the power model (4.7) through its specification ρℓ;x and

let the top-level component cL−1 make the eventual translation to the absolute power

figure. Here we pursue a similar approach but take the specification one step further.

Usually it is not an issue where resources are spent as long as their sum does not exceed

1See Section 4.4 for an application of Lagrange multiplier theory.

70 Mathematical consideration of QoS

a certain limit. Suppose the parallel structure has a budget of ρx , then the total power

dissipation is given by P(ρx). A linearised (fair) power dissipation model thus is

Plin(ρ̂ℓ;x) = ω ρ̂ℓ;x

= P(ρx)

ρx

ρ̂ℓ;x
. (4.9)

As in the homogeneous parallel case, the factor ω is broadcasted over the filter

components. The factor ω provides the components with the necessary context. The

resulting partial power figures are offered to the top level coordinator. The coordin-

ator must perform a consistency check to assure that the cumulative sum of the partial

power figures does not exceed the proposed budget (P(ρx)). The received offers in

the ARC framework contain a range of possible operation points, based on the request

ω. The subsequent optimisation problem at level Lo has the nature of a binary perfect

matching problem, which includes a consistency check. The perfect matching prob-

lem is a so-called 0− 1 combinatorial optimisation problem [Nemhauser and Wolsey,

1988]. It optimises the selection from each of the offered operation spaces under con-

straint that the total budget matches ω. Note that since ARC allows the components of

a system to request offers for a range of budgets, thus for a range for ω in (4.9), the

number of iterations is confined. The resulting matching problem, however, increases

in dimension and consequently becomes more complicated.

4.4 Case study

In this section, we demonstrate how operation spaces are generated within the ARC

framework. We show that even in this carefully casted case, solving the optimisation

problem involves tedious formula manipulations. The offered operation spaces contain

a set of non-inferior or Pareto-optimum points. These operation spaces are typically

multidimensional, offering a tradeoff between, for instance, performance and resource

utilisation. The underlying optimisation problem, consequently, is a multiobjective

one. In rare cases an operation space can be derived analytically. A closed expression

of the operation space offered by a server is a necessary, however an insufficient con-

dition for a client to construct an analytical operation space, effectively implementing

functional compositionality.

Consider the two-level network of Figure 4.4, with levels 0 and 1. Level 0 has two

processes Xa and Xb, which offer services to a process Z at level 1. Process Z effect-

ively merges the operation spaces of Xa and Xb and offers a system wide operation

space to the user of the system (not shown). Think for example of an operation space

that offers the user a tradeoff between a resource utilisation (CPU) and a corresponding

distortion of the processed signal. Each point in the operation space as offered by Z ,

and thus by the system, corresponds to an instantiation of Xa and Xb. We take the

system wide resource utilisation simply to be the sum of those offered by the selected

operation points of Xa and Xb, ρsystem = ρXa + ρXb . The system wide distortion is

taken a (balanced) mean of those offered by Xa and Xb. Although process Z is aware

of the CPU it does not use the CPU directly. The actual processing of the signal is done

by the processes Xa and Xb, which requires the use of the CPU.

4.4. Case study 71

CPU

level 0

level 1

user

Xa Xb

Z

Figure 4.4: Distributed shared resources.

If process Z is to derive an operation space analytically then the processes Xa

and Xb must generate a non-inferior solution of a bi-objective optimisation problem.

Inspired by [Zitzler and Thiele, 1999] we use, as an example, a generalised version

of Schaffer’s F2 function to model the distortion and power dissipation measures of

these server processes. Schaffer’s F2 function models a quadratic relation between

the distortion and the power dissipation given an internal control value. This is fairly

intuitive modelling, practical examples may typically yield quadratic or even cubic

relations.

Process Z has to transforms an in essence a bi-objective optimisation problem into a

single objective (nonlinear) optimisation problem. To do so, Z applies a so-called util-

ity function. Given a maximum total resource utilisation ρ, Z must optimally combine

offers from Xa and Xb under the constraint that the maximum allowed total resource

utilisation is not exceeded. Optimality here refers to a minimised distortion. A typical

scenario involves a level 1 process Z that merges multiple objects from level 0 pro-

cesses into a single compound object. An example of such a system can be found in

Section 6.2.1. The emerging – system wide – optimisation problem is an hierarchically

structured non-linear multiobjective one [Haimes et al., 1989; Miettinen, 1999], which

in this particular case can be solved analytically.

4.4.1 Multiobjective optimisation

With respect to Figure 4.4, processes Xa and Xb have to generate the Pareto-optimum

solution of a bi-objective or vector optimisation problem. In this section we derive the

analytical solution to a generalised Schaffer fff 2 problem.

Let F2(t ; c) define a parameterised quadratic function2 of variable t and the (con-

2The notation for F2(t ; c) is taken from [Haimes et al., 1989].

72 Mathematical consideration of QoS

stant) parameter c.

F2(t ; c) = (t − c)2 (4.10)

Think of F2(t ; c) specifying the resource utilisation as a function of an internal decision

parameter t and a constant design parameter c.

Schaffer’s fff 2 problem is defined as a two-dimensional vector optimisation. The

objective function fff 2(x), a vector, has predefined constants:

fff 2(x) =
{

f1,2(x), f2,2(x)
}

= {F2(x ; 0), F2(x ; 2)}

Here fff 2(x) is a function of a scalar variable x , in general is the objective function a

function of a vector variable xxx .

The corresponding optimisation problem aims at simultaneously optimising f1,2(x)

and f2,2(x). Obviously multiple solutions coexist, in fact the solution of the optimisa-

tion problem is a vector. This vector contains the set of Pareto-optimal points which

are of particular interest. Pareto-optimal points may be inferior to an other point in the

set, but never in all aspects; see also Equation (4.1) on Page 61. Schaffer’s bi-objective

optimisation problem is, thus, given as:

min
x∈R

(

yyy = fff 2(x)
)

(4.11)

The non-inferior solution to this problem complies with the following definition. A

decision x⋆ is said to be a Pareto solution – if and only if – there does not exists

another x̄ such that f j,2(x̄) ≤ f j,2(x⋆), for j ∈ {1, 2}, with strict inequality for at least

one j . In case of Schaffer’s bi-objective optimisation problem, Equation (4.11), the

set of Pareto points can be derived analytically. A parametric plot of Schaffer’s fff 2(x)

objective function is given in Figure 4.5 with the Pareto set highlighted. Below we

derive the generating function of the Pareto-optimum arc.

For the remainder of this section we suppose processes Xa and Xb have to solve

a bi-objective optimisation problem comparable to Schaffer’s optimisation problem of

Equation (4.11). Equation (4.12) defines the optimisation problems of Xa and Xb

which are solved for x = xa and x = xb respectively. Their offered operation spaces

consist of tuples 〈 fa:1, fa:2〉 and 〈 fb:1, fb:2〉. Let f1(x) and f2(x) be parameterised

versions of F2(x ; c) with c = α1 and c = α2 respectively. As an example, let f1(x)

model the resource utilisation and f2(x) model the corresponding distortion. The pro-

cesses Xa and Xb, both have to set an internal parameter x which selects an appropriate

combination of the resource utilisation and the distortion. One can think of x as be-

ing the number of iterations in an iterative signal processing algorithm. The vector

optimisation problem that Xa and Xb face is thus defined by:

min
x

fff (x) = min
x
{ f1(x), f2(x)} = min

x
{F2(x ; α1), F2(x ; α2)} (4.12)

We apply the ǫ-constraint method [Haimes et al., 1989], which transforms the

multiobjective optimisation problem in a constrained nonlinear optimisation problem.

Subsequently, this nonlinear optimisation problem is solved by forming its Lagrange

function and checking the Karush-Kuhn-Tucker (KKT) necessary conditions [see, e.g.,

4.4. Case study 73

 0 1 2 3 4 5
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 6 7 8 9 10

f2,2(x)

f 1
,2

(x
)

Figure 4.5: Parametric plot of Schaffer’s objective function for −1 ≤ x ≤ 3. The

Pareto-optimum solution is the highlighted lower left arc of the curve.

Bertsekas, 1999, Prop. 3.3.1]. Without loss of generality, we limit our evaluations to

the case that α2 exceeds α1 (α1 ≤ α2), which circumvents tedious checking of condi-

tional clauses.

The ǫ-constraint method regards the objective vector function of Equation (4.12)

and selects one entry of the vector to be its principal objective function. All other

entries are turned into parameterised constraints of the optimisation problem. So, the

ǫ-constraint method effectively transforms Equation (4.12) into Equation (4.13).

min
x

f1(x)

subject to, f2(x) ≤ ǫ2

(4.13)

The parameter ǫ2 gets a value larger than the so-called utopia point of f2(x), which is

the unconstrained minimum of f2(x). Let f2(x̄) = minx f2(x) be the utopia point of

f2(x), then ǫ2 is defined as ǫ2 = f2(x̄)+ ǭ2 for some ǭ2 > 0. In case of Equation (4.12)

we have f (x̄)2 = 0 for x̄ = α2. Note that ǫ2 > f2(x̄). Generating the set of non-

inferior solutions of the constrained optimisation problem generally requires multiple

evaluations of Equation (4.13). For each evaluation ǫ2 is set to an appropriate value,

which makes the constraint active, i.e., (f2(x) = ǫ2). A parametric solution with

respect to ǫ2 is referred to as the tradeoff function. Although a parametric solution is

preferred it is generally not possible to derive one. In this particular case, however, we

can derive the tradeoff function for Equation (4.13).

Equation (4.13) is solved using the Lagrange multiplier method. The Lagrange

74 Mathematical consideration of QoS

function [see e.g. Bertsekas, 1999, Sec. 3.1.3] of Equation (4.13) is given as:

L = f1(x)+ λ (f2(x)− ǫ2) (4.14)

in which the generalised Lagrange multiplier (λ ≥ 0) controls the tradeoff between

f1(x) and f2(x). The optimum of Equation (4.14) corresponds with the optimum of

Equation (4.13). Setting λ = ∞ effectively ignores f1(x) and the optimum value of

x corresponds to the {x | f2(x) = ǫ2, min f1(x)}. At the other extreme of the domain

of λ we have λ = 0. Here f2(x) is ignored and consequently the optimum value

yields the utopia point of f1(x). However because of the interdependence of f1(x) and

f2(x), the utopia points of f1(x) and f2(x) are infeasible. The utopia point of f2(x) is

disqualified as a solution due to the definition of ǫ2. In order to disqualify the utopia

point of f1(x) we restrict the domain of λ to λ > 0.

The Karush-Kuhn-Tucker (KKT) necessary conditions follow by taking the partial

derivative of Equation (4.14) with respect to x and λ. Collecting the KKT necessary

conditions and above derived conditions we have:

∂L

∂x
= 0; 2 (x − α1)+ 2 λ (x − α2) = 0 (4.15a)

∂L

∂λ
= 0; (x − α2)

2 = ǫ2 (4.15b)

λ > 0; (4.15c)

When we solve Equation (4.15a) for λ we find

λ = − x − α1

x − α2
(4.16)

Equation (4.15b) makes the inequality constraint f2(x) ≤ ǫ2 an active one: f2(x) = ǫ2.

The domain of x that yields a non-inferior solution follows from the combination of

Equations (4.16) and (4.15c).

α1 < x < α2 (4.17)

The tradeoff function, which yields all possible non-inferior solutions, is defined in a

few steps. First select a valid value for the tradeoff parameter λ, solve x = x⋆ from

Equation (4.16), and finally substitute x⋆ in the objective function fff (x).

The optimum value x = x⋆, given the tradeoff λ, follows from solving x⋆ out of

Equation (4.16);

x⋆ = λ α2 + α1

λ+ 1
(4.18)

Consequently, substitution of Equation (4.18) in Equation (4.12), with λ > 0, yields

f2(x⋆) , f ⋆
2 (λ) =

(

α1 − α2

λ+ 1

)2

f1(x⋆) , f ⋆
1 (λ) = λ2

(

α1 − α2

λ+ 1

)2

= λ2 f ⋆
2 (λ)

(4.19)

4.4. Case study 75

1 2 3 4

2

4

6

8

10

f ⋆
2
(λ)

λ

(a) Tradeoff space with α1 = −1, α2 = 1.

1 2 3 4

0.5

1

1.5

2

2.5

3

f ⋆
2
(λ)

f ⋆
1
(λ)

(b) Operation space with

α1 = −1, α2 = 1.

Figure 4.6: Design space.

Figure 4.6(a) plots λ as a function of f ⋆
2 (λ), showing the tradeoff for distortion. Fig-

ure 4.6(b) plots the operation space of a process X with the same fixed parameters,

α1 = −1 and α2 = 1. The operation space corresponds to a plot of f ⋆
1 (λ) as a function

of f ⋆
2 (λ). Observe that the operation space is not uniformly distributed since f ⋆

2 (λ) is

non linear in λ (Figure 4.6(a)).

The optimal values of the objectives Equation (4.19) have distinct limits, which are

readily derived:

lim
λ↓0

{

f ⋆
1 (λ) = 0

f ⋆
2 (λ) = (α1 − α2)

2 lim
λ→∞

{

f ⋆
1 (λ) = (α1 − α2)

2

f ⋆
2 (λ) = 0

(4.20)

As a final rewriting we derive the generating function of the Pareto-optimum solu-

tion of Schaffer’s fff 2 problem, which has been plotted in Figure 4.5. To that extent, let

f ⋆
2 (λ) , ξ , which implies:

λ = α1 − α2

ξ

√

ξ − 1

Consequent substitution in Equation (4.12), for 0 < ξ ≤ (α1 − α2)
2, yields:

f ⋆
2 (λ) = ξ

f ⋆
1 (λ) =

(

α1 − α2

ξ

√

ξ − 1

)2

ξ

= ξ − 2 (α1 − α2)
√

ξ + (α1 − α2)
2

=
(

√

ξ − (α1 − α2)
)2

(4.21)

4.4.2 Nonlinear optimisation

Process Z has to optimally combine instantiations (modes of operation) of processes

Xa and Xb. In order to mathematically construct this optimisation problem, let fi :1

(i ∈ {a, b}) represent the resource utilisation and fi :2 represent the distortion of an

object as offered by process X i (i ∈ {a, b}). The offered operations spaces of X i ,

〈 fi :1, fi :1〉 have been derived in the previous section.

76 Mathematical consideration of QoS

To illustrate the evaluation of underlying optimisation problem, let us assume that

process Z minimises the distortion in a balanced way: Z takes the average value of

the offered distortions (fa:2 and fb:2) and increments this value with a penalty, which

depends on the difference of the two selected distortion measures. A constant factor, γ

say, assigns a relative weight to the significance of combining objects with comparable

distortion values. The total resource utilisation budget (ρ) of the system constraints the

optimisation problem; the sum of resource utilisation value of the selected operation

points should not exceed ρ: fa:1 + fb:2 ≤ ρ. In the remainder of this section, we solve

the optimisation problem parametrically, for a range of ρ.

The above informal description yields the following mathematical formulation of

the (non-linear) optimisation problem that Z faces.

min
fff

h(fff) = 1

2
(fa:2 + fb:2)+ γ (fa:2 − fb:2)

2 (4.22)

subject to, fa:1 + fb:1 ≤ ρ

We solve Equation (4.22) by applying the Lagrange multiplier theory [Bertsekas,

1999]. Substitution of Equation (4.19) in Equation (4.22) yields an ordinary nonlinear

constraint optimisation problem.

min
λa ,λb

1

2

(

f ⋆
2,a(λa)+ f ⋆

2,b(λb)
)

+ γ
(

f ⋆
2,a(λa)− f ⋆

2,b(λb)
)2

subject to, f ⋆
1,a(λa)+ f ⋆

1,b(λb) ≤ ρ

(4.23)

The operation spaces of { f ⋆
1,i (λi), f ⋆

1,i (λi)} (i ∈ {a, b}) depend on the difference

of α2 and α1 of each of the processes Xa and Xb, see Equation (4.19). Let
√

σi =
(α2,i − α1,i) (i ∈ {a, b}). Since α1 ≤ α2 we have

√
σi ≥ 0. Without loss of generality

we furthermore assume σa ≤ σb. We evaluate Equation (4.23) parametrically in ρ.

In connection with Equation (4.20), the feasible interval for ρ is defined as 0 < ρ <

σa + σb.

The Lagrange function of Equation (4.23) is given by Equation (4.24), in which the

functions { f ⋆
1,i (λi), f ⋆

2,i (λi)} (i ∈ {a, b}) have been substituted from Equation (4.19).

Here, µ is the Lagrange multiplier, which effectuates the constraints of Equation (4.23).

L = 1

2

(

σa

(1+ λa)2
+ σb

(1+ λb)
2

)

+ γ

(

σa

(1+ λa)2
− σb

(1+ λb)
2

)2

+

µ

(

σa λa
2

(1+ λa)2
+ σb λb

2

(1+ λb)
2
− ρ

)

(4.24)

4.5. Conclusion 77

The KKT necessary conditions for Equation (4.24) are

∂L

∂λa

= 0; µ

(

−2 σa λa
2

(1+ λa)3
+ 2 σa λa

(1+ λa)2

)

−
(

σa

(1+ λa)3

)

−

4 σa

(

σa

(1+λa)2 − σb

(1+λb)2

)

γ

(1+ λa)3
= 0 (4.25a)

∂L

∂λb

= 0; µ

(

−2 σb λb
2

(1+ λb)
3
+ 2 σb λb

(1+ λb)
2

)

−
(

σb

(1+ λb)
3

)

+

4 σb

(

σa

(1+λa)2 − σb

(1+λb)2

)

γ

(1+ λb)
3

= 0 (4.25b)

∂L

∂µ
= 0; σa λa

2

(1+ λa)2
+ σb λb

2

(1+ λb)
2
= ρ (4.25c)

µ ≥ 0; (4.25d)

Solving this scheme of expressions requires some structuring. Note that previously

we solved Equation (4.19) for the case that λa and λb are real-valued and non-negative.

Solving Equation (4.25c) for λa yields Equation (4.26).

λa =
−
(

ρ (1+ λb)
2 − λb

2 σb

)

± (1+ λb)
√

σa

√

ρ (1+ λb)
2 − λb

2 σb
(

ρ (1+ λb)
2 − λb

2 σb

)

− (1+ λb)
2 σa

(4.26)

With some tedious formula manupilations, it is possible to bind the solution, how-

ever it is hard to derive at a pure analytical solution. Numerical evaluation on the

other hand, e.g. applying Newton’s method or the secant method, is straightforward.

Consider, for illustration purposes, an example with fixed parameters. Let γ = 1,√
σa = 2, and

√
σb = 2

√
2. The operation space of Xa and Xb are respectively given

in Figures 4.7(a) and 4.7(b). Combining objects from these operation spaces while

minimising the overall, balanced, distortion within a given budget (ρ), results in the

operation space of Z . The operation space is illustrated in Figure 4.8(a). The corres-

ponding qualitative objective of Z is given in Figure 4.8(b). Figure 4.8(a) plots the first

part of Equation (4.23), the average value of the respective distortions. Figure 4.8(b)

plots the second part of Equation (4.23), the quadratic difference between the respective

distortions.

4.5 Conclusion

In this section, we have demonstrated the generation and usage of operation spaces in

homogeneous merger type of networks (Section 3.4.2). In this simple case we man-

aged to handle all but the system wide operation spaces analytically. Now already

some tedious formula manipulation was required so as to arrive at analytical expres-

sions operation spaces. In practical situations significantly more expert knowledge is

required to keep operations spaces analytically tractable. In many practical situations

78 Mathematical consideration of QoS

1 2 3 4

0.5

1

1.5

2

2.5

3

f ⋆
a:2

(λa)

f ⋆
a:1

(λa)

(a) Xa : with
√

σa = 2.

2 4 6 8

1

2

3

4

5

6

f ⋆
b:2

(λb)

f ⋆
b:1

(λb)

(b) Xb: with
√

σb = 2
√

2.

Figure 4.7: Operation spaces of Xa and Xb.

2 4 6 8 10

0.5

1

1.5

2

2.5

ρ

Avg (h(λλλ))

(a) Average distortion of operation

points of Z .

2 4 6 8 10

0.0025

0.005

0.0075

0.01

0.0125

0.015

ρ

Var (h(λλλ))

(b) Difference in distortion of constituent

objects of operation points of Z .

Figure 4.8: Design space of Z .

components are often prohibitively complex and analytical solutions can not be gen-

erated. Components that use many subcomponents are notorious in this respect; the

evaluation of Z , above, is more tedious than the evaluation of X . An all analytical

description of a system is generally not feasible, but approaches that rely on emulation

or tabulation can be applied successfully, see Section 6.1.3. What is important is the

monotonic nature of the operation space. The Pareto curve of Figure 4.5 is typical in

this respect.

Five

Context-aware process networks

DEMOCRATIC processing is a direct consequence of the reflections in the preceding

chapters on coordination in communicating systems. We regard a communic-

ating system as a composition of autonomously behaving entities (subsystems). The

democratic aspect emphasises the distributive character of the required coordination

among system entities. Distributed coordination assists in managing the complexity

of a system, and facilitates the necessary flexibility to handle subsystems that are in

a constant state of flux. Distributed coordination requires operational information ex-

change. In Chapter 3 we presented ARC, a framework for quality of service (QoS)

negotiations based on abstraction, adaptation, and cooperation. ARC effectively im-

plements exchange of non-functional or operational information; in view of Chapter 2,

ARC combines constructs from an engineering, a computational, and an informational

view. Adaptation facilitates flexible autonomous entities with necessary context aware-

ness, whereas cooperation involves sharing of context with neighbouring entities.

In this chapter we concentrate on stream-based processing structures of context-

aware entities; a general dataflow network with occasional coordination (control) events.

An implementation of such a network requires the same concepts as the ones ARC is

based on: abstraction, adaptation, and cooperation. In this chapter we take a formal

approach to coordination, which allows an evaluation of the results. We will especially

target compositionality here.

A system is a composition of autonomous entities, therefore, the exchange of oper-

ational information should be decoupled from the mainstream dataflow: asynchronous

coordination. Entities must have the opportunity to decide autonomously whether or

not to adapt to a possible change of context of its milieu. Likewise, entities must have

the opportunity to decide autonomously whether or not to expose a possible change

of context to its milieu. Figure 5.1 exemplifies a common producer-consumer network

with in between a transport network. The links Tx and Rx (solid arrows) carry the main-

stream dataflow. All components are context aware; they (may) adapt to their respective

context change events, Pctx, Tctx and Cctx (open arrows) respectively. The producer and

consumer in the diagram are cooperative; they expose and incorporate operational in-

79

80 Context-aware process networks

Producer Transport Consumer

Pctx Cctx

Tx

FB

FF

Rx

Tctx

FB: feedback, FF: feedforward, and Xctx: context sensing.

Figure 5.1: Context-aware producer-consumer system.

formation in a feedforward and feedback manner. As an example, the producer may

inform the consumer about the future workload (FF), which allows the consumer to

select an appropriate (efficient) mode of operation. Vice versa, the consumer may in-

form the producer about the current state of the network and display capabilities (FB),

which allows the producer to select an appropriate mode of representation. The figure

demonstrates the relevance of asynchronous coordination in complex communicating

systems. Coupling of the pace at which operational information is exchanged between

a producer and a consumer can be awkward because they typically have their own pace

at which context changes can be effectively incorporated. Imposing events at other

times may even be counterproductive. In addition, synchronous coordination imposes

strict constraints on the behaviour of the transport network between the producer and

consumer. In complex situations it might be difficult or even impossible to guarantee

these constraints. Examples that come to mind are networks that suffer from packet

loss or out-of-order delivery.

Unfortunately, context awareness comes at a price. Since the behaviour of an entity

depends on its context, the entity becomes indeterminate. Moreover, a composition of

indeterminate entities yields a non-deterministic system. In this chapter, nonetheless,

we develop a model of computation that supports democratic processing. Our context-

aware process network (CAPN) model of computation has necessarily indeterminate

constructs, yet compositionality is retained through the isolation of context depend-

ence. We show that the modelling of context-dependent behaviour is closely related to

the modelling of fairness.

The functional behaviour of a system of communicating entities can be unambigu-

ously defined through a so-called model of computation (MoC). Many of these MoCs

have been developed, each serving a different purpose. Whether or not a specific MoC

meets the “unambiguous” property was briefly addressed in Section 2.1.3. The associ-

ation of a MoC with a performance model uniquely relates non-functional information

with functional behaviour and so it facilitates high-level design methods. A noteworthy

approach is the work of Kienhuis and Lieverse et al. In [Kienhuis, 1999] a methodo-

Context-aware process networks 81

logy is developed for exploring the design space of stream-based functions and their

implementation. In [Lieverse et al., 2001] this idea is extended by linking the MoC to a

model of architectures and the introduction of a cycle-accurate simulations. The meth-

odology models an application functionally using a stream-based processing model of

computation: the Kahn process networks (KPN) [Kahn, 1974]. Evaluation of the Kahn

process network yields a trace of (discrete) events that, when implemented (mapped)

on an appropriate platform, yields performance metrics (time, power, area, etc.) for a

given scenario. The KPN was chosen as the MoC to model applications since KPNs are

unambiguous and they map naturally to the range of target applications (in the video

processing domain).

A Kahn process network is a restricted process network in which autonomous se-

quential processes communicate peer-to-peer through unidirectional unbounded FIFO

buffers. A processes can access a buffer only through a destructive, and potentially

blocking, read or through a non-destructive write operation. Using a restricted model

of computation is advantageous for the integrity of the system. The prominent aspect of

Kahn process networks [Kahn, 1974; Kahn and MacQueens, 1977] is that they provide

determinate composition of autonomous processes; irrespective of any execution or-

der (schedule) of the processes and irrespective of the underlying memory model, the

resulting trace is solely determined by the initialisation of the network. Because the

Kahn process network model is determinate it is also compositional: two subsystems

of a network with equivalent input-output relations can be exchanged without affecting

the input-output relations of the encompassing network. In Section 5.2 we show that

compositionality cannot be determined from the input-output relations of a component

alone.

Obviously, the Kahn process network MoC is unable to naturally model the ex-

change of those occasional events that propagate operational information, since these

events are indeterminate by definition. A commonly applied, but generally unsatis-

factory solution is to explicitly model the exchange of operational information. As an

example consider modelling the interaction with the user, who by means of pressing

a button can influence the course of the processing. Explicit modelling of the user in-

teraction requires the generation of a stream of “on” and “off” pressing events, where

every possible sequence of “on” and “off” events represents a scenario. Exhaustive

simulation of all possible user interaction scenarios, however unnecessary these may

be, is prohibitively time consuming. But the relation between a scenario and a sequence

of “on” and “off” events is not clear a priori. Explicit modelling of the context (e.g.

the user interaction) fixes the scenario in which the system operates. Although explicit

modelling retains the determinate property of the model it sacrifices context awareness.

In short, Kahn process network semantics include asynchronous communication

but do not include asynchronous coordination. We chose to extend Kahn’s semantics

to facilitate asynchronous coordination, which results in a model of computation named

context-aware process networks (CAPN). The advantage of our approach over alternat-

ive MoCs is that CAPN retains the analytical strength of KPN. Moreover, we emphasise

the stream-based character of the systems under consideration, yet make (sub)systems

truly context aware. Asynchronous coordination allows subsystems to adapt to changes

in their milieu and to cooperate with subsystems in their milieu. Because of the asyn-

chronous aspects, the coordination process is also non-intrusive.

82 Context-aware process networks

Alternative approaches for extending Kahn’s semantics exist. CSP, Petri nets, and

discrete event systems are noteworthy examples of more generic models of compu-

tations. Hoare introduced communicating sequential processes (CSP) [see e.g. Hoare,

1985; Roscoe, 1997] and Peterson introduced Petri Nets [see e.g. Peterson, 1981; Hol-

loway et al., 1997; David and Alla, 2001]. Interesting in this respect is the subset of nets

that includes context: contextual nets [see e.g. Montanari and Rossi, 1995; Winkowski,

1998]. Petri Nets might be regarded as an analytical branch of the vast field of discrete

event systems [see e.g. Cassandras and Lafortune, 1999].

The characteristics of various models of computations, their strengths and weak-

nesses, have been studied in [Edwards et al., 1997], who introduced the tagged-signal

model. This model acts as a framework for comparing different models of computa-

tion. In this model a signal is represented by a string of events (value/tag tuple). The

ordering of events in a signal, the relative ordering of signals, and the input-output

relations of components (nodes) are different for the various models of computation.

CSP is a model of computation based on rendez-vous communication with well-

defined semantics, usually presented in the form of a denotational semantics. The CSP

specification allows, under strict conditions, for the decision on network properties

such as livelock and deadlock. Petri nets are also often presented denotationally. Petri

nets have been studied extensively, which has led to a vast amount of theoretical results.

So algorithms exist to decide on significant properties such as deadlock and livelock of

Petri nets in finite time and finite memory. Petri nets are often applied for evaluation

of control networks. Discrete event systems usually have operational semantics and

rely for their evaluation on extensive simulations. Discrete event systems are suitable

for specifying distributed systems. Note, however, that simulating large and complex

discrete event systems is not a trivial task; a distributed implementation of a discrete

event simulation, for instance, requires formally verified methods in order to maintain

a coherent notion of time.

The reason we did not pursue any of the aforementioned alternatives is the natural

fit of Kahn process network MoC and the process structures encountered in commu-

nicating systems. Recall the general sensor analysis synthesis actor (SASA) network

(Figure 1.1 on Page 2). The figure has been redrawn in Figure 5.2. The network is,

except for the cooperative (control) flow c, a textbook example of a dataflow network;

from input u to output y.

Evidently, deviations from the Kahn semantics will break the model’s determinate

property. Consider the ordinary feedback structure of Figure 5.3. Closing the switch

S induces a change of context. Initially, with S open, the process P will generate an

event on its output stream y for every incoming event on stream u. With S closed, the

input stream u is effectively merged with the output stream y. After receiving an event

on u, process P may generate any number of events on y; the exact amount of events

depends on the implementation of the merge operation. The indeterminate behaviour

of the merge operation causes these models to lose their compositional property, as

was first shown by Brock and Ackermann [Brock and Ackermann, 1981]. This type of

indeterminate behaviour is known in literature as the Brock and Ackermann anomaly

or merge anomaly. Feedback or feedforward structures are generally used to initiate

cooperation. In a dataflow network, cooperation regulates when adaptations take place.

Although Kahn process networks specify perfectly where a monitor of any context

Context-aware process networks 83

synthesis actor

sensoranalysis

u

y

c

c

c

Figure 5.2: SASA, dataflow network.

P s

y

u

Figure 5.3: Context

switch with feedback

structure.

parameter resides and how context updates can be incorporated in the dataflow, the

when question is left unanswered. Note that we encountered similar concerns when

discussing negotiated QoS in Section 3.3.2, [see West and Schwan, 2001]. The Brock

and Ackermann anomaly in a feedback structure reduces to a causality like anomaly:

the ordering of events at the output of the merge operation depends on the (causal)

arrival of events at inputs of the merge operation. The model thus retains its compos-

itional property when augmented with a proper time characterisation, which specifies

the relative ordering (the when) of arriving feedback events. If possible we can cap-

ture the determinate process of ordering events in a so-called oracle [Russell, 1990;

Panangaden, 1995], which effectively removes the anomaly.

In this chapter we propose to extend the Kahn process network MoC with a basal

modelling construct: a register link (REG) with destructive write behaviour. Our im-

plementation-wise trivial extension has far-reaching consequences on the analysis of

the resulting process network since it is no longer determinate. However, an analytical

evaluation of our extension shows that it is possible to isolate the resulting indetermin-

ate behaviour. Modelling of a REG link yields a parameterised Kahn process network,

albeit a varying one, and thus it retains its compositional property. The initial indeterm-

inate behaviour of the REG link is now concentrated into a control stream, of which the

properties either impose constraints on the context of the system for proper operation

or abstract the context conditions for the system to operate in.

Not surprisingly other researchers, too, chose to implement a register (REG) in their

development environment; a register construct maps one-on-one with a hardware im-

plementation and enlarges the scope of a MoC significantly. Basically there exist two

distinct concepts of modelling. One either develops a MoC based on discrete-event

processing or a MoC based on stream-based processing.

In [de Kock et al., 2000], De Kock et al. propose a select (merge) construct to model

infrequent events in a stream-based MoC. A user who presses a button is an example

of such an infrequent event. The select construct is incorporated with the previously

mentioned design space exploration methodology of [Lieverse et al., 2001]. Lieverse

et al. use an executable model in which there is a strict separation between the ap-

84 Context-aware process networks

plication domain (stream-based KPN) and the implementation domain (discrete events).

The methodology relies on extensive simulations, but because of the separation the

simulations of the application domain need not be exhaustive. However, when the

methodology is extended with a select construct in the application domain, the separa-

tion is no longer strict as the select construct, which resides in the application domain,

requires (causal) input from the discrete event domain. Consequently, the methodo-

logy degrades to a method of exhaustive simulations. As a marginal note, the fairness

of the select construct complicates matters even further. A different choice of fairness

yields a different application behaviour. CAPN, as developed in the chapter, isolates the

indeterminate behaviour of a select construct, which in specific cases circumvents the

need for exhaustive simulations to analyse a system.

The SPI (System Property Intervals) workbench [Ziegenbein et al., 2002] evalu-

ates possible schedules for heterogeneous systems. SPI implements a non-executable

model. The modelling language, much like Kahn semantics, is a coordination language

among components that are allowed to apply different MoCs. Components communic-

ate with each other through (destructive read) FIFO links or (destructive write) registers.

SPI establishes the bounds on the behaviour of the entire system. To do so, SPI requires

an extensive abstraction of the communication, execution pattern, and resource utilisa-

tion of each component. It uses an explicit communication model, i.e., the availability

of data is a predicate to enable process execution. Data dependent control is mod-

elled stochastically with parameterised uncertainty intervals; this support for handling

ranges of parameter values rather than fixed values extends the applicability of the

methodology significantly. Unlike SPI, our approach (CAPN) does not require explicit

communication and execution patterns. Data dependent control, if any, is hidden in the

respective nodes of the network. The lack of an explicit account of communication and

execution patterns corresponds to our prerequisite of flexibility as a design parameter

(see problem description on Page 4); explicit communication and execution patterns

may hinder evolution.

FUNSTATE [Strehl et al., 2001] is an internal data representation developed in paral-

lel with SPI. FUNSTATE distinctly separates control and data, whereas SPI – like CAPN–

does not enforce this separation. FUNSTATE enables methods for formal verification

(deadlock free, no overload, etc.) and methods for design and evaluation of schedules.

Like SPI, FUNSTATE has limited support for asynchronous coordination. FUNSTATE is a

discrete-event-based MoC related to coloured Petri Nets. For the formal analysis of

CAPN we make use of the so-called synchronous data flow model. Other researchers

have proposed an extension to this model in order to support (parameterised) inde-

terminate behaviour. Noteworthy examples of parameterised dataflow and extensions

of dataflow with non-functional properties can be found in [Bhattacharya and Bhat-

tacharyya, 2001] and [Park et al., 2002].

In the remainder of this chapter we first introduce Kahn process networks and the

related concept of dataflow networks. We then introduce non-determinism and present

the register extension with applications and analysis. We conclude with an example to

demonstrate asynchronous coordination by means of the register construct. As a matter

of fact, our context-aware process network (CAPN) MoC is a formal implementation of

the ARC framework of Chapter 3 for stream-based networks with occasional context

events.

5.1. Kahn process networks 85

5.1 Kahn process networks

Kahn process networks are deterministic. Their functional behaviour is independent

of the applied execution order of the processes in the network, provided that the im-

plemented schedule is a feasible one. In general, Kahn process networks lack a global

schedule and do not impose a specific memory model. Because of their deterministic

property, Kahn process networks are frequently applied to model, evaluate, and design

high-performance digital signal processing systems [Edwards et al., 1997; Lieverse

et al., 2001; Deprettere et al., 2002; Stefanov et al., 2002].

The family of dataflow models of computations as presented in [Lee and Parks,

1995; Bhattacharyya et al., 1999; Najjar et al., 1999], are a subset of the Kahn process

network (KPN) model of computation. Their discriminating difference is that dataflow

models do, and the Kahn model does not have a global schedule. In KPN, process

nodes are autonomous processes with explicit communication semantics. In a data-

flow MoC the semantics of the process nodes are restricted further by introducing an

explicit or implicit trigger signal. Processes synchronise on, possibly parameterised,

trigger events. With restricted semantics enforced, the resulting network has reduced

complexity, which means that more a priori and more detailed analysis is possible.

The dataflow model of computation with the most restricted semantics is the so-

called synchronous dataflow (SDF) model. In the SDF model each process has static

behaviour, which means that on each invocation of a trigger event (the firing) the num-

ber of processed tokens is statically specified. Exploiting the static behaviour of SDF

allows for an analytical evaluation of the network. The Ptolemy system [Lee, 2001]

uses SDF to design embedded real-time systems with guaranteed deadlock and livelock

behaviour. Parks presents a method to derive global schedules that bound (minimise)

the memory usage of an SDF network [Parks, 1995]. SDF uses implicit trigger events;

the firing of a process implies the availability of a trigger event without interpreting the

actual content of that event.

The cyclo-static dataflow (CSDF) model yields a useful extension of the SDF model

for which practical analysis techniques are available [Bilsen et al., 1996]. In CSDF the

nodes implement a finite set of operation modes, e.g, { f0, · · · , fN−1}, where fi corres-

ponds with the operation mode of an SDF node. The modes of operations are sequen-

tially and repeatedly executed; the i-th invocation triggers the execution of operation

fi mod N . Consequently the, statically determined, number of tokens that is processed

per firing is a cyclic-extended sequence because the number of tokens that is processed

at the i-th invocation is determined by mode of operation fi .

A logical extension of SDF and CSDF is the so-called dynamic dataflow (DDF) MoC.

Its basic implementation, the Boolean dataflow (BDF), has processes with two distinct

modes of operation, each mode corresponding to an SDF process. On every invocation

of a process in BDF, a trigger (control) event is received with a “true” or “false” value.

The content of the event selects the mode of operation for the current firing. Buck

shows that a global schedule can only be derived for the BDF MoC for a specific class

of problems [Buck, 1993].

The Kahn process network MoC does not restrict the communication synchron-

isation. Lieverse et al. exploits this property to evaluate possible implementations of

video processing filters [Lieverse et al., 2001]. The application is functionally specified

86 Context-aware process networks

in the KPN model of computation, which results in a large set of possible schedules.

Subsequently the set of schedules is associated with an architecture model, which al-

lows one to emulate the consequences of a schedule on an aspect of resource utilisation,

such as time, memory, etc. Systematically varying the parameters of the architecture

and the application models results in a methodology for design space exploration.

5.1.1 KPN semantics

Operational semantics

The operational semantics of Kahn process networks is as follows. Kahn process net-

works connect nodes that habitat an autonomous sequential process. A node has ports:

input ports and output ports. Ports of distinct nodes are connected through channels.

An output port connects to at most one input port, and similarly an input port con-

nects to at most one output port. The channel between an output port and an input port

is a unidirectional unbounded FIFO (first-in first-out) queue. Processes are allowed to

access their ports with two possible operations1: put(·) , a non-blocking write to an

output port, and get(·) , a blocking read from an input port. As a consequence, scan-

ning or monitoring of a port is not possible. Both the put(·) and the get(·) operations

are determinate – atomic – operations.

Practical implementations of Kahn process networks require the determination of

the execution order of the processes in the network: the schedule. An intuitive ap-

proach to generate a feasible schedule is the demand driven schedule of [Kahn and

MacQueens, 1977]. In this approach the network is initiated with empty channels and

if necessary augmented with source and sink processes. An arbitrary process receives

the thread of control and starts execution. Whenever the process tries to read from an

empty channel, the process marks the channel as hungry and hands over the thread of

control to another process. A process that writes to a hungry channel will un-mark

the channel as being hungry and also hands in the thread of control. Parks noted that

the sketched execution model may still require unbounded memory. In [Parks, 1995],

an execution model is presented that guarantees a bounded memory execution if at all

possible.

Example 5.1 (Kahn Switch) Consider the Kahn network of Figure 5.4, which shows a switch

composed of Kahn processes. The incoming stream u is processed either through P1 or through

P2. The effective route is controlled by the control (trigger) stream c, which instructs P0 to route

data through x1 or x2 and instructs P3 to retrieve data from x3 or x4. The coordination among

P0 and P3 is fully synchronised; P0 expects a control event for every event on u. Equivalently,

P3 relies on c to decide whether to retrieve data from P1 or P2. Because P3 is a Kahn process,

it will block when reading from an empty channel.

Kahn process networks with explicit (or implicit) control c are referred as dataflow processes

[Lee and Parks, 1995]. Consequently, compositions of these nodes are called dataflow process

networks. The processes P1 and P2 have implicit control. On every implicit control event,

process P1 (P2) will take an event from x1 (x2) and output the result on x3 (x4).

1We refer to these operations as put(·) and get(·) following [Kahn and MacQueens, 1977; Ptolemy,

1995–2002]. Other authors use different names, e.g., [Kienhuis, 1999; Lieverse et al., 2001] use read() and

write().

5.1. Kahn process networks 87

P1

P0

P2

P3

u

x1

y

x2

x3

x4

c

Figure 5.4: Kahn process network: a (dataflow) switch.

The switch of Figure 5.4 exemplifies a multi modal network. Processing takes either the

upper route or the lower route. There are multiple options to generate the control stream c that

selects the actual mode of operation. In case of SDF, c is a constant stream that reduces the

network to either the upper path or the lower path. In a dynamic dataflow MoC c is context

dependent. For instance, we may choose to let process P0 generate the control stream c based on

the actual value of u, or alternatively, let process P1 generate c based on the most recent value

of x3 or x4. In general is c is generated by an external (coordinating) process.

Denotational semantics

Kahn processes are determinate and consequently their composition, a Kahn process

network, is also determinate. The following equivalent denotational semantics [Win-

skel, 1993] of Kahn processes illustrates this conjecture formally.

A Kahn process implements a continues function2. Let u = 〈λ0, λ1, · · · , λn〉 de-

note an input sequence of events to a process P and let y denote the corresponding

output sequence. The input sequence has a so-called partial order if the elements of

u have an ordered index relation: λi ≤ λi+1, for 0 ≤ i < n. A prefix order on u is a

partial order that partitions u in overlapping subsequences: 〈u0, u1, · · · , uk〉, where u0

equals the empty set (u0 = 〈⊥〉) and uk = u. The subsequence ui is a prefix of sub-

sequence u j , denoted as ui ⊑ u j , if all elements of ui are in u j and those elements not

in u j have a higher index than all elements in ui . As an example, let ui = 〈λ0, · · · λi 〉
and u j = 〈λ0, · · · , λi , λi+1, · · · λ j 〉, then if ui ⊑ u j , we have λi ≤ λi+h for all

h = 1 · · · j − i .

A monotonic process implements a monotonic function F that transfers a partial

order (u) into another partial order (y): y = F(u). A monotonic function F is defined

as

ui ⊑ u j H⇒ F(ui) ⊑ F(u j). (5.1)

Monotonicity corresponds to the intuition that input events that arrive at the input

port after computations have started, cannot influence any current event of the output

2See e.g. [Roscoe, 1997, Appendix A.1] for a thorough introduction.

88 Context-aware process networks

stream. An important practical implication is that processes can start processing as

soon as they have sufficient input to generate (part of) their output. A coarse grain

example is found in pipelined arithmetic and a fine grain (bit-level) example is found

in on-line arithmetic [M.D. Ercegovac, 1989]. The latter example requires a redund-

ant number of representations in order to force monotonicity of arithmetic functions.

Models of communication that have a notion of time define the (temporal) causality of

events. Monotonicity defines causality for models of communication that operate on

(ordered) sequences rather than implement global time.

The infinite extension of a partial order u → u∞ requires u to have a greatest

lower bound ⊓u and a least upper bound ⊔u. Let u again be a prefix order, then the ⊓u
of u equals the, empty, bottom element ⊥, which is a prefix for u. Let y be the set of

upper bound elements, thus u is prefix for every element of y; t ∈ y is the least upper

bound when t is prefix too of every element of y. The extension u → u∞ makes u∞ a

complete partial order. Subsequently, a continues function F is defined as

F(⊔u
∞) = ⊔F(u∞). (5.2)

The definition of a continues function implies monotonicity [Roscoe, 1997]. The

reverse, however, is not true; not all monotonic functions are continues functions. “For-

tunately this [. . .] is not a problem in practice since practical monotonic processes are

invariably continuous” [Lee and Sangiovanni-Vincentelli, 1998]. This is an import-

ant conjecture because it implies that Tarski’s theorem3 applies in practical situations.

Tarski’s theorem for complete partial orders states that a monotone function F that op-

erates on complete partial orders has a least fixed point: x = F(x) = ⊔{y|y ≤ f (y)}.
The existence of a least fixed point implies that monotone functions are determin-

ate. Monotonicity and continuity therefore are preserved under function composition.

A composition of monotone (functional) processes yields again a monotone (func-

tional) process. A constructive proof of Tarski’s theorem [Roscoe, 1997, Appendix

A.1] is based on the recursive application of the function F , starting from the empty

sequence ⊥. The proof implicitly contains an iterative procedure for finding the least

fixed point solution. The procedure closely resembles the operational semantics of the

demand driven schedule we sketched on page 86 [Winskel, 1993].

5.1.2 Synchronisation

A communicating system is a natural representative of a parallel program. The proper

execution of any parallel program relies on underlying synchronisation mechanisms

and their implementation. Kahn semantics implement asynchronous communication;

there is no (global) notion of time that synchronises events. Asynchronous communic-

ation has been recognised for long to be an efficient implementation of communication.

In [Miller, 1965, chap. 10] a chapter is devoted to “speed independent switching the-

ory” for improving the integrity of a design. More recently, asynchronous designs

methods have been applied to save energy [Rabaey, 2001; Wan et al., 2001].

Van Gemund presents a clear analysis of the necessary synchronisation constructs

for implementing parallel programs [van Gemund, 1996]. There are three basic syn-

3Tarski’s theorem is also referred to as the Knaster–Tarski fixed point theorem.

5.2. Indeterminate processes 89

chronisation constructs (Definition 5.1). Practical models of computation implement

each of these constructs in one way or another.

Definition 5.1 (Synchronisation constructs [van Gemund, 1996])

i. CONDITION SYNCHRONISATION (CS); Static synchronisation of precedence

relations among autonomous processes.

ii. MUTUAL EXCLUSION (MUTEX); Dynamic synchronisation of precedence rela-

tions. Mutual exclusion organises atomic access to shared resources.

iii. CONDITIONAL CONTROL FLOW (CCF); Data dependent control flow.

❑

Condition synchronisation (CS) is found when a process P cannot proceed com-

putations before, say, processes S0 and S1 have provided it with the right amount of

data. Mutual exclusion (MUTEX) is associated with contention of (shared) resources.

A MUTEX is a dynamic form of CS. Conditional control flow (CCF) captures the data

dependency of a program.

Van Gemund developed the above definition for the purpose of performance mod-

elling [Pamela, 1993–2002]. Careful implementation of the basic synchronisation con-

structs facilitates the automatic derivation of a parameterised performance model.

The semantics of Kahn include the CS and CCF constructs but lack the MUTEX con-

struct. The MUTEX construct is a prerequisite for asynchronous coordination; note that

in contrast to CS and CCF, the MUTEX construct is an indeterminate primitive. To illus-

trate the advantages of asynchronous coordination, consider a typical synthesis analysis

network. Maintaining synchronous coordination among processes is awkward when

multiple developers, or worse, multiple disciplines, are involved. In such a case, the

development process of the network requires careful coordination; moreover, it is lim-

ited with respect to the flexibility of developments. Typically, the analysis process has

dedicated points where it is useful to incorporate cooperative information. Likewise,

the synthesis process has dedicated points in the process where sensible cooperative

information can be provided. These mode-switch points of the synthesis and analysis

processes usually do not coincide. Hence a desire for asynchronous coordination.

5.2 Indeterminate processes

Introducing nondeterminacy roughly comes in two flavours. One can dynamically

change the topology of a network, or one can apply indeterminate processes in a net-

work. Here, we will pursue the latter. Changing the topology of a network dynamically

is an interesting topic though. In [de Bruin and Nienhuys-Cheng, 1998] a linear dy-

namic extension of the topology is studied. It turns out that this type of extension is

deterministic. An example of a linear dynamic extension is the creation of a network

that implements the “Sieve of Eratosthenes” [Kahn and MacQueens, 1977; de Bruin

and Nienhuys-Cheng, 1998]. The network generates a sequence of prime numbers

based on the filtering of multiples. Newly determined prime values define new filter

components. Suppose that at some instance the network topology contains filters for

the primes 2, 3, 5, 7. Then, when a test sequence of 〈8, 9, 10, 11〉 enters the network, 8

90 Context-aware process networks

will be filtered out by the 2-filter since 2 divides 8. Similarly, 9 will be filtered out by

the 3-filter and 10 by the 2-filter again. Since 11 is a prime it will make it all the way

through the 7-filter and subsequently a new filter component (the 11-filter) is linearly

added to the network.

We concentrate on the type of nondeterminism that results from the application

of indeterminate processes. We are particularly interested in indeterminate processes

caused by context awareness. Processes that are willing to adapt to changes in their

milieu must be able to sense their context. A prominent example of an indeterminate

primitive is the merge construct. A merge primitive allows an application to react to

incoming events; either a changed condition (outage of a wireless link) or a changed

objective (invocation of a new application by a user). A merge construct implements

the MUTEX construct of Definition 5.1.

The implementation of a merge construct is fairly straightforward in any executable

(operational) model. We conducted experiments, implementing a merge construct, us-

ing the Pamela (C) run-time library [Pamela, 1993–2002] and the Ptolemy (Java) suite

[Ptolemy, 1995–2002]. Additional examples can be found in literature. For example,

we mentioned the register construct implemented in the SPI workbench [Ziegenbein

et al., 2002] and the introduction of a select construct in YAPI [de Kock et al., 2000]

a programming interface to model signal processing applications as process networks.

The implementation is not an issue though, yet problems emerge when addressing the

integrity of the system under development. Designs that use indeterminate constructs

are no longer sound by construction..

A merge operator captures nondeterminism in a fundamental way. A merge com-

ponent has two input ports and a single output port. The internal indeterminate process

selects events (tokens) from either input channel and copies them in order of selection

onto the output channel. The merge operator is a common component in networks,

either explicit or implicit ones.

As an example [due to Russell, 1990], consider an indeterminate process P̃1 with

a single input port and a single output port (Figure 5.5(a)). P̃1 transforms the input

sequence u into the output sequence y. P̃1 internally has two deterministic modes of

operation: 1) a read from the input port, followed by a write of a 0, followed by a

write of a 1 to the output port, denoted as R; 0; 1. 2) a write of a 0 to the output port,

followed by a read from the input port, followed by a write of a 0 to the output port,

denoted as 0; R; 0.

In Figure 5.5(b) the indeterminate process P̃1 has been divided into a determinate

process P1 (indicated by a sphere) and an indeterminate process M̃ (indicated by a

box). The process P1 resembles P̃1 but is augmented with a control port. The mode

of operation of P1 is specified by the value read from the control port. If c = 0 then

the mode of operation 1) is selected, and if c = 1 then the mode of operation 2) is

selected. The control port of P1 is driven from an indeterminate merge component

M̃ , that has two infinite input streams connected to its input ports. Stream u0 contains

events λi = 0 and stream u1 contains events λ j = 1. The merge component together

with these infinite input streams makes up an oracle, which captures the indeterminate

part of the process P̃1.

The input-output relation of the network P̃1 depends on the indeterminate selection

mechanism and the context of the network. Given the possible choices for the mode of

5.2. Indeterminate processes 91

R;0;1

or

0;R;0

u

P̃1

y

(a) Non-

deterministic

process.

u

y

u0 u1

M̃

y

c

P1

or
c=1:0;R;0

c=0:R;0;1

(b) Oraclised process.

Figure 5.5: Indeterminate processes.

Table 5.1: Input-output relations, given the control (c) and the (in)availability of input

events (u). Note, S closed in Figure 5.6.

¬u denotes that u has no events (〈⊥〉), whereas u denotes that u has events.

(a) P̃1.

c ¬u u

0 ⊥ 0;1

1 0 0;0

(b) P̃2.

c ¬u u

0 ⊥ 0;1

1 0 0;0

2 0 0;1

operation and given the availability of events at the input port, the output events follow

from evaluation; see Table 5.1(a). The input-output relations depend on the value of c

and on the (in)availability of events on u (context).

One can construct a network P̃2 with input-output relations that are equivalent to

those of P̃1. The input-output relations, however, do not solely determine the modes of

operation. Let the possible modes of operation of P̃2 be equal to those of P̃1 with an

additional mode of operation, namely: 3) a write of a 0 to the output port, followed

by a read from the input port, followed by write of a 1 to the output port, denoted as

0; R; 1. Obviously P̃1 and P̃2 have equivalent input-output relations; see Tables 5.1(a)

and 5.1(b) respectively. Both processes generate either {〈⊥〉, 〈0〉} or {〈0; 1〉, 〈0; 0〉},
depending on the (in)availability of events on u.

With respect to the networks of Figures 5.6(a) and 5.6(b) we evaluated the input-

output relations of P̃1 and P̃2 with the switch S opened. However, when operated

in a different context (S closed); the two networks behave differently, and hence the

input-output relation of indeterminate networks is not compositional. In [Russell, 1989;

Panangaden, 1995] this phenomenon is exemplified by introducing a feedback link,

thus closing the switch S in the networks of Figures 5.6(a) and 5.6(b). The input-

output relations of these networks are given in Tables 5.2(a) and 5.2(b) respectively,

and obviously are no longer equivalent. The above example illustrates the previously

92 Context-aware process networks

s

R;0;1

or

0;R;0

u

y

P̃1

(a) P̃1.

s

R;0;1

or

0;R;0

u

or

0;R;1

y

P̃2

(b) P̃2.

Figure 5.6: Process with context switch.

Table 5.2: Input-output relation with feedback (S closed in Figure 5.6).

⊥ denotes the empty sequence (〈⊥〉).

(a) P̃1.

c

0 ⊥
1 0;0

(b) P̃2.

c

0 ⊥
1 0;0

2 0;1

mentioned Brock and Ackermann anomaly.

In Figure 5.5(b) we introduced an oracle that captures the indeterminate part of

the network P̃1. Nothing has been specified so far about the behaviour of the merge

operation. It turns out that there exists a hierarchy of merge primitives ([Panangaden

and Stark, 1988]) with provable inequivalent expressive power. The list of common

merge primitives ranked according to their expressibility from strong to weak includes:

fair merge, angelic merge, infinity-fair merge, and unfair merge.

Fairness is closely connected to nondeterministic or parallel program execution

[Apt and Plotkin, 1986]. A classical example in this respect [due to Dijkstra, 1976,

p.76] is the following parallel program; parallel (non-interleaved) execution of two

statements S1 and S2 is denoted as S1 ‖ S2.

b := true; x := 0;
do b→ x := x + 1; ‖ b→ b := false; od

The program is guaranteed to terminate only under the assumption of true fairness.

The actual value of the variable x at termination of the program depends on when the

scheduler decides to invoke the right-hand-side statement (b := false). In case of an

unfair scheduler, termination of the program is not guaranteed.

The merge primitive has two input ports and a single output port. Events (or tokens)

are read from either input port and written unaltered onto the output port. The relative

5.2. Indeterminate processes 93

u0 u1

c
P

y

R̃

Figure 5.7: Infinity fair merge

oraclised.

Pamb

s0 s1

u0

t

c0

tc

Pamb

u1

c1

P

y

Figure 5.8: Angelic merge oraclised.

order of events of the input stream is preserved in the output stream. Let u0, u1 be the

input sequences and y the output sequence. Let y0 and y1 be two streams constructed

from the output stream y as follows: events of y that originate from u0 go to y0, events

of y that originate from u1 go to y1. The order of events of u is preserved on y0 and y1.

The fair merge primitive guarantees that under all circumstances y0 = u0 and

y1 = u1. The angelic merge transmits all events of stream u0 if the stream u1 is finite

and it transmits all events of stream u1 if the stream u0 is finite. The angelic merge

thus behaves like a fair merge if both u0 and u1 are finite. The infinity-fair merge is the

dual of the angelic merge. The infinity-fair merge transmits all events of u0 provided

that u1 is infinite and it transmits all events of u1 provided that u0 is infinite. Thus the

infinity-fair merge behaves like the fair merge if both u0 and u1 are infinite. The unfair

merge (the ordinary “or” operation, also known as bounded nondeterminism) finally,

does not give any guarantees at all.

The mere name of the infinity-fair merge is due to the composition [Panangaden

and Shanbhogue, 1992] of a deterministic component and an indeterminate random

number generator. The random number generator acts as the oracle and generates a

sequence of positive integers. The determinate process has the usual two input ports

for streams u0 and u1 and an output port y. In addition the component is equipped

with a control port c to which the generated random number stream is connected. The

process starts with reading an integer from the control port. The control value specifies

the quantity of tokens to be read alternately from u0 and u1. See Figure 5.7 for a

diagram.

In Section 5.1.1 we found that the monotonic property of a process is a sufficient

condition for the Kahn model of computation to be compositional. An oracle effect-

ively captures the indeterminate part of an indeterminate primitive. Therefore, when

context dependent relations can be made explicit, the compositional property is re-

tained. In fact, an oracle can only be devised for processes that have a (weak) form of

monotonic behaviour. Panangaden presents two weak forms of monotonicity: Hoare

monotonicity and Smyth monotonicity [Panangaden, 1995]. Hoare monotonicity is a

weaker type of monotonicity than Smyth monotonicity, which in turn is a weaker form

of monotonicity than of that the definition we gave in Section 5.1.1. In [Panangaden,

1995], the fair merge primitive is identified as being non-monotonic, the angelic merge

94 Context-aware process networks

amb(·) amb(·) amb(·)
n = 1

amb(·)
n = k

amb(·)
n = j

amb(·)
n = 0

u0u1u juk

Figure 5.9: Countable non-determinacy using McCarthy’s amb(·).

is identified as having Hoare monotonicity and infinity-fair merge has Hoare monoton-

icity as well as Smyth monotonicity.

The implementation of a non-monotonic function requires preemption of the com-

putations, for the output stream is affected by non-causal events on the input stream.

Preemption is commonly implemented by constructs like timeout, interrupt, or polling.

A preemption-free implementation is possible, since angelic merge and infinity-fair

merge behave in a sense monotonically. Fair merge, being non-monotonic, cannot be

oraclised [Panangaden and Shanbhogue, 1988].

The oraclisation of the angelic merge primitive is not as straightforward as the

infinity-fair merge primitive. In [Panangaden and Shanbhogue, 1988] a sketch of the

composition for angelic merge is given. The indeterminate part (oracle) implements

McCarthy’s ambiguity operator amb(·) in a recursive network. “amb(x, y) has pos-

sible values x and y when both are defined: otherwise whichever is defined” [Mc-

Carthy, 1963]. A process that incorporates the amb(·) operator is a two-input, single-

output node; the output sequence equals the non-empty input sequence; if both input

sequences are non-empty then amb(x, y) returns y.

Recursive application of the amb(·) operator may be used to count the events of an

input sequence. Consider a recursively defined function f :

f (n) = amb(n, f (n + 1)) .

As an example let the function less(K) return an empty event and have less(n) recurs-

ively defined as above. Then for any n < K , less(n) returns K − 1.

In order to count the number of events in a stream, we can apply the amb(·) op-

eration as follows. Suppose the k-th event λk of stream u is available but λk+1 is

nonexistent (empty). Obviously if λk exists so does λ j for 0 ≤ j ≤ k. Thus f (k)

evaluates to k and subsequently f (0) evaluates to k. Hence the number of events in u

is counted as k, and therefore this type of nondeterminism is also known as countable

nondeterminacy.

The fully expanded network (Figure 5.9) has k amb(·) operations: as many as

the number of events in u. An projection of the one-dimensional array of k amb(·)
operators [like in Kung, 1988] results in a process Pamb (Figure 5.8). The node Pamb

implements the amb(·) operator and has two input ports, s0 and s1, and two output

ports, t and tc. Pamb maintains a state q. Initially, we have q = 0. The process

implements an infinite loop. The body of the loop starts off by putting an event q on

the port t . Next, Pamb evaluates its input ports. The process proceeds with one out of

5.3. CAPN semantics 95

three possible scenarios: 1) s0 has an event but s1 has no event; copy the event from s0

to tc and reset the state (q = 0). 2) Both s0 and s1 have an event; read and discard the

events from s0 and s1 and increment the state (q = q + 1). 3) s0 has no event, but s1

has an event; read and discard the event from s1 and set the state q = 1. Hereafter the

body of the loop is re-invoked, sending an event q on t . The output t is fed back to the

input s0 of process Pamb. The input port s1 is connected to the input stream u0. The

generated event that eventually is output on port tc is a control signal to a deterministic

process P . This control event is guaranteed to specify a count that never exceeds the

remaining number of tokens of the stream u0. A deterministic process can thus be

devised that never blocks on stream u0. The deterministic primitive requires equivalent

control information for u1 to implement angelic merge. Although amb(·) does embody

a polling mechanism, it is impossible to implement the fair merge primitive with this

construct [Panangaden and Shanbhogue, 1988].

We conclude with some remarks on the hierarchy of expressiveness of the merge

primitives. There exists a composition of fair merge primitives that implement the an-

gelic merge primitive. Further, an infinity-fair merge can be composed using angelic

merge primitives. The reverse, however, is not possible. Above we exemplified the

Brock and Ackermann anomaly. In their original paper [Brock and Ackermann, 1981],

Brock and Ackermann prove the non-compositional property of input-output relations.

The proof relies explicitly on the fairness of the applied (fair) merge primitive. Russell

proved the non-compositional property for unbounded choice (unfair merge) [Russell,

1989] and thus the non-compositional property for any merge primitive. This result is

supported by the observations in [Panangaden, 1995] that neither of the merge prim-

itives is monotone in the definition of Section 5.1.1 and hence neither of the merge

primitives is compositional.

5.3 CAPN semantics

Evidently, it has been recognised for long that the inclusion of some form of non-

determinism in any model of computation is beneficial for practical purposes. It greatly

extends the scope of applications that can be modelled intuitively. On the other hand,

introducing nondeterminism breaks the analytical strength of a model of computation.

Keeping a shear balance is important.

In his seminal paper [Kahn, 1974], Kahn considered a possible indeterminate ex-

tension of the KPN semantics. He proposed a primitive process, named warn(·) . The

warn(·) process has two inputs and a single output. A true event is sent on the output

whenever an event is received at either of the input ports. In contrast to McCarthy’s

amb(·) operation, Kahn’s warn(·) operation does not pass incoming events but gener-

ates new (true valued) events.

In this section, we introduce two types of primitives. A set of convenience con-

structs for simulation purposes and a register link, which brings in nondeterminism.

5.3.1 Synchronising constructs

Kahn semantics consider process networks from a viewpoint that concentrates on the

history of events. Another approach is consider the same process network from a view-

96 Context-aware process networks

point that concentrates on the state changes of the respective processes. One example

is the observer semantics introduced in the 1930s by Muller, named cumulative states

[Miller, 1965, Chap. 10]. Although a change of viewpoint changes the focus of con-

cerns, it does not influence the properties of a network.

A commonly applied primitive for condition synchronisation (Definition 5.1–i) in

asynchronous communication systems is the Muller–C [Miller, 1965; Wuu, 1993] ele-

ment. This basic element is a two-input port device with a single output port. The

Muller–C element can be viewed as the logical AND of two events. In integrated cir-

cuits (IC) an event is usually a 0 − 1 or 1 − 0 transition. The output thus equals the

inputs after both inputs reach the same value, otherwise the output keeps (latches) the

previous output.

Kahn semantics include condition synchronisation, hence the implementation of

a Muller–C equivalent process is straightforward. A Muller–C process in Kahn se-

mantics is a process with two input ports and one output port. The process outputs a

true valued event as soon as two events have been read, one from each input port. A

simple continuous process with one mode of operation suffices. First, read from all in-

put ports in a predefined order while discarding the events. Then, output a true valued

event on the output port.

A Muller–C element with more than two input ports can easily be composed using

a tree structure of basic Muller–C elements. It requires (n − 1) Muller–C elements

to devise an n-input Muller–C element. A tree structure, albeit functionally sound,

is not the most efficient implementation. In Kahn semantics a Muller–C process can

simply be generated from a template process, in which the number of input ports is a

parameter. For IC designs, dedicated structures are applied [see e.g. Wuu, 1993].

The dual of the Muller–C element is Kahn’s warn(·) process. We refer to a para-

meterised version of the warn(·) process as an N -to-one semaphore (SemN→1). The

basic Sem2→1 (warn(·)) process has two input ports and a single output port. The

process outputs a true valued event whenever an event is read from either of the input

ports. The output event thus specifies the availability of an event but does not specify at

which input port the event was received. An extension to a process with N -input ports

is straightforward.

The practical value of a SemN→1 is limited to an executable model of the Kahn

MoC. When applied in the composition of Figure 5.10, the control value c merely

offers a trigger to a process of the reception of an event. The control event triggers a

ready-to-run state of the process, in a similar way as the mechanism of the demand-

driven schedule sketched in Section 5.1.1.

Like the Muller–C element, the SemN→1 implements condition synchronisation.

Compositions that use either of these elements are still determinate.

5.3.2 Register

A register is a unidirectional channel (REG link) between an input port and an output

port. Unlike an unbounded FIFO link, a register link has bounded capacity: it is a one-

place buffer. Operations performed on a REG link are never blocking. A write to a REG

link will overwrite the current value (state) of the channel. A read from a REG reports

5.3. CAPN semantics 97

u0 uN−1

SemN→1

y

c P

Figure 5.10: N -to-one semaphore process.

Producer

(P)

Consumer

(C)

xfer

r

xfer: FIFO link (solid arrow) and r: REG link (open arrow).

Figure 5.11: Producer-consumer network with REG link feedback.

the current state. These behaviours are sometimes referred to as overwrite-on-full and

last-on-empty-read, respectively.

As an example, consider a typical producer-consumer example with a REG feedback

link (Figure 5.11). In this diagram and following ones, FIFO links are indicated with

a solid arrows and REG links are indicated with open arrows. Each invocation (firing)

of the producer P will trigger a get(·) from the control channel r followed by a put(·)
on the data channel xfer. The actual value of the event on the FIFO link xfer depends

on the previously read control event. Similarly, each invocation of the consumer C

will trigger a get(·) from the data channel and a corresponding put(·) on the control

channel. Depending on the relative schedule of the producer and the consumer, control

events sent by the consumer may be transferred, replicated, or discarded.

To show the schedule-dependent behaviour of a register channel, consider the fol-

lowing. Let λ0 be the register value of the REG link after reset and 〈λ1, λ2, · · ·〉 be the

sequence of coordination events emitted by the consumer on successive invocations. If

a schedule alternately invokes the producer and consumer, the producer observes the

same sequence of coordination events: 〈λ0, λ1, λ2, · · ·〉. An alternative schedule that

alternately invokes the producer k times followed by k successive invocations of the

consumer lets the producer observe 〈(λ0)
k, (λk)

k, (λ2k)
k, · · ·〉. That is, k replications

of λ0 followed by k replications of λk , while intermediate coordination events are dis-

carded. A fully parameterised schedule demonstrates the context dependency of the

network even further. Let S = 〈〈ρ p

0 , ρc
0〉, 〈ρ

p

1 , ρc
1〉, · · ·〉 describe the sequence of in-

98 Context-aware process networks

SemN→1 ++++

u0 u1

Pt Ps

c

y

Figure 5.12: Select compound.

vocations of each process. First the producer is invoked ρ
p

0 times, then the consumer

ρc
0 times, followed by the producer ρ

p

1 times, etc. As a result the producer observes the

following control sequence:

〈(λ0)
ρ

p

0 , (λρc
0
)ρ

p

1 , (λρc
0+ρc

1
)ρ

p

2 , · · · , (λ∑i−1
s=0 ρc

s
)ρ

p
i 〉, (5.3)

of which the previous examples are just special cases, i.e., ρ
p
i = ρc

i = k for all i .

5.4 Analysis and application of CAPN

In this section, we analyse the potentials of the SemN→1 and REG primitives introduced

in the previous section. Given these primitives, one can construct a useful primitive in

practical situations: the select primitive. The select compound was introduced in Sec-

tion 5.2 as a construct to model user interference with the network. The behaviour, i.e.,

the fairness of the constructed select compound will depend on the applied schedule of

the network. In this section we will show that the register has the necessary monotonic

properties to allow for oraclisation.

5.4.1 Select compound

Given the SemN→1 and REG primitives a select compound is constructed. The select

compound is functionally equivalent with the select primitive proposed in [de Kock

et al., 2000]. Our select compound is constructed out of determinate (Kahn) processes,

FIFO links, and indeterminate REG links. In order to analyse the compositional property

of the select compound it is sufficient to study its indeterminate primitives. In this case

all indeterminism is isolated in the applied REG links.

The select compound implements a merge process. Given two input streams u0

and u1, the merge process transfers events from u0 and u1 to an output stream y. The

5.4. Analysis and application of CAPN 99

relative order of events from each input stream is preserved in the output stream, yet

the interleaving of events originating from u0 and u1 is left unspecified.

The construction of the select compound is given in Figure 5.12. The network is

a Kahn process network but one with two channels: the channels from the counting

processes (++) to the process Pt are implemented as REG links. In the diagram, each

incoming stream u0 and u1 is forked to a counting process (++), an SemN→1 process,

and the main selection process (Ps). A counting process node implements an infinite

loop process. The body of the loop starts with invoking a get(·) from the input port,

then increments a counter value, and concludes with the invocation of a put(·) of the

actual counter value on the output port of the process node. The SemN→1 process node

outputs a true valued event for every event received at either of its input ports. The pro-

cess Pt synchronises on the output of the SemN→1 process: Pt awaits (get(·)) an event

from the SemN→1. The arrival of an event indicates the availability of an event on

either u0 or u1. Subsequently Pt will read (get(·)) each of the REG links and compare

their value with the stored, most recently read, value. If a process would read all sub-

sequent events from a counting process, then the process would observe a sequence of

increasing integers. Thus by maintaining state, Pt can observe discrepancies between

the current and previous state of the register channel. Any discrepancy indicates the

availability of an input event. In case of a detected input event Pt emits a control event

on c that specifies the input port, u0 or u1 with an pending event. The selection process

Ps reads (get(·)) an event from its control port c and subsequently issues a get(·) on

the specified port, u0 or u1. The read event is copied on the output stream y.

The select compound of Figure 5.12 is naturally divided into a determinate part (Ps)

and an indeterminate oracle. The indeterminate character of the oracle is concentrated

in the two REG links from the two counting processes to Pt .

5.4.2 Register oracle

The behaviour of the REG link is indeterminate, yet it is a form of controlled non-

determinacy. Recall the producer-consumer network of Figure 5.11. As shown in

Equation (5.3), the effective control sequence r of this network is parameterised. It

solely depends on the applied schedule of the network.

In this section, we devise an oracle that captures the indeterminate character of

the REG link. To illustrate the oracle, we first examine a static configuration and then

present a dynamic configuration. The dynamic configuration concentrates the schedule

(context) dependent behaviour of the REG link in a control stream.

The input-output relations of a REG link are comparable to the input-output relations

of sample-rate conversion (SRC) constructs. These SRCs have proven their usefulness in

the field of multirate digital signal processing. A sample-rate converter pairs an inter-

polator (up sampler) and a decimator (down sampler). Figure 5.13 shows a sample-rate

converter in which a decimator is followed by an interpolator.

In digital signal processing it is common to implement so-called zero-filling inter-

polation [Crochiere and Rabiner, 1981]. A zero-filling interpolator reads events from

the incoming stream and outputs a stream which is an exact copy of the incoming

stream, but, with L zeros inserted between successively read events. Here we take a

slightly different approach. Instead of inserting zeros we insert L copies of the last

100 Context-aware process networks

M L

u y

Figure 5.13: Decimator-Interpolator.

L M

u y

Figure 5.14: Interpolator-Decimator.

read event. Thus given an input sequence of 〈λ0, λ1, · · ·〉 the interpolator outputs

Interpolator(L) : 〈(λ0)
L , (λ1)

L , · · ·〉. (5.4)

A decimator outputs a down-sampled version of the input stream. That is, out of M

read events all but one event are discarded; the last one is written to the output stream.

Again, given an input sequence of 〈λ0, λ1, · · ·〉 the decimator outputs

Decimator(M) : 〈λM−1, λ2 M−1, · · · , λk M−1, · · ·〉. (5.5)

We arbitrarily chose to copy the last element of a block of M input events to the

output port. Any other element of the block of M events could have been chosen

as output, however. A proper initialisation of the channel is sufficient to accomplish

a shift of the selected element. To illustrate this, assume that we initialise the input

stream with M − 1 void events. The resulting output stream would then be

〈λ0, λM , · · · , λk M , · · ·〉,

which is merely a shift of the sequence of Equation (5.5).

A sample-rate converter (SRC) combines a decimator and an interpolator. In Fig-

ure 5.13 a stream u is processed by a decimator followed by an interpolator. This is a

static, yet parameterised (M, L), SRC. Given an input sequence u = 〈λ0, λ1, · · ·〉, the

output sequence y = DecInt(M, L; u) follows from subsequent application of Equa-

tion (5.5) and Equation (5.4).

DecInt(M, L; u) : y = 〈(λM−1)
L , (λ2 M−1)

L , · · · , (λk M−1)
L , · · ·〉 (5.6)

A configuration of a sample-rate converter with a decimator and an interpolator in

reversed order yields a slightly more complicated expression for the output sequence.

In Figure 5.14 a stream u is processed by an interpolator followed by a decimator.

Given an input sequence u = 〈λ0, λ1, · · ·〉, the output sequence y = IntDec(L , M ; u),

now, has replicated consecutive events as follows:

IntDec(L , M ; u) : y = {(λ0)
ϕ[0], (λ1)

ϕ[1], · · ·}. (5.7)

The replication factor ϕ[j] is periodic. It is recursively defined as:

ϕ[j] =
⌊

θ[j]
M

⌋

θ [0] = L

θ [j + 1] = L + θ [j] mod M

(5.8)

5.4. Analysis and application of CAPN 101

P↑,↓

c

u y
q

Figure 5.15: Sample-rate converter (SRC).

for j = 0, 1, · · · . The replication factor ϕ[j] (and thus θ [j]) has a period N : ϕ[n +
N] = ϕ[n]. Not surprisingly, N depends on the greatest common divider of L and M :

N = M/gcd(L , M).

A generic sample-rate converter (SRC) dynamically combines the networks of Fig-

ures 5.13 and 5.14. Figure 5.15 shows a sample-rate converter with explicit (para-

meterised) control. The control stream dictates the topology of the SRC (a decimator

followed by an interpolator or vice versa), it dictates the respective sample rates (L

and M), and it dictates changes from one configuration (topology and sample-rate) to

another. The sample-rate converter operates as follows. The control stream c has a se-

quence of events 〈α0, α1, α2, · · ·〉, αi ∈ {−1,+1}. A negative control value (α j = −1)

corresponds to the invocation of a decimator (M = 1); a positive control value cor-

responds to the invocation of an interpolator (L = 1). The process P↑,↓ starts with

reading a control value α j from the control port. A negative control value triggers the

read of an event from port u. The event is stored in the status register (q ← get(·)).
A positive control value triggers the write of a copy of the stored event y ← put(q).

Formally, let q = λ−1, u = 〈λ0, λ1, λ2, · · ·〉, and y = 〈⊥〉 be the current state of the

SRC network (Figure 5.15). The state of the network after a read of the control value α0

is as follows:

α0 = −1

u = 〈λ1, λ2, · · ·〉
q = λ0|
y = {⊥}

α0 = +1

u = 〈λ0, λ1, · · ·〉
q = λ−1

y = {λ−1}

In Section 5.4.3 we further analyse the properties of the control sequence c, with

in particular the relation between c and the context of the network. The behaviour of

the Interpolator (Equation (5.4)) and the Decimator (Equation (5.5)) can be described

by their respective control streams cI and cD . Let the state of the SRC be defined as

before: q = λ−1, u = 〈λ0, λ1, λ2, · · ·〉 and y = 〈⊥〉, the control streams cI and cD are

as follows:

Interpolator(L) : cI = 〈−1, (1)L ,−1, (1)L ,−1, · · · , 〉 (5.9)

Decimator(M) : cD = 〈(−1)M , 1, (−1)M , 1, · · ·〉 (5.10)

As a further example, let the state of the SRC be as before. Consider a control se-

quence c = 〈−1, (1)k, (−1)k, (1)k, (−1)k, · · ·〉. Then the output stream yields y =

102 Context-aware process networks

Producer

(P)

Consumer

(C)

xfer

r

Figure 5.16: CAPN Producer-consumer

network.

c

q

Consumer

P↑,↓

Producer

Figure 5.17: KPN Producer-consumer

network with register model.

〈(λ0)
k, (λk)

k, (λ2k)
k, · · ·〉, which corresponds to the result of Section 5.4.2. More gen-

erally, consider a control stream c = 〈−1, (1)ρ
p

0 , (−1)ρ
c
0 , (1)ρ

p

1 , (−1)ρ
c
1 , · · ·〉 where

ρ
p
i , (ρc

i ∈ N). With the current state of the network as before, y is given as:

y = 〈(λ0)
ρ

p

0 , (λρc
0
)ρ

p

1 , · · · , (λρc
0+ρc

1
)ρ

p

2 , · · · , (λ∑i−1
s=0 ρc

s
)ρ

p
i 〉 (5.11)

which corresponds to Equation (5.3).

The SRC effectively models a REG link, provided that an appropriate control stream

can be generated. The network of Figure 5.16 is a copy of the producer-consumer

network of Figure 5.11 on Page 97. In the network Figure 5.17 the REG link of Fig-

ure 5.16 has been replaced with a SRC, which leaves a KPN model of a CAPN. The

context-dependent behaviour of the REG link is now confined in the control stream c.

The remaining issue, thus, is how to generate a control stream with appropriate prop-

erties for the network of Figure 5.17. In the remainder of this section we consider two

approaches. The first approach uses an angelic merge construct to generate c dynam-

ically, the second approach considers a predetermined cyclo-static control stream. The

first approach necessarily is non-deterministic whereas the second approach is determ-

inistic and therefore also compositional. In the next section (Section 5.4.3) we pursue

an analytical approach.

Non-deterministic control stream

A possible emulation of the REG link uses an angelic merge to generate a control stream

for the SRC of Figure 5.17, see Figure 5.19 for the corresponding network. The resulting

behaviour of this emulated REG link depends entirely on the applied schedule.

The REG link emulation relates to Parks’s method of establishing feasible sched-

ules of Kahn process networks using bounded memory implementations rather than

unbounded memory [Parks, 1995]. Parks’s method is based on the emulation of a

bounded FIFO through a pair of unbounded FIFOs with a corresponding access pro-

tocol. The diagram of Figure 5.18 shows the principle applied in a common producer-

consumer setting. Normally, there is a single unbounded FIFO in the network, from

5.4. Analysis and application of CAPN 103

ConsumerProducer

Figure 5.18: Bounded FIFO emulation.

q

Consumer

P↑,↓

Producer

Merge

Figure 5.19: REG link emulation.

producer to consumer. In order to limit the utilisation of the buffer capacity of this link,

a second (unbounded) control FIFO is added from the consumer back to the producer.

This second channel is initialised with k events, and in addition access protocol of the

producer and consumer are modified. Before the producer emits (put(·)) an event to the

consumer, the producer has to read an event from the control FIFO. After the consumer

receives (get(·)) an event from the producer, the consumer puts an event on the control

FIFO. This way, the number of events that concurrently resides in the FIFO links never

exceeds k, since either the producer or the consumer will encounter a blocking read

due to the unavailability of events.

The emulation of a REG link applies a comparable method: replacing the REG link

with a SRC, an angelic-merge construct, and a modification of the access protocol. Fig-

ure 5.19 gives the diagram of the REG link emulation. The access protocol of the REG

link as implemented by the producer and consumer is changed as follows. Before

the producer reads (get(·)) the current register value, it generates an event α = 1 to

the merge construct. Similarly, before the consumer updates (put(·)) the current re-

gister value, it generates an event α = −1 to the merge construct. The merge construct

passes the incoming events to the SRC. The SRC behaves as specified before. As a

result, the network shows the same schedule (context) dependent behaviour we saw

in Section 5.3.2. Angelic merge is the weakest possible form of the merge primitive

that guarantees a deadlock-free implementation. Suppose the consumer applies a finite

number of updates, then all consecutive producer requests should be acknowledged.

Vice versa, if the producer poses a finite number of get(·) requests, then the consumer

should be able to succeed all its consecutive put(·) operations. Angelic merge guaran-

tees precisely this (see Section 5.2).

The effective oraclisation of the REG link implies a form of monotonicity. Since

the SRC is a monotonic process, the REG link emulation shares the (weak) form of

monotonicity with the angelic-merge primitive (Hoare monotonicity).

Cyclo-static control stream

In case of a deterministic context of the network, the control stream of the SRC of Fig-

ure 5.17 is also deterministic. We propose to generate such a stream through the use of

104 Context-aware process networks

ConsumerProducer

q

h

uy

P↑,↓

Figure 5.20: Cyclo-static REG link emulation (y = SRC(h; u)).

a parameterised sample rate converter that builds upon the parameterised Interpolator

and Decimator processes. The Interpolator, Decimator, and their compositions have a

regular cyclic behaviour. We capture this behaviour by using a converter process with

an associated characteristic set of coefficients (h) (Figure 5.20). This set h describes a

sample rate conversion pattern, which is comparable to the kernel of a convolution pro-

cess. The canonical form of h uniquely characterises the converter process, moreover

h is compositional.

We denote the converter process as y = SRC(h; u). The coefficients of hi of h

define the replication factor (hi ∈ N) of an input data token in the output data stream y;

h is applied cyclically to the input stream u. Let u = 〈λ0, λ1, λ2, · · ·〉 be the input data

stream and h = {h0, h1, · · · hN−1} be the characteristic (ordered) set of coefficients

with period N , then the output sequence y of SRC(h; u) is given as:

y = 〈(λ0)
h0 , (λ1)

h1 , · · · , (λN−1)
hN−1 , · · · ,

(λi)
hi mod N , (λi+1)

h(i+1) mod N , · · · 〉. (5.12)

As an example, the output sequences of the Interpolator and Decimator, Equa-

tions (5.4) and (5.5) respectively, are generated by applying their respective coefficients

h I and hD to an input sequence u; h I and hD are parametrically given as:

Interpolator(L) : h I = {L} (5.13)

Decimator(M) : hD = {(0)M−1, 1} (5.14)

The length (dimension) of the characteristic set of coefficients, denoted |h|0, de-

termines the size of the block of input tokens the sample rate converter takes per cycle.

The usual ℓ1 vector norm of the characteristic set of coefficients, denoted |h|1, determ-

ines the number of tokens in the output for every input block; |h|p =
∑N−1

i=0 (hi)
p for

p ∈ {0, 1}. With respect to Equations (5.13) and (5.14) we have: |h I |0 = 1, |h I |1 = L ,

|hD|0 = M and, |hD|1 = 1.

There is a direct relation between the characteristic set of coefficients h of Fig-

5.4. Analysis and application of CAPN 105

ure 5.20 and the cyclically extended control stream c of Figure 5.17, namely:

if hi = 0, then αi = 〈−1〉
if hi > 0 then αi = 〈−1, (1)hi 〉

The cyclo-static control stream that drives the sample rate converter is a proper

reasoning framework for further analysis. In the next subsection we derive a procedure

for composing two cyclo-static control streams . The result yields again a cyclo-static

control stream, which is uniquely characterised by a characteristic set of coefficients.

In Section 5.4.3 we will apply our reasoning framework.

Compositionality

Cyclo-static control streams are compositional. The composition of two finite charac-

teristic sets of coefficients f and g yields a finite set h = g ◦ f . In order to form their

composition f and g must be balanced: f and g are balanced iff | f |1 = |g|0, i.e., the

number of outputs per cycle from SRC(f ; u) matches the number of inputs per cycle

of SRC(g; u) for any u. The balance condition can always be met because the cyc-

lic extension of any finite h by a factor k yields equivalent behaviour of the converter

process, SRC(h; u) = SRC((h)k ; u), and f and g are finite.

Given two balanced finite characteristic sets of coefficients f and g their composi-

tion is found through the following procedure. Partition the set g according to the value

of the subsequent entries of f . Let fi be the i-th entry in f and g′i be the correspond-

ing i-th sub partition of g then due to the partitioning scheme we have
∣

∣g′i
∣

∣

0
= fi . In

case fi = 0, the corresponding g′i equals a set with empty elements only, {⊥}, which

has expected properties: |{⊥}|0 = |{⊥}|1 = 0. Consequently we define h through its

entries as: hi =
∣

∣g′i
∣

∣

1
. The partitioning of g is guaranteed to fit since | f |1 = |g|0.

Observe that the resulting characteristic set of coefficients inherits the properties of its

constituents: | f |0 = |h|0 and |g|1 = |h|1. Moreover h is finite by construction.

As an example consider the composition h = g ◦ f . Let f = {5} and g = {0, 0, 1}.
Thus h is the characteristic set of coefficients of an IntDec(L = 5, M = 3). We first

balance f and g; let r = gcd(| f |1 , |g|0), we extend f and g cyclically as follows

{(f)
|g|0

r } = {5, 5, 5},

{(g)
| f |1

r } = {0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1}.

Subsequently we partition the cyclically extended g according to extended f and form

g′ = {{0, 0, 1, 0, 0}, {1, 0, 0, 1, 0}, {0, 1, 0, 0, 1}}.

Taking the ℓ1-norm of the subsets yields

h = {1, 2, 2},

which is equivalent with the result of Equation (5.7). The period of h, |h|0 is equal

to the cyclic extension factor of f ,
|g|0

r
= M

gcd(L ,M)
. Further the number of outputs

106 Context-aware process networks

of h, |h|1, is equal to the cyclic extension factor of g,
| f |0

r
= L

gcd(L ,M)
. Hence, the

composition h = g ◦ f of an Interpolator f and a Decimator g only depends on the

ratio L/M ; the norms |h|0 and |h|1 do not change if we multiply L and M with a factor

k ∈ N
+.

It is straightforward to derive the characteristic set of coefficients for a generic

DecInt(M, L; u) composition. Let f = {(0)M−1, 1} and g = {L} be the characteristic

set of coefficients for an Decimator and Interpolator, respectively. In this case f and g

are balanced and g′ is readily formed

g′ = {({⊥})M−1, {L}},

which yields

h = {(0)M−1, L}.

5.4.3 Analysis

A Kahn process network has arbitrarily many feasible schedules. Since KPNs are de-

terminate, every schedule yields equivalent (functional) input-output relations of the

network. The difference between alternative schedules is of a nonfunctional nature.

An significant difference, for instance, is the memory usage of alternative schedules.

Let S be the set of feasible schedules. Practical implementations try and generate a

schedule s ∈ S with convenient (nonfunctional) properties. For instance, in [Parks,

1995], schedules are generated that can execute with bounded memory. In [Lieverse

et al., 2001], schedules are generated based on a discrete event simulation of an archi-

tecture to which the Kahn process network is a workload. These latter schedules are

consequently context aware. They depend on the timing constraints of a model of ar-

chitectures, i.e., the typical delay of an architecture component. Hence, these schedules

execute in bounded time.

Least-fixed point schedules are an important class of schedules [Lee and Parks,

1995]. Let the state of a network be defined by the number of events that resides in

every channel of the network. Starting from state qqq, the network returns to qqq , after

application of a least-fixed point schedule. Moreover the state traversal during the

application of the schedule is minimal. Unfortunately, finding a fixed point schedule

is in general impossible. Successful attempts are known for certain classes of dataflow

networks [Najjar et al., 1999]. Analytical solutions are known for the static dataflow

(SDF) case and its cyclic extension (CSDF). The dynamic dataflow (DDF) case only gives

satisfactory solutions for a limited number of classes [Buck, 1993]. Note that the REG

link emulation scheme of Figure 5.17 is a typical DDF process node.

In the remainder of this section, we derive a KPN network with parameterised, and

thus asynchronous, coordination. The overall behaviour of the network depends on

the actual setting of the parameters. We show in an example that in the case of static

dataflow it is possible to derive a closed expression under which proper behaviour of

the network is guaranteed. The section is concluded with a second example, which

supports the case for using CAPN as a useful MoC for context-aware applications.

5.4. Analysis and application of CAPN 107

SynthesisAnalysis

q

1

p

1

Figure 5.21: SDF synchronous cooperative network.

Asynchronous coordination

On several occasions we emphasised the importance of asynchronous coordination.

Consider Figure 5.21, where a common synthesis-analysis network is shown with a

cooperative synthesis process. The diagram presumes the so-called synchronous data-

flow (SDF) MoC. A node in an SDF network specifies the number of tokens it reads or

writes on every invocation (schedule) of the node. As a consequence the coordination

of the synthesis and analysis processes is strictly synchronous (coherent). The analysis

process requires a cooperation event for every generated workload event. Similarly,

the synthesis process must send a cooperation event for every analysis event read. SDF

networks are usually evaluated by means of an incidence or topology matrix Ŵ, [Lee

and Messerschmitt, 1987]. The rows of an incidence matrix Ŵ correspond to a channel;

the columns correspond to a node. The non-zero entry γi, j specifies the production or

consumption of tokens (γi, j > 0 respectively γi, j < 0) on channel i when node j is

invoked (fired). The right-hand-side null space ρρρ of Ŵ (Ŵρρρ = 000) equals the least-fixed-

point cumulative schedule. That is, the entries ρ j of ρρρ specify the cumulative number

of invocations for each node j in a feasible schedule s ∈ S such that the network re-

turns to its initial state. The right-hand side null space is a necessary condition for the

consistency of the network, however insufficient for guaranteeing the existence of a

valid static schedule [Bilsen et al., 1996].

The incidence matrix of the network of Figure 5.21 is given in Equation (5.15).

[

p −q

−1 1

]

(5.15)

A non-trivial (one-dimensional) right-hand side null space exists only if Ŵ is singular,

in fact it is known that rank(Ŵ) equals the number of links in the network minus one.

The network is consistent if the determinant of Ŵ is zero, i.e., p = q. Thus we have

[

p −p

−1 1

] [

1

1

]

= 000, (5.16)

which specifies the cumulative schedule but a constant multiplication. This scheme

implies synchronous coordination as p and q are tightly coupled.

In order to facilitate asynchronous coordination we statically decouple the analysis

and synthesis processes with a sample rate converter scheme as depicted in Figure 5.22.

The characteristic set of coefficients h defines the cyclo-static behaviour of P↑,↓, turn-

ing the network into a CSDF network. The cyclo-static description of P↑,↓ specifies at

108 Context-aware process networks

SynthesisAnalysis

q

1

p

1

P↑,↓

q

h

vw

Figure 5.22: CSDF static asynchronous cooperative network.

its input port a sequence of |h|0×1 and sequence h at its output port; the period of P↑,↓
equals |h|0. The producer and consumer have a period equal to 1. The corresponding

incidence matrix is constructed using the total number of samples per period [Bilsen

et al., 1996], which corresponds to v = |h|0 at the input port and w = |h|1 at the output

port. The incidence matrix is then as follows:

p −q

1 −v

−1 w

 (5.17)

The right-hand-side null space of Ŵ is non-trivial if p w = q v . Let r = gcd(p, q)

and w = k
q
r

, v = k
p
r

then we have

p −q

1 −k
p
r

−1 k
q
r

k
q
r

k
p
r

1

 = 000,

which effectively decouples the coordination by a (parameterised) factor of w
v

.

Context dependency

In order to derive a closed expression for the context dependency of the cyclo-statically

parameterised network of Figure 5.22, we require execution details of the processes in

the nodes. Without this information only exhaustive simulation of the network, for all

relevant values of h, can be used to analyse the correct behaviour of the network.

In this section we consider the network of Figure 5.22 in some more detail, adding

enough execution details for circumventing lengthy simulations for all kind of char-

acteristic sets of coefficients. We safely assume that the synthesis process supplies a

control token to the analysis process to request a particular mode of operation of the

analysis process. The synthesis process is obviously best served when the analysis pro-

cess follows these requests seamlessly. However this is generally not the case, because

of the differences in their relative rate at which the synthesis process supplies (q) and

the analysis process acknowledges (p) mode change requests and the characteristics

of the sample rate converter in the feedback loop. With this interpretation we focus

5.4. Analysis and application of CAPN 109

on the control. Consequently, the analysis-synthesis network equals an Interpolator-

Decimator network with corresponding characteristic sets of coefficients: g = {p}
for the producer and f = {(0)q−1, 1} for the consumer. The entire network can be

analysed through the composition s = h ◦ g ◦ f .

From Section 5.4.2 we already know that the composition g ◦ f only depends

on the ratio
q
p

. Without loss of generalisation we presume p and q to be co-prime:

gcd(p, q) = 1. Since we consider a consistent network
q
p
= w

v
we also have a con-

sistent closed network: |s|0 = |s|1. In the sequel we consider characteristic sets of

coefficients for the sample rate converter where |h|0 = v = k p and |h|1 = w = k q,

for some k ∈ N
+.

Suppose the feedback system implements a Decimator followed with an Interpol-

ator: h = DecInt(k p, k q). In this case there is an closed form of s = h ◦ g ◦ f :

s = {(0)k p−1, 1} ◦ {k q} ◦ {p} ◦ {(0)q−1, 1}
= {(0)k p−1, 1} ◦ {k p q} ◦ {(0)q−1, 1}
= {(0)k p−1, k p q} ◦ {(0)q−1, 1}
= {(0)k p−1, k p q} ◦ {{(0)q−1, 1}k p}
= {(0)k p−1, k p},

which depends on p and k only. For the control part this is the worst possible behaviour.

During the entire period there is a delay of k p control tokens, but the last token.

Alternatively, suppose the feedback system implements an Interpolator followed

with a Decimator: h = IntDec(k q, k p). Here the k factor can be safely ignored

since the characteristic set of coefficient of an Interpolator-Decimator network does not

change with k. The closed form of s, in this case, involves two recursive sets. Since

one IntDec(p, q; u) distributes the number of output tokens evenly over the number

of input tokens of the period of h, a composition of two such systems does something

similar: The p available tokens are distributed in q parts over the p entries in s. From

the perspective of the control this behaviour is preferred as delays are evenly distributed

over the period.

Mathematically speaking we would define s optimum for s = {α0±δ0, · · ·αk p−1±
δk p−1}, where α → 1 and δ → 0, under the constraints that s meets the consistency

requirement |s|0 = |s|1 = k p. The measure for the control lag (ǫi) for each token over

the period of s, namely, equals

ǫi = (i + 1)−
i
∑

j=0

|αi ± δi | ; for 0 ≤ i < k p

The average lag is minimised when the energy of s is uniformly distributed over the

entire vector.

As a more practically oriented example consider an application in which a transport

from an analysis process to a synthesis process uses a FIFO buffer with a finite capacity.

Overloading of the buffer will break the communication. If synchronous coordination

110 Context-aware process networks

between the synthesis and analysis process is assumed, Parks’s method of an emulated

bounded FIFO can be applied; see Figure 5.18 on Page 103. In case of the preferred

asynchronous coordination a more elaborate scheme is required. A simple scheme to

prevent overloading is the following: The analysis process labels its output data tokens

with increasing numbers, the label for the next token is maintained in a counter x . The

synthesis process acknowledges the proper receipt of data tokens, meaning that once

every p tokens it returns the label of the most recently received data token. The analysis

process maintains a “window” of W tokens. Before sending the next data token the

coordination information is read (label λ). The analysis process subsequently will stop

to emit data if: x−λ ≥ W , i.e., when the control lags more than W samples, thus when

max ǫi > W .

For the static case of Figure 5.22 we can derive the conditions when the analysis

process will stop operating. Consider the case that has an Interpolator-Decimator feed-

back network, thus s = {(0)k p−1, k p}, hence max ǫi = k p − 1. In this case the

system will not overload the FIFO if k p < W . Alternatively consider the case that has

an Decimator-Interpolator feedback network. Here we have max ǫi = ⌈ p
q
⌉.

The REG link introduces schedule-dependent behaviour. The dependency can be

made explicit through the specification of the control sequence c as outlined above

(Figure 5.22). An implicit implementation uses the angelic-merge primitive, see Fig-

ure 5.19. In both cases, the REG link answers the question when events apply, when

coordination is generated, and when coordination be applied. Obviously because of the

schedule-dependent behaviour of the REG link, operational information may get lost.

The impact of these losses with respect to the robustness of the network can only be

answered in view of the functionality and the context of the network. Above we ana-

lysed a static case. A more general treatment involves a more detailed modelling of

the execution patterns of the respective processes. There is an obvious correspondence

with a branch of control theory that addresses systems with delay (or lag). Delay in

feedback links are renown for their negative influence on the stability of a system. See

for an example Section 3.5.2.

The oracle of the REG link concentrates on the indeterminate character of the net-

work into a control stream. Oraclisation is a prerequisite for an indeterminate network

to retain compositionality. In case of the REG link oracle there is a dedicated connection

with the context through the control sequence c. Cooperating components may choose

to connect and to gear their context-dependent behaviour to one another. Compon-

ents ought to coordinate the properties of their respective control streams c. The ARC

framework of Chapter 3 explicitly relies on the presence of oracles and their abstraction

of context awareness: adaption and cooperation. Oracles manifest domain knowledge:

the necessary context awareness of a specialised component is integrated in the respect-

ive subsystem and available for use by other systems without expert knowledge.

5.4.4 Applications

Asynchronous coordination is often found in practical systems. Many of these systems

consist of a producer-consumer type of network with in between the transport network

of Figure 5.23. The diagram shows two types of cooperative operational information

exchange: feed forward (TxCtrl) and feedback (RxCtrl).

5.4. Analysis and application of CAPN 111

Prod. channel Cons.

RxCtrl

TxCtrl

Figure 5.23: Cooperative Producer-Consumer network.

A video encoder-decoder pair is a typical example of an application that uses feed-

back (RxCtrl), see Example 3.3 on Page 44. Typically the implementation of the con-

sumer (decoder) determines the display rate. More complex encoded frames require

more processing resources. On the other hand, skipping frames will circumvent over-

loading of these resources but it is also a waste of resources since a frame skip severely

degrades the overall perceived quality of the system. Typically the consumer will de-

tect a resource overload and instruct the producer (update its context) to change a mode

of operation. The system performance benefits from the cooperation, in that the quality

increases and the resource utilisation decreases.

Figure 5.23 also has a feed-forward information flow (TxCtrl). This flow is useful

for instance when a signal-processing filter induces a workload on a CPU system with

dynamic voltage control. Given the workload information, the CPU selects an appropri-

ate internal mode of operation; scaling its frequency and more importantly adjusting its

supply voltage. The system as a whole benefits from this information by minimising

waste. The workload as generated by the producer (filter) is guaranteed to be executed

in time, yet it utilises just enough resources.

A related example regarding the feed forward (TxCtrl) link in Figure 5.23 concerns

a cooperative video encoder combined with a flexible decoder. The encoder adapts

its mode of operation based on the local context. The selected mode of operation

is relevant context information for the (remote) decoder. For instance, based on the

projected decoder complexity, the decoder may re-allocate its budget of local resource

utilisation, for instance, it may turn from a single processor implementation to a dual

processor implementation.

As a final example, consider the common internet transfer protocol TCP/IP. The

buffering capacity of the transport system in between producer and consumer changes

dynamically. An efficient implementation of the transfer protocol exploits the actual

buffer capacity through relaxing the acknowledgement rate of correctly received data

packets (events). However, an overload of the transport system yields excessive packet

loss, which induces retransmits and thus it unnecessarily degrades the effective trans-

fer rate. A consumer can derive important context information for the producer, so to

optimise the system as a whole, the context information is communicated over a feed-

back structure (RxCtrl in Figure 5.23). The rate at which the consumer sends context

information and the rate at which the producer applies the context information need

not be synchronised, yielding flexible implementations of consumer and producer. As

a matter of fact, working TCP/IP implementations exploit the asynchronous coordin-

ation. Looking at the evolution of TCP/IP implementations, developing a correct pro-

112 Context-aware process networks

Cons.

Prod. channel Cons.

Prod.channel

Figure 5.24: Producer consumer pair with feed forward and feedback.

Rx

Tx Mux

DeMux

writeStream

readStream

sndChannel

rcvChannel

RxCtrl

TxCtrl

TxData

RxData

Transceiver

RxCtrl

TxCtrl

Figure 5.25: Cooperative Transceiver.

tocol is a tedious and time-consuming process. One reason is the need for exhaustive

evaluations of possible environments in which the protocol has to operate adequately.

However, with the use of an appropriate model of computation it is possible to isolate

the context-dependent behaviour (or conditions) and subsequently to circumvent the

need for extensive numerical evaluations (testing).

We have conducted an experiment to devise and verify a simplified version of the

TCP/IP protocol. The basis of our experiment was a transmitter-receiver pair with

feedback and feedforward asynchronous cooperation; Figure 5.24. A more detailed

network using our CAPN constructs is the diagram of Figure 5.25. Two of these trans-

ceivers were applied, one at the producing side and one at the consuming side. The

transceivers implement a protocol that can handle transport outage. The precise details

of the protocol are beyond the scope of this dissertation. We applied a verification tool

called SPIN [Holzmann, 1997] to verify the correctness and conditions of the devised

protocol. In particular, the protocol breaks when too many transport errors occur; this

is the case when the REG link fails to deliver operational information in time.

Six

Ubicom case studies

CASE studies make concrete (reify) what has been developed in the abstract. In this

chapter we present a selection of cases that have been developed in the course

of the Ubicom project to illustrate a number of aspects of the ARC framework. The

cases predicate two import qualifications of a resulting system when applying the ARC

framework: the agility and the efficacy of the system. The agility [Noble et al., 1997]

of a system quantifies the ability of a system to accurately and promptly respond to the

context changes. The efficacy quantifies the effectiveness of a system with respect to a

measure of optimality.

In Section 6.1 we consider two cases with a cascade structure. Both cases consider

a mobile video encoding system. The first case deals with a design-time evaluation,

the second case describes experiments with a run-time implementation. In Section 6.2

we consider two cases with a merge structure. We consider a merge of homogeneous

objects, much like the analytical case we considered in Chapter 4, and a merge of

heterogeneous objects. A composition of heterogeneous objects gives rise to emergent

behaviour and performance, just like the system development (composition) process

itself.

We conclude this chapter with a description of the ARC interfaces (function reper-

toire and operation space) in the Ubicom support system.

6.1 Cascade structure

In this section we examine two implementations of a cascade filter. A design-time

implementation (Section 6.1.2) and a run-time implementation (Section 6.1.3). Both

implementations concentrate on the aspects of the coordination of shared resources

for run-time systems. The system under observation is a mobile terminal executing a

software-only video encoder, which has previously been introduced in Example 3.3 on

Page 44.

The design-time implementation involves a coarse grain modelling of the system

and corresponding simulation of several scenarios. It turns out that the more demanding

113

114 Ubicom case studies

the application, the more the workload will be balanced equally over the components;

pushing the system to its limits. The experiments show that operating the mobile ter-

minal in a not too hostile environment makes certain components superfluous; in this

particular case the channel coder becomes redundant and can be removed from the sys-

tem without affecting the performance of the remaining system. This case includes an

scenario-based experiment to establish the efficacy of the system when using the ARC

framework. The scenario defines the context of the system: conditions and objectives.

The run-time implementation presents real-time experiments with ARC compli-

ant components for source and channel coding. Evaluation of the experiment results

demonstrates the usefulness of ARC. The system can properly operate in a broad con-

text, and what is more: the system outperforms alternative implementations when ap-

plied in a resource scarce environment. This case includes an experiment to establish

the agility of the resulting system and to establish the overhead for using the ARC

framework.

6.1.1 System description

We consider an application that distributes and collects multiple viewpoints of a scene.

A typical scenario involves multiple mobile terminals each equipped with a camera and

video capture equipment. Users may retrieve and view video streams from each of the

terminals. The user is offered a choice of life-video streams with per stream a choice

of quality versus power dissipation options. The user may choose to view good quality

images for a short while or to view perceptively lower quality images for some longer

while. Perceptive quality is a single parameter that is related to frame rate, distortion,

and resolution.

The system is composed of a set of building blocks (components) with a func-

tion repertoire as can be expected in any system for visual mobile augmented reality:

source coding, channel coding, and transmission. Composing the functional system is

straightforward in this application. It is a cascade in which workload of each of the

components is routed via a neighbouring component. For the sake of illustration we

choose a very basic mobile terminal architecture with a single CPU, see the diagram of

Figure 6.1. The subsequent mapping of functionality to resources is therefore trivial; all

computations but the analogue transmit part of the transceiver component are mapped

to a single CPU system. The manager and viewer (not shown) functionality are mapped

to individual mobile terminals.

The diagram of Figure 6.1 also specifies the ARC interfaces: the operation space

parameters and function repertoire. The function repertoire is implicitly defined in the

diagram. We notice the usual classes of operation space parameters: distortion, capa-

city, and resource utilisation. For the design-time evaluation this number of parameters

is adequate. For the run-time implementation, however, we need at least one additional

resource utilisation parameter, namely latency. Next to power dissipation, latency is an

exhaustible resource in real-time signal processing.

The applied models do not take into account the negative effects of time-sharing. As

an example, we assume in both case studies the instantaneous availability of CPU cycles.

However, it is a well known fact that sharing of a CPU induces overhead; although the

sum of the workloads is guaranteed never to exceed the CPU capacity, timesharing may

6.1. Cascade structure 115

Manager

Source codec

Transceiver

Channel codec
B
at

te
ry

CPU

Power
Distortion

Distance
Noise level

camera

Throughput

BER

Power

Throughput

PER

Power

Distortion

Power

Resolution

Figure 6.1: View point sharing, the structural model and mapping. The ARC interface

parameters are specified on the right-hand side.

prevent timely availability of the scheduled workload. Frequent switching of tasks in

real-time operating systems typically, degrades the effective CPU capacity significantly.

Although neglecting interference caused by time-sharing is an over-simplification of a

practical design it does not break the ARC framework. If necessary such a interference

can be modelled explicitly. For instance by partitioning each of the component in a

sending (encoding) and a receiving (decoding) part. The receiving part may sense

(monitor) the actual access to the CPU cycle budget. This information can be referred

to the sending part and incorporated in its context. This context information may trigger

the sender (encoder) to actualise its resource utilisation model.

6.1.2 Mobile video communication: design time

The mobile video coding system is built of basic models that capture the significant

behaviour, performance, and resource utilisation of a component. We have simulated a

system as given in Figure 6.1 using a generic mathematical tool: MathematicaTM. Cal-

ibration of the models is important when evaluating the system quantitatively. The ex-

periments have been conducted using calibration data from [van Dijk and van Reeuwijk,

1999]. Note though, that the system model and the coordination mechanism among

components does not change if we were to replace a component with a more suitable,

differently calibrated, component.

Table 6.1 presents the parameters for each of the components, both the interface

parameters between components and the internal state parameters of components are

specified. Not shown, but important, is that the power resource utilisation parameter is

implemented as a tuple: 〈power, cycles〉. In which the power entry represents the total

power dissipation of the employed subsystem, and the cycles entry is the aggregation

116 Ubicom case studies

Table 6.1: Parameter definition for components interfaces and their internal state.

User schedule ; intentions and agenda

Distortion ; subjective quality for the given application

Power ; total power dissipation

Manager Fmax ; fixed maximum desirable frame rate

Distortion ; discarded variance after transfer

Frame rate ; number of frames per second

Power ; video transfer power dissipation and CPU utilisation

Source

codec

Fres ; frame resolution: fixed to CIF

ℓ ; encoded variance

c ; coding rate

(Fr , gop) ; source characterisation: rate and grouping

Throughput ; bits per second

BER ; bit error rate

Power ; link transfer power dissipation and CPU utilisation

Channel

codec

n ; packet size

k ; source bits per packet

Throughput ; bit rate

Pe ; error probability

Power ; channel transfer power dissipation CPU utilisation

Transceiver

N ; number of OFDM sub carriers

M ; modulation scheme, bits/symbol

fs, fos ; AD/DC sample rate and oversampling factor

Pt x ; transmit power

Channel
Ni ; interference noise level

d ; distance between mobiles

CPU
fth ; clock frequency threshold

V dd ; supply voltage

of the CPU cycle workload induced by the employed subsystem. This way, coordinating

the cycle budget of the CPU-system is effectively distributed over all components.

In the remainder of this section we present some internal details of the compon-

ents. Each component has been modelled with workload generation and performance

indication functions. The workload generation functions correspond to the consistency

constraints with respect to the offer from the employed services, see Equation (4.4)

on Page 64. The performance evaluation functions correspond to the consistency con-

straints with respect to the request from the consulting client, see Equation (4.5) on

Page 64. ARC operation spaces require pruning; only a subset of the set of Pareto

points is included. Therefore, optimisations must be carried out. When appropriate,

the optimisation criteria are made explicit.

6.1. Cascade structure 117

Table 6.2: CPU system model

CPU (and Memory) system

Performance

CPUPower(cycles) ∝ Vdd · cycles + Vdd(cycles)

Optimisation

Vdd(cycles) = if (cycles > fth) then high else low

75 100 125 150 175 200 225
0

100

200

300

400

500

P
o
w

e
r

(m
W

)

CPU cycles (MIPS)

Figure 6.2: Operation space of the CPU system.

CPU system

The CPU system consumes energy while delivering performance. Modern processors

support dynamic voltage control (DVC), which make them context aware [Pouwelse

et al., 2000]; offering just enough performance while consuming minimum energy.

We incorporate a simplified version of DVC, instead of a continuous tradeoff we use a

piecewise linear model with two modes of operation: a low power low performance

mode and a high power mode with corresponding high performance. The CPU sys-

tem is a resource only system, so the model only needs a performance indication. In

this case study we silently ignore the memory system. Table 6.2 provides the details

of the model. Figure 6.2 presents the corresponding performance indication model,

which corresponds to the operation space of the CPU system. The proper coordination

of the CPU system is a joint responsibility of all components that consume CPU cycles.

Compatibility checks must prevent an overload of the CPU system. The proper oper-

ation of the CPU system is the responsibility of the CPU system component designer,

such as switching of the supply voltage. Whether the supply voltage is defined through

contracts or through other means is left unspecified.

Transceiver system

The transceiver system incorporates a model of the underlying physical channel. The

channel is modelled with two parameters, interference noise (Ni) and mobile-to-mobile

distance (d). The transceiver implements orthogonal frequency division modulation

(OFDM) coding with quadrature amplitude modulation (QAM). The parameters of the

118 Ubicom case studies

Table 6.3: Transceiver system model

Transceiver

Work load

Bandwidth(fs) = fs/ fos

Signal(Pt x) = Pt x

CPUcycles(N , M, fs) ∝ (N · 2log(N)+ M2)
fs

1+ N
Performance

Throughput(N , M, fs) ∝
fs · N · M

1+ N

Pe(Pt x , N , M, d, fs) ∝
N − 1

2
Erfc

A · Ni

√

(1+ n)Pt x · 10log (M)

(M − 1) · dα · fs · M · N

Power(Pt x , N , M, fs) ∝ Pt x + CPUPower(CPUcyles(N , M, fs))

Optimisation

min
Pt x ,N ,M, fs

Power(Pt x , N , M, fs); given (Throughput, Pe)

coding and modulation are subject to optimisation. Likewise, the parameters of select-

ing a proper transmit power and AD/DC sample rate are subject to optimisation; see also

Table 6.1. The transceiver applies fixed oversampling for the AD/DC converters and

adds an also fixed cyclic prefix to OFDM coded frames.

The channel model assumes a cellular network with a 400 m cell radius. We apply

the path-loss formula Equation (6.1). For a network with a 17 GHz carrier frequency,

the parameters A and α were empirically determined in [Bohdanowicz, 2000] at A =
−66.6 dB and α = 1.70.

A · d−α (6.1)

The interference noise (Ni) has been set to the equivalence of 18 maximum inter-

fering neighbouring cells located at 3 times the cell radius. The interference noise is

about 70 times the system background noise (No = k Tsys BW , where Tsys is the sys-

tem temperature of 300 K , BW the (frequency) bandwidth and k Bolzmann’s constant

(1.3807 · 10−23 J K−1).

The transceiver system generates a workload for two resources, the physical chan-

nel and the CPU system. With respect to the physical channel, the occupied bandwidth

and emitted transmit power are the important metrics. Other terminals regard this as

additional (dynamic) noise. The induced workload on the CPU, for doing computations,

yields a power dissipation figure. The operation space of the transceiver is in terms of

throughput, error probability, and power usage, see Table 6.1. The optimisation routine

finds the best possible solution in terms of power dissipation for a requested throughput

and error probability. Table 6.3 shows the details.

The offered error probability, Pe, uses a well known trend function, see e.g., [Lee

and Messerschmitt, 1994]. Figure 6.3 illustrates Pe, with a normalised energy per bit

6.1. Cascade structure 119

− 2.5 0 2.5 5 7.5 10 12.5

Eb/No (dB)

− 80

− 60

− 40

− 20

0

P
e

 (
d

B
)

N = 256

N = 16

N = 2

Figure 6.3: Illustration of transceiver design space.

(Eb/No). The diagram shows that for a given modulation scheme, the resulting error

probability improves with the assignment of more energy per bit. The curves discrim-

inate between the number of sub carriers used in OFDM coding. With the increase of

the number of carriers, the error probability increases as well, assuming a given energy

per bit.

Channel coding

Channel coding trades off throughput with bit error rate while transferring data over an

unreliable channel. The channel coding system relies on the transceiver for a specifica-

tion of the channel model, i.e., the operation space offered by the transceiver. Channel

coding is a CPU intensive component.

Inducing a workload on the transceiver system must match an entry in the operation

space exposure, i.e., 〈throughput, error probability, power〉. Therefore it suffices to

present the workload induced on the CPU. The workload on the transceiver system is

implicitly incorporated in the performance indication functions. For the performance

model we use a theoretic approximation model based on the Shannon capacity of a

binary symmetric channel Equation (6.2). Here p is the crossover error probability of

the channel and c its capacity. Capacity is a strict decreasing function (1→ 0) on the

interval p ∈ [0, 0.5〉.

c = 1+ (1− p) 2log (1− p)+ p 2log p (6.2)

Given the capacity of a channel c = k/n, find the corresponding p. Let p = p′

solve Equation (6.2) for c = k/n. Let pe be the channel error probability. We introduce

µ = n · pe, and t = ⌊n · p′⌋. The bit error rate (BER) of the resulting link is approx-

imated by substituting µ, t in the cumulative Poisson distribution of Equation (6.3).

CDFPoisson =
∞
∑

x=t

exp (−µ)
µx

x!

= exp (−µ)

(

exp (−µ)− exp µ · Gamma(t, µ)

Gamma(t)

)

(6.3)

120 Ubicom case studies

Table 6.4: Channel codec system model, see also Equation (6.2) and Equation (6.3).

Channel coding system

Work load

CPUcycles(th put , pe, n, k) ∝ th put

(n − k)(1+ 50(pe)
3/10)

n
Performance

Throughput(n, k, th put) =
k

n
th put

BER(n, k, pe) = CDFPoisson((µ = n · pe), t)

Power(n, k, th put , pe, P) ∝ P + CPUPower(CPUcycles(th put , pe, n, k))

Optimisation

min (Power/T hroughput) ; given (B E R)

800 850 900 950 1000

k

− 120

− 100

− 80

− 60

− 40

− 20

0

B
E

R
 (

d
B

)

n = 1024

pe=−20 dB

pe=−40 dB

pe=−30 dB

Figure 6.4: Illustration of Channel codec design space.

An optimisation routine filters out unattractive operation points from the perspect-

ive of minimising the energy per bit sent. Filtering out is based on the requested BER

ranges. More details can be found in Table 6.4.

Decreasing the number of source bits k in a packet of size n yields an improvement

of the link quality. Figure 6.4 illustrates the typical trend functions in various context,

i.e., the channel error probability (pe) as offered by the transceiver.

Source coding system

The source coding component applies a progressive coding technique. The encoded

variance, a perceptive quality related measure, thus increases with the number of bits

sent. Due to link errors the subsequent transferred amount of variance is less than

the encoded variance. The perceived distortion is modelled as the ratio between the

transferred variance and the variance of the source [van der Schaaf and Lagendijk,

2000].

The encoded variance is proportional to the logarithm of a normalised block length

6.1. Cascade structure 121

Table 6.5: Source codec system model, see also Equation (6.4).

Source coding system

Work load

Throughput(ℓ, cr , fr) = ℓ
fr · CIFres.

cr

CPUcycles(ℓ, cr , gop, fr) ∝
Throughput(ℓ, cr , fr) · c2

r

1+ 64log gop
Performance

Distortion(ℓ, cr , gop, fr , pe) = (1− encVar(ℓ, m(fr))) (1− p
1/5
e)

fr · ℓ
cr · gop

Framerate(fr) = fr

Power(ℓ, cr , gop, fr , P) ∝ P + CPUPower(CPUcycles(ℓ, cr , gop, fr))

Optimisation

min (Power/(1− Distortion)) ; given (Framerate)

ℓ:

encVar = ln (
ℓ

m
+ 1) (6.4)

in which m characterises the source. Typical values for m are: m = 2(−16) for static

still images, m = 2(−8) for natural images, m = 2(−3) mimics a video stream and

m = 1 the notorious MTV video clip.

The mapping of the normalised block length ℓ to the effective transferred variance

and the corresponding throughput, is by means of a group of pictures (gop) variable

and a coding rate (0 < cr ≤ 1). The maximum absolute block length depends on the

(fixed) frame resolution parameter. Optimisations finally, are based on minimising the

energy per quality setting while considering the requested range for frame rates. See

Table 6.5 for more details.

The distribution of variance over an progressive coded bit stream is logarithmic, see

Equation (6.4). Figure 6.5 illustrates the (normalised) curves for a number of sources.

In this case study the source characteristics (m) have been coupled with the frame rate.

Hence fr = 1 corresponds to a still image and fr = 25 corresponds to an MTV video

clip.

Video manager

The video manager (broker) maps the distortion (δ) and frame rate (fr) offered by

the source codec to a perceptive quality measure. The manager prefers low distortion

and high frame rates. Frame rates are valued relative to the maximum desired frame

rate of Fmax = 25 fps. The optimisation process selects the lowest possible energy

consumption per requested quality measure. Table 6.6 gives some more details.

Mapping of distortion and frame rate tuples to a scalar quality number is illustrated

in Figure 6.6. The exponential character of the formula for the quality figure complies

122 Ubicom case studies

0 0.2 0.4 0.6 0.8 1

block length

0

0.2

0.4

0.6

0.8

1

v
a
ri
a
n
c
e

f r
f r
f r
f r

= 1

= 5

= 12

= 25

Figure 6.5: Illustration of Source codec design space.

Table 6.6: Video manager system model

Manager system

Work load

CPUcycles() = 0

Performance

Quality(δ, fr) = (1− δ)

(

fr

Fmax

)

√
3

Power(P) = P + CPUPower(CPUcycles(0))

Optimisation

min (Power/Quality) ; given (Quality)

0 5 10 15 20 25

frame rate

0

0.2

0.4

0.6

0.8

1

Q
u
a
lit

y

dist. = 0

dist. = 0.1

dist. = 0.4

Figure 6.6: Illustration of Video broker design space.

with intuition. The selection of the precise value of the exponent (
√

3) is due to il-

lustration purposes. A system with either a shallow or harsh video manager are not

particularly interesting. With a shallow video manager, the load on the rest of the com-

ponents is always relative low, whereas with a harsh video manager the load on the rest

of the components is always high.

6.1. Cascade structure 123

0 0.2 0.4 0.6 0.8

quality

5
10
15
20
25
30
35
40

P
o
w

e
r

(W
)

Figure 6.7: Illustration of the manager operation space (d = 100 m).

System analysis

We have evaluated the presented model for a range of scenarios. One scenario is to

fix the channel conditions and to issue requests from the user to the system that covers

the whole range of quality values. Figure 6.7 illustrates the operation space with fixed

channel conditions; a mobile-to-mobile distance of 100 m. Obviously, the proposed

implementation of the system is real power hungry, a feasible system could never reach

a quality better than Q = 0.8.

The evaluated scenarios cover channel conditions in which the mobile-to-mobile

distance ranges from 1 to 600 meters and they cover user objectives in which the re-

quested system quality level ranges from 0 to 0.9. Unfortunately, delivering high qual-

ity at long distance is prohibitively costly (not shown, but the system dissipates in this

case up to 400 W).

Consider two scenarios, one with fixed mobile-to-mobile distance and varying qual-

ity level, and one with fixed quality level and varying mobile-to-mobile distance. The

diagram of Figure 6.8(a) shows the distribution of the power budget over the respective

system components when conditions are fixed (d = 100 m). Obviously, the transceiver

power grows exponentially with the quality level. The source coder requires an amount

of energy that is proportional to the system quality level. Channel coding is superfluous

up till the point where the system quality level reaches Q = 0.4, for higher qualities,

channel coding is invoked.

The diagram of Figure 6.8(b) shows the distribution of the power budget over the

respective system components when the objectives are fixed (Q = 0.25). In this par-

ticular scenario the mobile-to-mobile distance does not induce changes in the mode of

operation of either of the components. Closer, off line, analysis shows that only the

transmit power of the transceiver is adjusted when the observed distance increases. On

the other hand, when we fix the distance, every component will operate in every pos-

sible mode of operation when the objective quality level varies from Q = 0 to Q = 0.8.

The above conclusions are backed up by Figure 6.9(a) and 6.9(b). These figures show

the relative “throughput” per component. Relative throughput is a component specific

metric. The transceiver defines relative throughput as the ratio of the actual bit rate and

the maximal supported bit rate. The channel codec defines relative throughput as the

redundant portion of the transport stream and the source coder defines relative through-

124 Ubicom case studies

trx
chcd

src
vmgrComponent

0
0.2

0.4
0.6

0.8

Q
ua

lit
y

0

2

4

6

8

P
o
w

e
r

(W
)

(a) d = 100 m.

trx
chcd

src
vmgrComponent

0

200
400

600

D
is
ta

nc
e

(m
)

0

1

2

3

P
o
w

e
r

(W
)

(b) Q = 0.25.

trx: transceiver; chcd: channel codec; src: source codec; vmgr: video manager

Figure 6.8: Power budget distribution per component.

trx chcd src vmgr

Component

0
0.2

0.4
0.60.8

Q
ua

lit
y

0
0.25
0.5

0.75

R
e
l.
 T

h
p
u
t

(a) d = 100 m.

trx chcd src vmgr

Component

0
200

400
600

D
is
ta

nc
e

(m
)

0

0.1

0.2

R
e
l.
 T

h
p
u
t

(b) Q = 0.25.

trx: transceiver; chcd: channel codec; src: source codec; vmgr: video manager

Figure 6.9: Relative throughput per component.

put as the normalised encoded variance (ratio of the encoded variance and the variance

of the source).

Reaching the bounds of a posed request may indicate a possible bottleneck that can

hamper us in finding the system-wide optimum. Bottlenecks are simply removed by

relaxing the bounds of the request. In the scenarios that we considered here this is not

necessary since we are at the extreme end of the system-wide objective of perceived

quality levels.

6.1. Cascade structure 125

Discussion

The experiments with the system model include an exhaustive design space explor-

ation, which combines all possible options of every component in the system into a

single huge optimisation space. Even in a small scale case as the one presented here

this introduces all kind of scalability issues, long computation times, and extensive

memory usage. More details can be found in [van Dijk et al., 2000b]. The ARC pro-

tocol of doing request-offer-select effectively navigates through the same huge design

space but does not run into scalability issues. To validate this conjecture we have eval-

uated all operation spaces between the components of the system. It turns out that

the eventual selected operation point, given the system context, never exceeds the re-

quested range. Hence both methods find the same, optimum, mode of operation for

each component. Obviously, ARC is several order of magnitude more efficient. In this

particular case, exhaustive design space exploration requires the evaluation of O(1012)

operation points1, whereas the ARC protocol requires O(102) In fact, we rely on the

monotonicity of subsequent operation spaces.

The graphical interpretation of operation spaces and their gathering (e.g. Fig-

ure 6.9(a)) prove extremely useful in interpreting the results of the analysis. As an

example, we consider the agility of the system. The agility quantifies the rate of change

from one mode of operation to another. The necessary insight can be derived through a

reordering of experimental results. Assume a scenario in which mobile terminals move

with a speed of 1.4 m/s (walking speed). Figures 6.10(a) and 6.10(b) give the rate of

change of the previously mentioned relative throughput of the respective components.

The source coder and transceiver (not shown) have comparable behaviour. Their agil-

ity depends on the requested quality level of the system, but is independent form the

(initial) distance between transceivers. In order to keep up with a moving terminal at

walking speed, moving away from the source, the source coder must adapts its relative

throughput with an absolute value of 0.4 when the overall system quality level is set

at Q = 0.6. The channel codec, however, has less smooth behaviour with respect to

agility: at large distance and high quality the agility is an order of magnitude higher

than at small distances or low quality.

6.1.3 Mobile video communication: run-time implementation

A run-time analysis of the mobile video communication system of Section 6.1.1 yields

quantitative performance numbers. The experiments address issues of the efficacy and

the agility of such a system. The run-time implementation described here concentrates

on the encoding part of the video codec and the protocol components. We assume,

without loss of generality, that the applied transceiver component is non-adaptive, yet

the time-varying aspect of the channel model is maintained. The video encoder and

protocol components implement the ARC framework for doing QoS negotiations. In

this section we highlight the principle details of their implementation and discuss a

number of conducted experiments.

114 free parameters, with a moderate 8 possible settings each yields 814 ≈
(

210
)4

operation points.

126 Ubicom case studies

0
200

400
600

distance (m)

0.2
0.4

0.6
0.8 Quality

0.2

0.4

0.6

R
e
l.
 T

h
p
u
t

∆

(a) Source coder.

0
200

400
600

distance (m)

0.2
0.4

0.6
0.8 Quality

0

0.025

0.05

0.075

0.1

R
e
l.
 T

h
p
u
t

∆

(b) Channel coder.

Figure 6.10: Relative throughput rate of change.

Table 6.7: QoS parameters (descending priority).

Parameter Description

latency (max) The time required to transmit a single bit.

bit-error rate (max) The net bit-error probability after FEC and ARQ.

CPU usage (max) The allowed share of CPU capacity for protocols and

transmission processes.

throughput (min) The minimum net throughput.

The QoS parameters at the interface between the video encoder and protocols com-

ponents are given in Table 6.7. For a detailed description of the design of this interface

we refer to [van der Schaaf et al., 2001]. The interdependency of parameters is an

explicit account of the mutual interpretation of operation space parameters. The fact

that the parameters are prioritised is due to a run-time optimisation. Moreover each

parameter is partially ordered; both components have a proper understanding for each

parameter of which direction is worse (higher bit-error rate) and which direction is

better (higher throughput). The system operates in a varying context with varying ob-

jectives and varying conditions, which implies there must be a protocol for handling

out-of-contract operations. Renegotiation is covered by the ARC framework. Yet when

the mode of operation violates the current contract, parties must decide whether or not

and how to continue operation during a renegotiation phase. In this particular case there

is a generic preferred way of handling out-of-contract operations. First sacrifice (lower)

the throughput, then sacrifice (lower) the CPU usage, then (increase) the bit-error rate,

and so on. Obviously this choice of predefined, inter and intra parameter, ordering is

implementation dependent. A more flexible method is to introduce additional ARC

interface parameters that describe how to continue when operating out-of-contract. Al-

though more flexible, some overhead is unavoidable. In this particular case such added

flexibility is regarded an overkill.

6.1. Cascade structure 127

Video encoder model

The video codec implements a flexible H.263 encoder/decoder pair. Internally, there

are numerous video encoding parameters that can be tuned. In the context of ARC, we

create an abstract description of the behaviour of the encoder, extending the work of

[Girod and Farber, 1999; Lan and Tewfik, 1998; Stuhlmüller et al., 2000]. The dom-

inant decision variables considered here are the frame-skip Nfs, the maximal motion

vector length Lmv, the intra-block refresh rate β, and the target bit-rate R. The variable

user objectives are observed through the characteristics of the video sequence, which

are gathered in a model of the temporal predictability and the (average) amount of

variance σ 2
o .

The control model focuses on a priori estimation of the rate-distortion behaviour

as a function of R, Lmv, Nfs, the source characteristics, and the choice whether or not

to use motion compensation. The prediction gain G is a principal parameter of the

rate-distortion model. The prediction gain expresses the similarity between the actual

version of a signal and its predicted version. Let σ 2
x be the actual variance of a signal

x and σ 2
1x be the variance of the error of the predicted version of the signal, then G is

simply defined as:

G = σ 2
x

σ 2
1x

A model of G depends on the internal parameters of the encoder as well as source

model parameters. Let Go be the prediction gain without motion compensation and

without frame skips (Nfs = 0). Similarly, let Gmv be the prediction gain with op-

timum motion compensation, still without frame skips. In addition we have two other

parameters that model the source characteristics: the motion coherence, Nmc, and the

average motion vector length ℓmv. Obviously, the actual value of G ranges from Go

to Gmv (Go ≤ Gmv) if Nfs = 0. When Nfs > 0 a correction factor is required; G

increases with Nmc but decreases with Nfs. Apart from this correction factor, G scales

with ℓmv and Nfs. The model of G, given in Equation (6.5), falls from Gmv to Go with

the increase of ℓmv or Nfs.

G = 1+
(

Gmv − (Gmv − Go) exp
−Rmv

ℓmv(Nfs + 1)

)

exp
−Nfs

Nmc
(6.5)

The average amount of variance that has to be encoded depends on G, σo and the

intra-block refresh rate β. This latter parameter limits cumulation of errors, caused by

erroneous transmission. The encoded variance σ 2
d is given as

σ 2
d = β · σ 2

o + (1− β)
σ 2

o

G
(6.6)

The distortion after transmission and decoding is quantified as a peak signal-to-

noise ratio (PSNR). Several noise sources contribute to the PSNR value. The encoding

process adds quantisation noise Dq , which is inverse proportional to the bitrate R. A

second source of noise, Dt is the due to transmit errors. Dt is proportional with β and

128 Ubicom case studies

depends on the BER of the channel through pe = 1/BER. A final source of noise, Ds , is

due to skipping of frames. These noise contributions are given as follows:

Dq =
θ

R

Dt =
(

1− (1− pe)
R · Nfsσ 2

o

)

t=1/β
∑

t=0

1− β · t

1+ γ · t

Ds =
Nfs
∑

f=1

Go exp
1− f

Nmc

(6.7)

The parameter θ is an empirical model parameter, which established through calib-

ration. The parameter γ is the so-called leakage [Stuhlmüller et al., 2000]. Dt is

proportional with β when γ = 0.

The resulting PSNR (in dB) normalises the collected noise contribution as in Equa-

tion (6.8).

PSNR = 10 10log
2552

Dq + Dt + Ds

(6.8)

The distortion model, models the throughput and capacity aspects of the video

coder in its context. In addition, models for resource utilisation of CPU and latency

have been developed. These resource utilisation models are inverse proportional with

the frame-skip factor and increase quadratically with Lmv. Obviously there is a tradeoff

between the achieved distortion, CPU utilisation, and latency. The encoder offers the

manager an operation space with non-inferior points.

Protocols model

The communication protocols employ a simple transceiver that offers a time division

multiple access (TDMA) scheme with fixed sized transmission/receive slots to access

the physical channel. Due to interference, fading, and other factors the data transmitted

over the radio channel is subject to errors. The protocols implement two methods to

counter the high bit-error rate (BER) of the physical channel: forward error correction

(FEC) and automatic retransmit requests (ARQ).

Note that, contrary to many implementations, FEC is implemented in software.

We use a Reed-Solomon protection scheme with four different code rates c = k/n:

256/256, 224/256, 192/256, and 128/256. Where n is the unit packet length and k

the effective unit message length; leaving n − k units for error handling. The code rate

determines the maximum effective throughput that can be offered. Simple models have

been devised for modelling the resource utilisation of CPU and latency and to establish

the effective BER after transmission. The resource utilisation models depend only on

the code rate c, the BER model also takes into account the packet error Perr of the phys-

ical channel. A series of off-line tests determine the computational complexity and

effective BER of the four code rates using white Gaussian additive noise. These results

have been collected in a lookup table, which is consulted during run-time execution.

6.1. Cascade structure 129

Packets that must be delivered reliably (i.e., without any error) are extended with a

32-bit checksum. When the receiver observes a checksum failure, it returns a retransmit

request to the sender, who will in turn re-send the packet. ARQ increases latency (L)

and reduces the effective throughput (T) that can be obtained. We use the following

model to quantify the efficiency loss due to retransmits:

TARQ = TFEC

1+ Perr
(6.9)

LARQ = (1+ 2Perr) LFEC (6.10)

where Perr is the probability that a packet is corrupted.

By combining the lookup tables for FEC and the ARQ model, the protocol layer

can quickly evaluate the settings (code rate + enable/disable ARQ), given the current

channel conditions and contract with the video encoder. When requested an offer, it

prunes any inferior points out of eight alternatives.

Experimental Evaluation

The experiment set up is as follows. A pre-recorded video stream (carphone) is

encoded at a mobile terminal, transmitted over a (simulated) wireless link and decoded

at a base station. Latency requirements are such that live viewing is possible (L <

0.5 s). The transceiver has fixed settings: constant transmission power and constant

modulation schemes during the length of the experiment. However, interference at the

physical channel will occur, causing an increased bit error rate at the radio channel.

We present here three experiments. For each experiments we assume a user who

requests the best possible quality within 100% CPU budget, moreover we apply an

video encoder that does not exploit any changes in the characteristics of the source.

Afterwards we describe an experiment that does adapts to these changes.

i. Steady run. There is constant interference on the raw wireless channel. Therefore

neither of the components adapts during this experiment. The video encoder does

not even adapt to changing characteristics of the incoming video source. We

conducted this experiment for three possible channel states: 1) a bad channel,

BER = 2 · 10−2, 2) a medium channel, BER = 10−2, and 3) a good channel, BER

= 10−4. The raw channel bitrate is kept at 1.8 104 bit/s.

ii. Frozen run. After 20 seconds from the start of the experiment the initial medium

channel changes to a bad channel. The throughput of the raw channel is main-

tained at 1.8 104 bit/s. At t = 47.5 s the channel changes to a good state. The

protocols layer adapts instantaneously to the changed raw channel conditions.

Initially, it maintains the contracted BER at the link to the video encoder but it

has to sacrifice throughput at the link. The video encoder establishes an initial

contract assuming a (worst-case) BER of 2 · 10−2 right after the start of the exper-

iments. For the remainder of the experiment, all internal settings (and contracts)

are frozen. To maintain the agreed CPU budget and real-time objectives, some

frames will be skipped, which decreases the delivered quality.

130 Ubicom case studies

iii. Adaptive run. The physical channel and protocols layer behave as in the frozen

run above. This time, however, the video encoder initiates QoS negotiations and

adapts to the changed conditions. Like in the frozen run the net effect is that the

video encoder maintains the agreed real-time and CPU-budget constraints.

Figure 6.11 presents the results of the experiments. The top diagram shows the BER

of the raw channel for the steady cases of Experiment i and the time varying cases of

Experiments ii and iii. The diagram in the middle shows the effects on the throughput

delivered by the protocols to the video encoder (Experiments i and iii). The bottom

diagram has four curves, one for each of the three “steady” runs and one for the ad-

aptive run. The results of the frozen run closely follow the steady run with the “bad”

channel conditions, and is left out for clarity. The curves plot the quality (PSNR) per

received frame. As can be expected the steady run with “good channel” conditions

has the highest quality. Quality variations over time are due to variations of the input

source characteristics. Observe that the curve for the adaptive run switches between the

three steady curves (medium→bad→good) when the channel conditions change. This

demonstrates that ARC-based negotiations succeed in selecting appropriate settings of

the video coder and outperform a coder that assumes worst-case conditions (Experi-

ment ii). For the adaptive run, channel conditions change significantly at t = 47.5 s,

indicated a in Figure 6.11. The encoder reacts within a couple of encoded frames, and

after a few dozen frames the encoder operates at the expected level; the agility of the

system is quite acceptable.

Compared to the steady run, with good channel conditions, the average quality of

the frozen run is 1.97 dB lower. The average quality of adaptive run is only 0.91 dB less

than the steady run. In the adaptive run, 864 operation points were evaluated in three

rounds of negotiations. The total time needed for these quality of service negotiations

is 80 ms. It is instructive to present the internal settings of the respective components

for each of the experiments. Table 6.8 shows the results. The values shown for the

frozen and adaptive run are averages, because the parameters are changing over time.

We conducted a fourth experiment

iv. Source adaptation. The physical channel operates in the bad state as in the steady

run (Experiment i). The users requests the best possible quality as before but this

time with a limited CPU budget of 30%. The video encoder observes variations

in the source characteristics.

The system-wide quality (PSNR) depends amongst others on the source character-

istics. The bottom diagram of Figure 6.11 suggest a drastic change at t = 34 s, marked

b. In the first three experiments any variations in the source characteristics were neg-

lected. The video encoder, however, can adapt to these changes. When doing so this

results, on average, in an improved quality of 1.1 dB. Note that this result is under

tight objectives of limited resource utilisation; the user can trade quality for resources.

Discussion

The experiments demonstrate the agility of the implementation. The ARC frame-

work improves the overall performance in cases where the channel conditions or video

6.1. Cascade structure 131

0 10 20 30 40 50 60 70

10
−5

10
0

BER on raw channel

a

b

time (s)

B
E

R
 (

p
e
)

0 10 20 30 40 50 60 70
0.5

1

1.5
x 10

4

Throughput on link

time (s)

T
 (

B
/s

)

0 10 20 30 40 50 60 70
30

35

40

45

time (s)

a
v
e

ra
g

e
 P

S
N

R

Average quality (PSNR)

medium channel

medium channel

bad channel

bad channel

good channel

good channel

varying channel adaptive

Figure 6.11: Experimental results.

source characteristics fluctuate. Moreover the ARC framework keeps the resource us-

age within bounds, even when the channel status is changing; thus efficiently applying

the available resources.

The performance models developed in the context of the component are specific

for the applied schemes in the respective components, H.263 and FEC/ARQ respectively.

They manifest the functionality, behaviour, and performance of the respective com-

ponents. Application of a different scheme for a component would require a different

model, yet seamless incorporation in the ARC framework is guaranteed. Note that the

models presented here have been developed by the domain expert, this is the preferred

situation.

The robustness of the set-up may be questioned when the context changes fre-

quently. In such situations the optimiser will lag behind, and persists in making the

wrong decisions. Here, this problem is circumvented by relaxing the contract mar-

gins. This way components can perform internal adaptations at the expense of being

suboptimal.

132 Ubicom case studies

Table 6.8: Parameter settings.

steady frozen adaptive

medium bad good

Lmv 12.00 9.00 12.00 9.00 14.30

R (bpp) 0.67 0.47 0.79 0.47 0.51

Nfs 1.15 1.03 1.07 1.01 1.04

Video CPU-budget 50% 45% 56% 52% 86%

FEC 192/256 128/256 256/256 146/256 159/256

ARQ 0 0 0 0 0

Proto CPU-budget 6% 14% 2% 8% 7%

6.2 Parallel structure

In this section we evaluate the cooperation of components in a merge structure. Mer-

ging of objects (or functions or components) is a frequently applied method of abstrac-

tion. A typical example from the field of communication systems is the Always Best

Connected (ABC) concept [Frodigh et al., 2001]. ABC offers a single, functional, in-

terface for data exchange between communication partners. Depending the context,

a specific physical transfer system is selected. A typical example of ABC in the field

wireless transmission combines Irda for back-to-back communications, WiFi for local

area communications, and GSM as a fall-back option.

ABC is an example of a merger of homogeneous components. Although the physical

components are distinct, ABC concentrates on their functionality to establish a physical

point-to- point link so as to facilitate the internet protocol (IP). The previous example

of ABC in the field of wireless transmission is regarded high level. Similar techniques

are also applied at considerable lower level. In [van den Bos and Verhoeven, 2001] a

method is presented for the design of context-aware analogue radio front-ends. The

method merges at run-time homogenous front-end architectures. The methods selects,

depending the current channel conditions, an architecture, e.g., super-heterodyne, low

IF, direct conversion, etc. In Section 6.2.1 we elaborate on an example of homogeneous

merger from the Ubicom project. The case of that section considers graphical objects

and their possible representations. Each graphical objects offers an operation space

that trades off resource utilisation versus distortion. Larger (compound) objects are

constructed from smaller objects. A compound object too offers an operation space

and, henceforth can be applied in even larger objects.

Flexible merging of heterogeneous objects (or functions) is an emerging method-

ology. Typically the component that performs the merger has a choice of services it

can employ; the function repertoire. Each of the services offers a particular service

and operation space. In order for the merging component to provide a service itself,

it requires a minimum amount of these underlying services and resources (epistasis).

As an example, a digital television set needs a tuner, a video decoder, and an audio

decoder to function properly, although the video decoder is optional when streaming

6.2. Parallel structure 133

audio. The actual selection of employed services depends on the objective imposed on

the merging component. Design space exploration techniques can be used to evaluated

and rank alternative compositions with respect to the context of the merging compon-

ent. An example of the design of a range radio transceiver front-ends can be found in

[Tasic and Serdijn, 2002a]. Tasic and Serdijn propose a design methodology that ap-

plies heterogenous merger. The design combines three essential components of a radio

transceiver front-end: a low-noise-amplifier, an oscillator, and a mixer (See Figure 2.8

on Page 28). The merging component has a choice of different implementations with

different service levels and different operation spaces. Alternatives are valued using

so-called K -rail diagrams [Tasic and Serdijn, 2002b]. In Section 6.2.2 we elaborate on

an example of heterogenous merger. The case extracts positioning information from a

set of otherwise insufficient sensor information.

6.2.1 Homogeneous merger: 3D representation

An example of merging homogeneous components is from the Ubicom project and in-

volves the display of 3D graphical scenes. A scene, typically, is a merger of multiple

3D objects. Displaying a 3D scene requires an accurate projection (mapping) to a 2D

display. Obviously, there is a choice here: the representation of a scene and the con-

sequent mapping process can be done more or less accurately. There is a tradeoff in

temporal and spatial distortion versus resource utilisation. The tradeoff applies to the

scene as a whole, as well as to constituent objects. The concept of abstracting com-

pound objects from its constituents has been pursued in [Pasman and Jansen, 2001],

which allowed the authors to develop a context-aware 3D graphics rendering engine.

The computational structure of the rendering system is a distributed one. That

is, a scene graph with 3D graphical objects is managed separately from the eventual

rendering engine. The rendering engine connects to the display. Figure 6.12 gives

some details. A scene graph (scenegraph) is a graph that connects 3D graphical objects.

The graphics front-end compiles scenes from the scene graph into an assembled scene

graph (assembledsg), which eventually is transferred to the actual rendering engine. The

actual mapping (rendering) of the scene to the display depends on the current context.

The position (view point) of the user, possible occlusion through real world objects,

and environmental conditions such as lighting and contrast are taken into account by

the rendering process. Figure 6.12 indicates two exhaustible resources a polygon buffer

and a texture buffer. In the end, the filling degree of these buffers determine the power

dissipation of the render engine and the refresh rate of these buffers determines the load

on the link between front-end and render engine.

The 3D graphics scene graph is an active one. Each graphical object has various

methods to generate so-called level-of-detail representations: imposter, meshed im-

poster, or polygon model [Pasman, 1999]. Each representation is associated with func-

tion that describes the relative distortion and the corresponding resource utilisation. As

an example, the distortion δi of an object oi depends on the number of polygons Ni of

a particular representation. We have

δi =
(

ki

Ni

)pi

(6.11)

134 Ubicom case studies

graphicsProc

processing

backEnd

Presentation

Rendering

frontEnd

ASSEMBLEDSG

Render

Manager

filter
Polygon

buffer

Texture

buffer

CAMERA

OCCLUSIONPOSITIONING

SCENEGRAPH

analyser

compiler

VIDEOREQVIDEO

Render

Engine

RENDEREDVIEW

Figure 6.12: Graphics processing; computational view.

The constant ki and pi depend on the method of representation. The visual distortion

of an object in a scene depends on its location (close range or distant), its size, and its

purpose (focus or decoration). The actual visual distortion is a scaled version of the

relative distortion; scaled with the angle subtended (covered) by the object. Let r be

the radius of the enveloping sphere of the object and d the distance to the object then

the visual distortion δ∗i is given as

δ∗i = arctan
(r

d

)

δi (6.12)

The domain of the relative distortion function is bounded. There is a minimum

number of required polygons to represent an object with a high distortion measure that

is just acceptable. At the other end of the domain the distortion will reach a minimum

possible value, irrespective of the number of additional polygons. Figure 6.13 has two

objects with each a specific representation mode. Their operation spaces are piecewise

linear on a log-log scale.

From a perceptive point of view, individual objects in the visible scene preferably

have comparable, relative, distortion measures. Hence, a composition of graphical

objects is again a graphical object with multiple representation methods and corres-

ponding distortion and resource utilisation values. The underlying distortion model

assures a balanced relative distortion of the embedded objects. The merger of two ob-

jects with a given operation space is a simple addition of their operation spaces, which

fits the piecewise linear model of Equation (6.11). The resulting compound object has,

in log space, a piecewise linear operation space. A mathematical treatment of a similar

merger process has been described in Section 4.4.

6.2. Parallel structure 135

 1 10 100 1000 10000 100000 1e+06 1e+07
 1e−07

 1e−06

 1e−05

 0.0001

 0.001

 0.01

 0.1

 1

obj1 + obj2
obj 2
obj 1

log N

lo
g

 D

Figure 6.13: Merger of two objects.

 1 10 100 1000 10000 100000 1e+06 1e+07

 1e−06

 1e−05

 0.001

 0.01

 0.1

 1

 1e−07

 0.0001

min(obj1, obj2)
rep 2
rep 1

log N

lo
g

 D

Figure 6.14: Optimal representation of

an object.

The required throughput of the link is an important resource utilisation parameter.

The workload on this resource, obviously, depends on the complexity of the represent-

ation of an object as well as the so-called life-time of the representation. The life-time

of the representation of an object that resides in the render engine is determined by the

dynamics of the scene. Both the application and the user may initiate actions that affect

the relative importance of an object. Obviously, when complex representations are ap-

plied for focused objects as well as for decorative objects, this extends the life-time of

the representation. Although complex representations tend to lower the constraints on

throughput demand, complex representations also put a significant workload on storage

and render capacity of the render engine.

The scene graph offers an operation space for objects and compound objects. The

offer is based on a guessed position in order to generate a visual distortion measure.

Optimisation of a set of possible representations is straightforward. For each targeted

distortion value the minimum value is taken. See Figure 6.14 for an example.

The operation space of the scene graph has a third dimension. Next to the number of

polygons and the visual distortion there is a habitat: an area in which an representation

of an object can guarantee the distortion measure. In this particular case a conic range

is used; a cone with spheric intersections that bound the area. Because of the shape

of this area compound objects always consist of objects that are in the vicinity of each

other. Given the operation space, the render engine can trade off the load on the link

(throughput), the load on the render engine (number of polygons), and the load on the

texture memory. Typical real-time rendering engines, which must keep up with head

movements of the user, are limited to render only a few thousand polygons per frame.

6.2.2 Heterogeneous merger: sensor fusion

Sensor (or data) fusion is a typical example of a heterogeneous merger. Data fusion

is applied in the Ubicom project for the recovery of the position and orientation of the

user’s head. This so-called “pose recovery”, analyses and combines incomplete, and

possibly inaccurate, data from multiple sensing devices. The context of the positioning

component is a varying one. The application has varying objectives with respect to the

136 Ubicom case studies

accuracy of the derived position. Also the conditions vary; availability of resources,

time, etc.

We will illustrate a heterogeneous merger, by means of a simulation model. As-

sume we have available a set of sensors and corresponding functionality to analyse

the raw sensor data. Each sensor has a fixed sampling period and a fixed mapping

of its analysis functionality (computational entity) to a resource (engineering entity).

Each sensor observation henceforth is a partial, perturbed, and delayed one. In that,

1) only part of the position and location information is measured, 2) perturbations have

a known probability distribution, 3) observations have a lag, and 4) observations and

their analysis have associated a resource utilisation vector. Note that we presume that

the perturbation of the sensor data is free of drift. This is an oversimplification of real-

life systems. A system that suffers from drift has to estimate second order statistics

of perturbations in addition to the first order statistics included in the model presented

here.

Our case study considers 2D position information (x̂ , ŷ) and heading (α̂) inform-

ation. The sensor fusion process combines partial and incorrect data from individual

sensors so as to arrive at an estimate of the current position. The estimate of the pos-

ition is based on a simple model combining measurements of 〈x, y, α〉 and their first

derivatives, 〈vx , vy, ω〉. Let t be the time evolution since the last position update, then

an estimate of the current position – the position model – is given as:

x̂

ŷ

α̂

 =

x

y

α

+ t

vx

vy

ω

 (6.13)

The fusion process applies a linear Kalman filter [Kailath et al., 2000]. The Kal-

man filter tracks the status and the time evaluation of the model parameters. Measure-

ments and time updates are incorporated using so-called, Schmidt, forward recursions.

Whereas delayed observations (lag) are incorporated using, reversed Schmidt, back-

ward recursions. In order for the Kalman filter to properly track time-evaluations of

state parameters, sensors must specify stochastic properties of their observations: the

mean and variance of their (systematic) error.

The appeal of implementing a Kalman filter is the ease of combining heterogeneous

data: offering updates for a different subset of state parameters, at different (irregular)

time intervals, with different accuracy, and different lag. A relevant experiment is to

explore the design space while evaluating different combinations of sensors. We take

a predefined trajectory and corresponding orientation of a user. We emulate the corres-

ponding measurements of the respective sensors and we emulate their analysis process

to transform the measurements to the parameters of the position model. The Kalman

filter combines the measurements of each sensor from the set. Causal sampling (omit-

ting future updates) of the position model thus gives an estimated track and estimated

orientation for a range of t . Two absolute distortion measures are defined to value the

estimated track and orientation with respect to the actual track and orientation. Dpos is

the Euclidean distance between the estimated and actual track and Dhead is the angular

distance between the estimated orientation and the actual orientation.

The set of individual sensors and their characteristics are summarised in Table 6.9.

The table presents for each sensor the state parameters for which updates are sup-

6.2. Parallel structure 137

Table 6.9: Sensor characteristics

sensor Id state T Tlag P (µ, σ)

local image based

pose-recovery

ImgI (x, y, α) 32 8 3.21 (0, 0.0015)

remote image based

pose-recovery

ImgO (x, y, α) 64 16 0.43 (0, 0.00015)

Global Positioning

System

GPS (x, y) 16 4 3.66 (0, 3.75)

Differential GPS DGPS (x, y) 12 3 6.13 (0, 0.8)

Accelerometer Acc (vx , vy) 4 1 3.43 (0, 0.015)

Gyroscope Gyro (ω) 4 1 8.85 (0, 0.015)

magneto-meter Mag (α) 8 2 1.71 (0, 0.12)

plied, the sampling interval (T) at which updates become available, and the delay

(Tlag) between the actual measurement and the availability of the measurement for

the Kalman filter. Measurements are perturbed with Gaussian noise with a mean µ

and variance σ . The power parameter, P , specifies the required power to implement

the analysis. Take for instance the image based pose-recovery components, ImgI and

ImgO. The component captures and analyses an image from a head-mounted camera.

Analysis of the image involves matching it with a database of pre-recorded image char-

acteristics. There are two versions of the component in the set of sensors: ImgI that

implements the analysis process locally and ImgO that implements the analysis process

remotely. Obviously local analysis can be implemented faster and more frequently, yet

dissipates more power and is less accurate than remote implementation, see Table 6.9

for details.

The design space is being explored through a series of experiments. Each ex-

periment combines observations from a subset of the available sensors. The overall,

system, distortion is measured as the variance of Dpos. In Figure 6.15 we plot the

non-inferior operation points with a tradeoff between distortion and power dissipation.

Interestingly, image based pose recovery with remote analysis (ImgO) offers the best

possible position estimate, yet in the context of the experiment, its superior behaviour

over local analysis (ImgI) is negligible; c.f. sets e and f of Figure 6.15.

The pose-recovery system offers an operation space that allows for a tradeoff distor-

tion versus resource utilisation, power dissipation and link throughput. For the sake of

illustration, latency is ignored here. Functionally the pose recovery offers a continuous

position model.

The operation space of the pose recovery system can be seamlessly integrated in

an ARC framework. Here we applied emulation and simulation to derive the operation

space. Ultimately the operation space can be derived from underlying sensor com-

ponents. Above, we addressed the issue of selecting between an image based position

recovery system with local (ImgI) or remote (ImgI) data analysis, both having their pros

and cons. Likewise, Table 6.9 suggests we have to choose whether or not to enhance

a GPS sensor system (DGPS). In fact, Table 6.9 gives the ARC compliant operation

138 Ubicom case studies

5 10 15 20 25
P

0.5

1

1.5

2

2.5
Dpos

c
d

e f

c: {DGPS, Mag }; d: { ImgI, DGPS, Mag }; e: { ImgO, Acc, Gyro }; f: { ImgI, Acc, Gyro }.

Figure 6.15: Operation space of the position and orientation component.

spaces of possible servers of the pose-recovery system.

6.3 ARC interfaces: Ubicom

The Ubicom system, as previously presented in Section 2.2, uses ARC for coordinating

distortion, capacity, and resource utilisation. In this section we present an overview of

the ARC interface specifications as found in the Ubicom system. An interface consists

of a function repertoire and corresponding operations space that captures the functional

and non-functional behaviour of the component. In this section we concentrate on the

operations spaces of the components of the communication support system

In Section 2.2 the Ubicom system has been presented to some extent. We took

different views on the system which resulted in different diagrams each addressing

specific concerns. In this section we take a broad view while concerning the ARC

interfaces. The view basically extends the computational view with constructs from

the informational view and the engineering view.

The support system of Ubicom (Figure 2.7 on Page 28) comprises components usu-

ally found in communication systems. Functionally, the radio front-end (radioFe) takes

in a physical channel and outputs, after filtering and conversion, a sampled continu-

ous signal: the continuous channel. The baseband coding component (basebandCodec)

transforms the continuous signal into a discrete signal (a bitstream): the raw channel.

The channel coding component (channelCodec) exploits the redundancy of information

aspect of the raw channel signal so as to improve the reliability of individual bits. The

resulting stream is referred as the raw link. Finally, the protocol component (protocols)

manages late quality requirements, these efforts result in a set of concurrent (possibly

unreliable) links available to the rest of the system. See Figure 6.16 for an abstract

computational view on the support system.

The informational view on the support (communication) system identifies the in-

terfacing objects between cooperating components as tuples. Each tuple includes a

sending and a receiving object. The parameters of each tuple corresponds with the

ARC interface parameters. Tables 6.10 through 6.15 specify the respective ARC inter-

6.3. ARC interfaces: Ubicom 139

raw

link

raw

channel

continues

channel

unreliable

link

physical

channel

channel

radioFe

basebandCodec

channelCodec

protocols

commSysView

Figure 6.16: Ubicom support system, computational view.

Description

Pmax maximum allowed transmit

power

d sender to receiver distance

τrms channels multipath

characterisation

No background noise level

Table 6.10: ARC-interface of the (phys-

ical) channel; 〈RADIOSND, RADIORCV〉.

Description

p outage probability

SNR signal to noise ratio

P power dissipation

BW bandwidth

Table 6.11: ARC-interface

of the continuous channel;

〈BASEBANDSND, BASEBANDRCV〉.

faces. The tuples refer to the informational view constructs of Figure 2.7 on Page 28.

Note that the ARC interface of Table 6.15 is not shown in Figure 6.16.

The described ARC interfaces among components and the implicit functionality of

the respective components requires for some explanation. Initially the informational

partition of the support system followed the traditional demarcation lines between dis-

ciplines. In the course of the project’s phases options and difficulties became explicit.

Initially vaguely posed ARC interfaces became manifest but also evolved. For instance,

it is not common practise to functionally separate FEC and ARQ. In case of the Ubicom

support system, FEC is implemented by the channel codec whereas ARQ is implemented

by the protocols component.

Evolution of ARC interfaces may be caused by newly derived practical insights but

also from newly developed theoretical insight. In [van der Schaaf et al., 2001] the ARC

140 Ubicom case studies

Description

P power dissipation

PBER error probability

T capacity/throughput

L latency

Table 6.12: ARC-interface of the raw

channel; 〈CHANNELSND, CHANNELRCV〉.

Description

P power dissipation

T throughput

BER error probability

L latency

Table 6.13: ARC-interface of the raw

link; 〈PROTSND, PROTRCV〉.

Description

P power dissipation

CPU CPU workload

T capacity/throughput

BER error probability

L latency

Table 6.14: ARC-interface of the (unreli-

able) link; 〈TRANSMITREQ, TRANSMIT〉.

Description

P power dissipation

CPU CPU workload

D distortion (PSNR)

L latency

Table 6.15: ARC-interface of the video

link; 〈VIDEOREQ, VIDEO〉 .

interface between source coding and the support system ((unreliable) link) is designed

from a theoretical perspective. The following practical implementation of this ARC

interface (Table 6.14) and that of a source coder (Table 6.15) has been described in

Section 6.1.3.

Evolution of ARC interfaces may also yield a shift of functionality. Consider as

an example the interface between channel coding and baseband processing. Modern

baseband decoding components apply a technique called soft-decoding. Instead, of

just offering bits of information to the channel codec, information is augmented with a

reliability interval. This way the channel codec is left the opportunity to extract more

information from the raw channel than without these second order statistical inform-

ation. Of course there is a tradeoff, the amount of added statistical information, its

accuracy, and the relevance to the channel coder is subject to different objectives. In

the Ubicom project, the channel codec considers so-called turbo decoders. Derivation

of the operation space of a these coders is notoriously difficult. A new simluation

technique based on importance sampling is under construction [Bohdanowicz, 2001;

Bohdanowicz and Weber, 2002] to value the effect of selecting different modes of oper-

ations of the decoder. With the use of this technique, it is possible to derive operations

spaces more efficiently.

Seven

Conclusions

IN this dissertation we addressed the problem of proper coordination among com-

ponents in a communicating system. The Ubicom system, a system for mobile

communication based on visual augmented reality, provides a real-life example system

to which concepts can be verified. Communication systems are notoriously complex

because of their scale, the diversity of involved technology domains, their irregular in-

teraction, and last but not least their inherent requirement of being context-aware; a

communication system is in a constant state of flux.

In our problem description on Page 4 we identified the prerequisites for the or-

ganisation of proper coordination of components. The coordination system should be

distributed, non-iterative, and evolutionary. Distributed because the complexity of the

underlying system prohibits a practical development of a centralised, omniscient, con-

troller. The non-iterative constraint also originates from practical considerations. For

the timely development of solutions the number of iterations have to be bound. The

evolutionary constraint stems from the requirement to seamlessly support the incorpor-

ation of newly derived results and the adequate reaction to a changing context (varying

conditions or changing objectives)

While investigating the problem it becomes apparent that the development of these

type of complex systems, involve development parameters that address functionality,

flexibility, and resource utilisation. The latter two addressing the non-functional as-

pects of system development. In the remainder of this chapter we first discuss the res-

ults of our work followed with a reflection and a discussion for future improvements.

7.1 Results

In this dissertation we presented a development framework for mastering the complex-

ity of communication systems. The framework recognises three main components for

system development:

1. Compositionality; ideally, complex systems are constructed from less complex

subsystems. However, compositionality is only guaranteed under determinate

141

142 Conclusions

conditions. The composition of indeterminate subsystems yield an indetermin-

ate system, unless the context dependent behaviour of the subsystems can be

adequately captured and combined. A general complex system thus involves its

functional input/output behaviour as well as its non-functional context dependent

behaviour.

2. Communication; multidisciplinary systems require clear communication between

subsystems. Objectives and conditions must be conveyed clearly in order to ex-

change options and limitations among subsystems.

3. Coordination; sharing of resources requires coordination. Multiple ways exist to

organise this coordination. We have choosen an heterarchic approach, so as to

circumvent developing an knowing it all central entity. An important argument

in favour of a distributed and non-hierarchical organisation of the coordination

is to design for flexibility.

We adopted a systemic ontology, which realises a set of related views on the system

(Chapter 2); each view emphasising specific concerns. The ontology predicates system

properties in relation to the immediate environment (context) of the system. The scope

and detail of a view varies with its purpose. Some views, like the enterprise view,

comprise the entire system whereas other views only serve the purpose of enabling

clear local communications. Ambiguity among views is not an issue since each view

articulates the shared understanding of the involved stakeholders.

In Postulate 1.1 on Page 6 we argued against the development of an all comprising

meta framework. We demonstrated that irrespective of a more practical oriented issues

it is very hard to develop and maintain a consistent metaframework for systems that are

in a constant state of flux.

For a clear conveyance of information between subsystems, the subsystem de-

velopers must share a context. Fruitful collaboration among developers of neighbour-

ing subsystems thus requires context-awareness among these developers and their sub-

systems. We have formalised this concept in the ARC framework (Chapter 3) that

implements abstraction, adaptation, and cooperation. Abstraction is the usual way of

communicating behavioural information between subsystems. An abstraction on com-

municating systems that includes non-functional aspects is usually a tuple of distortion,

capacity, and resource utilisation. Adaption is an inbound awareness of a variable con-

text, adding an outbound awareness requires cooperation. The outbound awareness is

due to the fact that subsystems share the responsibility for the overall system integrity.

Since the system is in a constant state of flux, subsystems experience an highly-variable

immediate environment. To capture the variability, information from the immediate

environment is a great asset. Since two neighbouring subsystems are in each other’s

milieu, cooperation is beneficial from both perspectives. An interesting by-product of

the ARC framework is a conceptual framework for negotiated QoS, which allowed us

to do a systematic comparison of existing frameworks for QoS.

The ARC framework implements the requirement of Postulate 1.2 on Page 8 that a

practical coordination system should implement a non-iterative and distributed control

structure. Distributed control or coordination is possible because system components

7.2. Reflection 143

implement a so-called oracle, which captures the context-awareness of the component

and the necessary domain expertise to make this effective.

Part of the functionality of the oracle solves in essence a multiobjective optimisa-

tion problem (Chapter 4). The optimisation problem is structured in the sense that one

encounters a typical set of operation space parameters (〈δδδ, τττ , ρρρ〉) and decision space

boundaries (Decision space, Consistency, and Compatibility). There is however no

general solution to the emerging optimisation problem, we referred to literature for a

selection of solutions to known problems.

With ARC we created a bi-directional context awareness, which implies the isola-

tion of the context-dependent behaviour of a subsystem. Because of this isolation the

system becomes compositional. The CAPN model of computation is a dedicated imple-

mentation of the ARC concepts, namely for stream-based applications with occasional

event handling (Chapter 5). For a specific subtype of these applications CAPN can de-

rive the conditions on the context of a subsystem for its proper operation. Or vice versa,

analyse the system behaviour for a given (parameterised) context. In Postulate 1.3 on

Page 10 we required non-functional information to be available on the interfaces of a

subsystem and oraclisation of the indeterminate part of a subsystem. The ARC frame-

work implements both requirements, whereas the CAPN model of computation makes

the oraclisation explicit and formalises compositionality.

The concepts of our development framework have been illustrated with various

case studies where we assessed their agility and efficacy.

7.2 Reflection

Coordination of shared resources in complex systems is an active area of research and

development. Industry is taking up and gradually introduces Quality of Service (QoS)

is their systems [Cisco Systems, 2003; Remondo and Niemegeers, 2003]. They are

supported by standardisation bodies who are committed to make QoS an integral part

of their work [Blake et al., 1998; Al-Karaki and Chang, 2004; Adis, 2003]. In the

mean time, research considers the next generation of complex systems, such ad-hoc

and peer-to-peer networks that combine concurrency, QoS, wirelesss communication,

and context awareness [see, e.g, Pouwelse et al., 2004; Liu and Issarny, 2004].

Although current industrial implementations of QoS are contract based the con-

tracts are usually not negotiable; contracts are only established at service set up time.

The server is committed to deliver the agreed level of quality, whereas the client is

committed to acknowledge the contract. The established level of quality of service

therefore is a statically defined best-effort service. In a commercial setting policing

and monitoring appears to be an essential requirement. In [Cisco Systems, 2003] an

implementation based on differentiated services (diffServ) [Blake et al., 1998] is de-

scribed for Voice Over IP and Video on Demand services. Both applications use the

Internet but rely on minimum guarantees for proper operation.

The hesitation to implement QoS on a great scale has two main sources. First,

QoS inherently introduces overhead which can be prohibitively expensive [Adis, 2003]

and second QoS is inherently difficult because client and servers need to come to a

mutual understanding of their requirements and offers [Duran-Limon and Blair, 2004].

144 Conclusions

New schemes for negotiated QoS and experiments with these and existing schemes are

published regularly, e.g., [Jukic et al., 2004; Al-Karaki and Chang, 2004]. Our ARC

framework has recently successfully been applied in a video streaming application over

a wireless link [Taal et al., 2003].

In Chapter 2 we emphasised the need for multiple views on a system, the upcoming

IEEE standard for architectural descriptions [IEEE-1471, 2000] is by now fully accep-

ted by the software architecture research community [Clements et al., 2003; Bosch,

2004]. The selection of views and their implementation remains however a concern. It

turns out that generic views that have a wide scope are without exception ambiguous,

therefore industry is rather reluctant in accepting this technology [Graaf et al., 2003].

Our CAPN model of computation seems a promising approach for system construc-

tion. Advanced methods for developing dependable systems currently rely on the de-

terminacy of the system components [Stefanov et al., 2004; Lee, 2001]. The CAPN is

candidate model of computation to introduce a controlled level of indeterminacy, which

increases the applicability of these development methods in practice.

7.3 Future improvements

This dissertation takes the perspective of a system architect and consequently involves

a wide range of domains of expertise. There is room for improvement on the individual

domains as well as on the field of collaboration among domains.

We use views to communicate concerns among stakeholders. The concept of a

view is materialised in Bunge’s systematic position. An improvement on the current

situation is to structure the views formally. This would yield an opportunity for doing

systematic analysis of views. The Bunge-Wand-Weber ontological model, as presented

in Section 2.1.3, is potentially a good starting point.

The design-time and run-time experiments we conducted with the ARC framework

were manually casted (Chapter 6). The interfaces, the optimisations, and the eval-

uation routines were all made specific for a subsystem. For a dedicated application

area it should be possible though to construct a technology that implements the ARC

interface routines and offers flexible optimisation and coordination routines. For a

dedicated application area it is possible to implement the three-sweep ARC interface

protocol: request, offer, select; only the number and interpretation of interface para-

meters vary. Also for a dedicated application area one can devise a library of ARC

coordination and optimisation routines. Many components execute similar optimisa-

tion routines. For instance, when a design space is sufficiently small, an exhaustive

exploration becomes feasible; only the evaluation function is component specific. A

centralised implementation of this type of coordination (perfd) has been considered in

[Pouwelse, 2003].

Our CAPN model of computation ultimately captures the context dependent beha-

viour of a system in a control stream. This is a primitive way of modelling context-

dependent behaviour. Research is required to develop more generally applicable meth-

ods for modelling context-dependent behaviour.

Bibliography

[van der Aalst, 1999] W. van der Aalst. “Formalization and verification of event-driven process

chains.” Information and Software Technology, vol. 41:pp. 639–50, 1999.

[Abdelzaher et al., 2002] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. “Performance guarantees for

Web server end-systems: A control-theoretical approach.” IEEE Transactions on Parallel and

Distributed Systems, vol. 13(1):pp. 80–96, 2002.

[Abraham and Rau, 2000] S. G. Abraham and B. R. Rau. “Fast automated design space exploration

in PICO.” In Int. Conf. for Compilers, Architecture, and Synthesis for Embedded systems

(CASES 2000). San Jose (CA), 2000.

[Adis, 2003] W. Adis. “Quality of service middleware.” Industrial Management & Data Systems,

vol. 103(1):pp. 47–51, 2003.

[Aditya and Rau, 2000] S. Aditya and B. R. Rau. “Automatic architecture synthesis and compiler

retargeting for VLIW and EPIC processors.” Tech. Rep. HPL-1999-93, HP Laboratories Palo

Alto, Jan. 2000.

[Agha, 2002] G. A. Agha. “Introduction.” Communications of the ACM, vol. 45(6):pp. 30–32, 2002.

Special issue on Adaptive middleware.

[Al-Karaki and Chang, 2004] J. N. Al-Karaki and J. M. Chang. “Quality of service support in IEEE

802.11 wireless ad hoc networks.” Ad Hoc Networks, vol. 2:pp. 265–281, 2004.

[Alexandrov and Lewis, 2000a] N. Alexandrov and R. Lewis. “Algorithmic perspectives on prob-

lem formulations in MDO.” In AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary

Analysis and Optimization, 8th, Long Beach, CA. 2000a.

[Alexandrov and Lewis, 2000b] N. M. Alexandrov and R. M. Lewis. “Analytical and computational

properties of distributed approaches to MDO.” In AIAA/USAF/NASA/ISSMO Symposium on

Multidisciplinary Analysis and Optimization, 8th, Long Beach, CA. 2000b.

[Andrade and Fiadeiro, 2001] L. F. Andrade and J. L. Fiadeiro. “Coordination: The evolutionary

dimension.” In Proceedings of the Conference on Technology of Object Oriented Languages

and Systems (TOOLS 38), pp. 136–147. 2001.

[AOSD-web, 2001–2002] AOSD-web. “Aspect oriented software development.” http://aosd.

net/, 2001–2002.

[Apt and Plotkin, 1986] K. R. Apt and G. D. Plotkin. “Countable nondeterminism and random as-

signment.” Journal of the ACM (JACM), vol. 33(4):pp. 724–767, 1986.

[Aurrecoechea et al., 1999] C. Aurrecoechea, A. T. Campbell, and L. Hauw. “A survey of QoS

architectures.” In 7th Int. Workshop on Quality of Service (IWQoS’99). 1999.

[Bakker et al., 2001] J.-D. Bakker, K. Langendoen, and H. Sips. “LART: Flexible, low-power build-

ing blocks for wearable computers.” In Int. Workshop on Smart Appliances and Wearable

Computing (IWSAWC). Scottsdale, AZ, 2001.

145

file:citeseer.nj.nec.com/abdelzaher01performance.html
file:citeseer.nj.nec.com/abdelzaher01performance.html
http://fog.hpl.hp.com/techreports/1999/HPL-1999-93.html
http://fog.hpl.hp.com/techreports/1999/HPL-1999-93.html
http://aosd.net/
http://aosd.net/

146 BIBLIOGRAPHY

[Balling and Rawlings, 2000] R. Balling and M. Rawlings. “Collaborative optimization with dis-

ciplinary conceptual design.” Structural-and-multidisciplinary-optimization, vol. 20(3):pp.

231–241, Nov. 2000.

[Bertsekas, 1999] D. P. Bertsekas. Nonlinear programming. Belmont : Athena Scientific, 1999.

[Boijmans Van Beuningen, 1849,1958] Boijmans Van Beuningen. “Museum Boijmans Van

Beuningen.” 1849,1958. Rotterdam, The Netherlands.

[Bézivin and Gerbé, 2001] J. Bézivin and O. Gerbé. “Towards a precise definition of the

OMG/MDA framework.” In Proceedings 16th Annual International Conference on Auto-

mated Software Engineering, pp. 273–80. ASE 2001, 2001.

[Bhattacharya and Bhattacharyya, 2001] B. Bhattacharya and S. Bhattacharyya. “Parameter-

ized dataflow modeling for DSP systems.” IEEE Transactions on Signal Processing,

vol. 49(10):pp. 2408–21, 2001.

[Bhattacharyya et al., 1999] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. “Synthesis of embed-

ded software from synchronous dataflow specifications.” Journal of VLSI Signal Processing

Systems, vol. 21(2):pp. 151–166, Jun. 1999.

[Bhatti and Knight, 1999] S. Bhatti and G. Knight. “Enabling QoS adaptation decisions for Internet

applications.” Journal of Computer Networks, vol. 31(7):pp. 669–692, Mar. 1999.

[Bianchi et al., 1998] G. Bianchi, A. Campbell, and R.-F. Liao. “On utility-fair adaptive service in

wireless network.” In 6th Int. Workshop on Quality of Service (IWQoS’98), pp. 256 – 267.

1998.

[Bilsen et al., 1996] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. “Cyclo-static data-

flow.” IEEE Transactions on Signal Processing, vol. 44(2):pp. 397–408, Feb. 1996.

[Blake et al., 1998] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. “An archi-

tecture for differentiated services.” RFC 2475, IETF, Dec. 1998.

[Bohdanowicz, 2000] A. Bohdanowicz. “Wideband indoor and outdoor radio channel measurements

at 17 GHz.” Tech. Rep. UbiCom-TechnicalReport/2000/2, Delft University of Technology,

2000.

[Bohdanowicz, 2001] A. Bohdanowicz. “On efficient BER evaluation of digital communication

systems via importance sampling.” In Proceedings 8th Symposium on Communications and

Vehicular Technology, pp. 61–67. Delft, The Netherlands, 2001.

[Bohdanowicz and Weber, 2002] A. Bohdanowicz and J. Weber. “Conceptual framework of integ-

rated variance reduction techniques for performance evaluation of communication systems.”

In Proc. of the IASTED International Conference on Communications and Computer Net-

works, pp. 335–341. CCN 2002, Cambridge, MA, USA, 2002.

[van den Bos, 1999] C. van den Bos. “About non-linear distortion of OFDM signals.” In Proceed-

ings of ProRISC. 1999.

[van den Bos and Verhoeven, 2001] C. van den Bos and C. Verhoeven. “Reconfigurable radio re-

ceiver front ends for mobile communications.” Tijdschrift van het Nederlands Elektronica en

Radiogenootschap, vol. 66:pp. 99–104, 2001.

[Bosch, 2004] J. Bosch. “Software architecture: The next step.” In F. Oquendo, B. Warboys, and

R. Morisson, (eds.) Proceedings of the first European workshop on Software Architecture

(EWSA), LCNS 3047, pp. 194–199. 2004.

[Braithwaite, 1962] R. Braithwaite. “Introduction to Gödel’s theorem.” http://www.ddc.net/

ygg/etext/godel/godel2.htm, 1962.

[Braun and Kroo, 1997] R. D. Braun and I. M. Kroo. “Development and application of the collabor-

ative optimization architecture in a multidisciplinary design environment.” In Multidisciplin-

ary design optimization State of the art; Proceedings of the ICASE/NASA Langley Workshop,

Hampton, VA, pp. 98–116. 1997.

[Brock and Ackermann, 1981] J. D. Brock and W. B. Ackermann. “Scenarios: A model of non-

determinate computation.” In J. Diaz and I. Ramos, (eds.) Formalization of programming

http://boijmans.kennisnet.nl
http://boijmans.kennisnet.nl
http://www.ddc.net/ygg/etext/godel/godel2.htm
http://www.ddc.net/ygg/etext/godel/godel2.htm

147

concepts, Lecture Notes in Computer Science, pp. 225–259. Springer, 1981, 107 edn.

[de Bruin and Nienhuys-Cheng, 1998] A. de Bruin and S. H. Nienhuys-Cheng. “Linear dynamic

Kahn networks are deterministic.” In Theoretical Computer Science, pp. 3–32. 1998.

[Buck, 1993] J. T. Buck. Scheduling dynamic dataflow graphs with bounded memory using the token

flow model. Ph.D. thesis, University of California at Berkeley, 1993.

[Bunge, 1977] M. Bunge. Treatise on basic philosophy. Vol. 3. Ontology I: The furniture of the

world. Reidel, Dordrecht, 1977.

[Bunge, 1979] M. Bunge. Treatise on basic philosophy. Vol. 4. Ontology II: A world of systems.

Reidel, Dordrecht, 1979.

[Cassandras and Lafortune, 1999] C. G. Cassandras and S. Lafortune. Introduction to discrete event

systems. Boston Kluwer Academic, 1999.

[Chatterjee et al., 1997] S. Chatterjee, J. Sydir, B. Sabata, and T. Laurance. “Modeling applica-

tions for adaptive QoS-based resource management.” In High Assurance System Engineering

workshop (HASE’97). 1997.

[Chen et al., 2001] H.-S. A. Chen, L. Qiao, and K. Nahrstedt. “Adaptive versus reservation-based

synchronization protocols-analysis and comparison.” Multimedia Tools and Applications,

vol. 14(3):pp. 219–57, 2001.

[Cisco Systems, 2003] Cisco Systems, (ed.). Internetworking Technology Handbook, chap. Quality

of Service Networking. Cisco systems, 2003.

[Clements et al., 2003] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord,

and J. Stafford. Documenting software architectures; views and beyond. Addison-Wesley,

2003.

[Coello Coello, 1999] C. A. Coello Coello. “A comprehensive survey of evolutionary-based mul-

tiobjective optimization techniques.” Knowledge and Information Systems, vol. 1(3):pp. 269–

308, 1999.

[Coello Coello and Christiansen, 1999] C. A. Coello Coello and A. D. Christiansen. “MOSES:

A multiobjective optimization tool for engineering design.” Engineering Optimization,

vol. 31(3):pp. 337–368, 1999.

[Crochiere and Rabiner, 1981] R. E. Crochiere and L. R. Rabiner. “Interpolation and decimation of

digital signals-a tutorial review.” Proceedings of the IEEE, vol. 69:pp. 300–31, 1981.

[Crumley, 1995] C. L. Crumley. “Heterarchy and the analysis of complex societies.” In R. M.

Ehrenreich, C. L. Crumley, and J. E. Levy, (eds.) Heterarchy and the Analysis of Complex

Societies, pp. 1–5. American Anthropological Association, 1995.

[Czarnecki and Eisenecker, 2000] K. Czarnecki and U. Eisenecker. Generative programming: meth-

ods, tools, and applications. Addison-Wesley, 2000.

[David and Alla, 2001] R. David and H. Alla. “On hybrid petri nets.” Discrete Event Dynamic

Systems, vol. 11(1–2):pp. 9–40, 2001.

[Deprettere et al., 2002] E. F. Deprettere, E. Rijpkema, and B. Kienhuis. “Translating imperative

affine nested loop programs into process networks.” Lecture Notes in Computer Science, vol.

2268:pp. 89–113, 2002.

[van Dijk et al., 2000a] H. van Dijk, K. Langendoen, and H. Sips. “Application of ARC in system

design.” In 2nd Int. Symposium on Mobile Multimedia Systems & Applications (MMSA’2000),

pp. 118–125. Delft, The Netherlands, 2000a.

[van Dijk et al., 2000b] H. van Dijk, K. Langendoen, and H. Sips. “ARC: a bottom-up approach

to negotiated QoS.” In 3rd IEEE Workshop on Mobile Computing Systems and Applications

(WMCSA 2000), pp. 128–137. Monterey, CA, 2000b.

[van Dijk and van Reeuwijk, 1999] H. W. van Dijk and K. van Reeuwijk. “The first Ubicom proto-

type (blue book).” Technical Report 1999/1, Ubiquitous Communications, Feb. 1999.

[van Dijk et al., 2003] H. W. van Dijk, H. J. Sips, and E. F. Deprettere. “Context aware process net-

works.” In Proc. of Int. Conf. on Application-specific Systems, Architectures and Processors,

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/qos.htm
http://www.ubicom.tudelft.nl/docs/UbiCom-Publication_2000_6.PDF
http://www.ubicom.tudelft.nl/docs/UbiCom-Publication_2000_6.PDF
http://www.ubicom.tudelft.nl/docs/UbiCom-Publication_2000_4.PDF
http://www.ubicom.tudelft.nl/docs/UbiCom-Publication_2000_4.PDF

148 BIBLIOGRAPHY

pp. 6–16. ASAP 2003, 2003.

[Dijkhoff et al., 2000] O. Dijkhoff, V. D. A. Petrignani and, and J. Braat. “Dual Purkinje imaging

gaze tracker using a smart vision sensor.” In Proceeding 2nd International symposium on

mobile multimedia systems and applications, pp. 48–55. MMSA 2000, 2000.

[Dijkstra, 1976] E. W. Dijkstra. A discipline of programming. Prentice-Hall, Englewood Cliffs, N.J.,

1976.

[Dilts et al., 1991] D. Dilts, N. Boyd, and H. Whorms. “The evolution of control architectures for

automated manufacturing.” Journal of Manufacturing Systems, vol. 10(1):pp. 79–93, 1991.

[Dorf, 1989] R. C. Dorf. Modern Control Systems. Addison-Wesley, 1989, fifth edn.

[Dou, 1652] G. Dou. “De kwakzalver (The Quack).” oil on panel, 1652. Owned by Boijmans Van

Beuningen [1849,1958].

[Duran-Limon and Blair, 2004] H. A. Duran-Limon and G. S. Blair. “QoS management specifci-

ation support for multimedia middleware.” The journal of Systems and Software, vol. 72:pp.

1–23, 2004.

[Edwards et al., 1997] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli. “Design

of embedded systems: Formal models, validation, and synthesis.” Proceedings of the IEEE,

vol. 85(3):pp. 366–390, Mar. 1997.

[Elrad et al., 2001] T. Elrad, M. Aksits, G. Kiczales, K. Lieberherr, and H. Ossher. “Discussing

aspects of AOP.” Communications of the ACM, vol. 44(10):pp. 33–38, 2001. Special issue on

Aspect Oriented Programming.

[Foundation, 1984] T. F. S. Foundation. “Gnu’s is not Unix.” http://www.fsf.org, 1984.

[Fowler, 2003] M. Fowler. “Design – who needs an architect?” Software, IEEE, vol. 20(5):pp.

11–13, 2003.

[Frodigh et al., 2001] M. Frodigh, S. Parkvall, C. Roobol, P. Johansson, and P. Larsson. “Future-

generation wireless networks.” IEEE Personal Communications, vol. 8(5):pp. 10–17, 2001.

[Frølund and Koistinen, 1998] S. Frølund and J. Koistinen. “Quality-of-service specification in dis-

tributed object systems.” Distributed Systems Engineering Journal, vol. 5(4):pp. 179–202,

1998.

[van Gemund, 1996] A. van Gemund. Performance Modeling of Parallel Systems. Ph.D. thesis,

Delft University of Technology, Apr. 1996.

[Girod and Farber, 1999] B. Girod and N. Farber. “Wireless video.” In M.-T. Sun and A. Reibman,

(eds.) Compressed Video Over Networks, chap. 12. Marcel Dekker, 1999.

[Goel et al., 1999] A. Goel, D. Steere, C. Pu, and J. Walpole. “Adaptive resource management via

modular feedback control.” Tech. Rep. CSE-99-03, Oregon Graduate Institute of Science and

Technology, Jan. 1999.

[Goldie and Pinch, 1991] C. M. Goldie and R. G. Pinch. Communication Theory. No. 20 in London

Mathematical Society Student Texts. Cambridge University Press, 1991.

[Gould, 1977] S. Gould. Ever since Darwin. Norton, New York, 1977.

[Graaf et al., 2003] B. Graaf, M. Lormans, and H. Toetenel. “Embedded software engineering: state

of the practice.” IEEE Software Magazine, vol. 20(6):pp. 61–69, November–December 2003.

[Green and Rosemann, 2000] P. Green and M. Rosemann. “Integrated process modeling: An onto-

logical evaluation.” Information Systems, vol. 25(2):pp. 73–87, Apr. 2000.

[Gruber, 1993] T. R. Gruber. “A translation approach to portable ontology specifications.” Know-

ledge Acquisition, vol. 5(2):pp. 199–220, 1993.

[Haimes et al., 1989] Y. Y. Haimes, K. Tarvainen, T. Shima, and J. Thadathil. Hierarchical Mul-

tiobjective Analysis of Large-Scale systems. New York: Hemisphere publishing corporation,

1989.

[Hansen et al., 2001] J. Hansen, J. Lehoczky, and R. Rajkumar. “Optimization of quality of service

in dynamic systems.” In Proceedings 15th International Parallel and Distributed Processing

Symposium, pp. 1001–1008. 2001.

http://boijmans.kennisnet.nl/onderw/genre/genre/genreengdou1.htm
http://www.fsf.org
http://www.hpl.hp.com/techreports/98/HPL-98-159.pdf
http://www.hpl.hp.com/techreports/98/HPL-98-159.pdf
http://www.isa.ewi.tudelft.nl/~moose/pub/reports/IEEESoftware2003.pdf
http://www.isa.ewi.tudelft.nl/~moose/pub/reports/IEEESoftware2003.pdf

149

[Healey, 1999] R. Healey. “Holism and nonseparability in physics.” In E. N. Zalta, (ed.) The Stan-

ford Encyclopedia of Philosophy. 1999, fall 1999 edition edn.

[Heusdens et al., 2001] R. Heusdens, R. Vafin, and W. B. Kleijn. “Sinusoidal modeling of audio

and speech using psychoacoustic-adaptive matching pursuits.” In Proceedings IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 3281–3284.

(ICASSP’01), 2001.

[Hoare, 1985] C. Hoare. Communicating Sequential Processes. Prentice Hall International, 1985.

[Hofstadter, 1985] D. Hofstadter. Gödel Escher en Bach: Een eeuwige gouden band. Amsterdam:

Contact, 1985. Dutch translation of Godel, Escher, Bach: an eternal golden braid, 1979.

[Holland, 1992] J. H. Holland. Adaptation in natural and artificial systems: An introductionary

analysis with applications to biology, control and artificial intelligence. MIT Press/Bradford

Books edition, 1992.

[Holloway et al., 1997] L. E. Holloway, B. H. Krogh, and A. Giua. “A survey of Petri Net methods

for controlled discrete event systems.” Discrete Event Dynamic Systems, vol. 7(2):pp. 151–

190, 1997.

[Holzmann, 1997] G. J. Holzmann. “The model checker SPIN.” Software Engineering,

vol. 23(5):pp. 279–295, 1997.

[IEEE-1471, 2000] IEEE-1471. IEEE Recommended practice for architectural description of

software-intensive systems. IEEE, 2000. IEEE Std 1471-2000.

[Introna, 2001] L. Introna. “Cooperation, coordination and interpretation in virtual environments:

Some thoughts on working-together.” Cognition, Technology & Work, vol. 3(2):pp. 101–110,

2001.

[Irvine, 2001] A. D. Irvine. “Bertrand Russell.” In E. N. Zalta, (ed.) The Stanford Encyclopedia of

Philosophy. 2001, fall 2001 edition edn.

[Jorge et al., 2000] H. Jorge, C. Antunes, and A. Martins. “A multiple objective decision support

model for the selection of remote load control strategies.” IEEE Trans. on power systems,

vol. 15(2):pp. 865–872, May 2000.

[Jukic et al., 2004] B. Jukic, R. Simon, and W. S. Chang. “Congestion based resource sharing in

multi-service networks.” Decision support systems, vol. 37:pp. 397–413, 2004.

[Kahn, 1974] G. Kahn. “The semantics of a simple language for parallel programming.” In Pro-

ceedings of the IFIP Congress 74. North-Holland Publishing Co., 1974.

[Kahn and MacQueens, 1977] G. Kahn and D. B. MacQueens. “Coroutines and networks of parallel

processes.” In Proceedings of the IFIP Congress 77, pp. 993–998. 1977.

[Kailath et al., 2000] T. Kailath, A. H. Sayed, and B. Hassibi. Linear Estimation. Prentice Hall,

2000.

[Karaivanova et al., 1995] J. Karaivanova, P. Korhonen, S. Narula, J. Wallenius, and V. Vassilev. “A

reference direction approach to multiple objective integer linear programming.” European

Journal of Operational Research, vol. 81(1):pp. 176–187, 1995.

[Kiczales et al., 2001] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold.

“Getting started with ASPECTJ.” Communications of the ACM, vol. 44(10):pp. 59–65, Oct.

2001.

[Kiczales et al., 1997] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Lo-

ingtier, and J. Irwin. “Aspect-oriented programming.” In M. Akşit and S. Matsuoka, (eds.)

ECOOP ’97 — Object-Oriented Programming 11th European Conference, Jyväskylä, Fin-

land, vol. 1241, pp. 220–242. Springer-Verlag, New York, NY, 1997.

[Kienhuis, 1999] A. Kienhuis. Design Space Exploration of Stream-based Dataflow Architecture

Methods and Tools. Ph.D. thesis, Delft University of Technology, Jan. 1999. ISBN 90-5326-

029-3.

[Kim et al., 2000] H. M. Kim, N. F. Michelena, T. Jiang, and P. Y. Papalambros. “Target cascading

in optimal design.” In Proceedings of Int. Design Engineering technical conference (DETC

http://plato.stanford.edu/archives/fall1999/entries/physics-holism/
file:citeseer.nj.nec.com/holzmann97model.html
http://plato.stanford.edu/archives/fall2001/entries/russell/

150 BIBLIOGRAPHY

2000), DETC2000/DAC-14265. 2000.

[de Kock et al., 2000] A. de Kock, G. Essink, W. Smits, P. van der Wolf, J.-Y. Brunel, W. Kruijtzer,

P. Lieverse, and K. Vissers. “Yapi: Application modeling for signal processing systems.” In

Proc. 37th Design Automation Conference (DAC’00), pp. 402–405. 2000.

[Kodiyalam and Sobieszczanski, 2000] S. Kodiyalam and S. J. Sobieszczanski. “Bilevel integrated

system synthesis with response surfaces.” AIAA, vol. 38(8):pp. 1479–1485, Aug. 2000.

[Koliver et al., 2002] C. Koliver, K. Nahrstedt, J.-M. Farines, J. d. S. Fraga, and S. A. Sandri. “Spe-

cification, mapping and control for QoS adaptation.” Real time systems, vol. 23(1–2):pp.

143–174, 2002.

[Kon et al., 2002] F. Kon, F. Costa, G. Blair, and R. H. Campbell. “The case for reflective middle-

ware.” Communications of the ACM, vol. 45(6):pp. 33–38, 2002.

[Kroo and Manning, 2000] I. Kroo and V. Manning. “Collaborative optimization - status and direc-

tions.” In AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimiz-

ation, 8th, Long Beach, CA. 2000.

[Kumar et al., 2002] S. Kumar, F. Zhao, and D. Shepherd. “Collaborative signal and information

processing in microsensor networks.” IEEE Signal Processing Magazine, vol. 19(2):pp. 13–

14, 2002.

[Kung, 1988] S. Kung. VLSI Array Processors. Prentice Hall, 1988.

[Lagendijk, 2000a] R. Lagendijk. “The TU-Delft research program Ubiquitous Communications.”

In 21st Symp. on Information Theory in the Benelux. Wassenaar, The Netherlands, 2000a.

[Lagendijk, 2000b] R. Lagendijk. “Ubiquitous Communications updated technical annex.” Tech-

nical Report 2000/1, Ubiquitous Communications, 2000b.

[Lakshman and Yavatkar, 1996] K. Lakshman and R. Yavatkar. “Adaptive resource management for

multimedia applications.” In High-Speed networking for multimedia applications. Kluwer

Academic Publishers, 1996.

[Lan and Tewfik, 1998] T.-H. Lan and A. Tewfik. “Power optimized mode selection for H.263 video

coding and wireless communications.” In IEEE Conference on Image Processing, (ICIP 98).

1998.

[Lee et al., 1999a] C. Lee, J. Lehoczky, R. Rajkumar, and D. P. Siewiorek. “On quality of service

optimization with discrete QoS options.” In IEEE Real Time Technology and Applications

Symposium, pp. 276–286. 1999a.

[Lee et al., 1999b] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and J. Hansen. “A scalable

solution to the multi-resource QoS problem.” In 20th IEEE Real-Time Systems Symposium,

pp. 315–326. Phoenix, AZ, 1999b.

[Lee and Messerschmitt, 1987] E. Lee and D. Messerschmitt. “Synchronous data flow.” Proceedings

of the IEEE, vol. 75(9):pp. 1235–1245, sep 1987.

[Lee, 2001] E. A. Lee. “Overview of the Ptolemy project.” Tech. Rep. Technical Memorandum

UCB/ERL M01/11, UC Berkeley, Mar. 2001.

[Lee and Messerschmitt, 1994] E. A. Lee and D. G. Messerschmitt. Digital communication. Kluwer

Academic Publisher, 1994, second edition edn.

[Lee and Parks, 1995] E. A. Lee and T. M. Parks. “Dataflow process networks.” Proceeding of the

IEEE, pp. 773–799, 1995.

[Lee and Sangiovanni-Vincentelli, 1998] E. A. Lee and A. Sangiovanni-Vincentelli. “A frame-

work for comparing models of computation.” IEEE Transactions on Circuit Aided Design,

vol. 17(12), 1998.

[Lee and Sabata, 1999] W. Lee and B. Sabata. “Admission control and QoS negotiations for soft-real

time applications.” In IEEE International Conference on Multimedia Computing and Systems

(ICMCS). 1999.

[Li and Nahrstedt, 1998] B. Li and K. Nahrstedt. “A control theoretical model for quality of service

adaptations.” In 1998 Sixth International Workshop on Quality of Service (IWQoS’98), pp.

http://www.ubicom.tudelft.nl/docs/UbiCom-TechnicalReport_2000_1.PDF
file:citeseer.nj.nec.com/lee99quality.html
file:citeseer.nj.nec.com/lee99quality.html
http://www.ptolemy.eecs.berkeley.edu/publications/papers/01/overview/overview.pdf

151

145–53. 1998.

[Li et al., 1999] B. Li, D. Xu, and K. Nahrstedt. “Optimal state prediction for feedback-based qos

adaptations.” In 1999 Seventh International Workshop on Quality of Service. IWQoS’99, pp.

37–46. 1999.

[Lieberherr et al., 2001] K. Lieberherr, D. Orleans, and J. Ovlinger. “Aspect-oriented programming

with adaptive methods.” Communications of the ACM, vol. 44(10):pp. 39–41, Oct. 2001.

[Lieverse et al., 1999] P. Lieverse, P. van der Wolf, E. Deprettere, and K. Vissers. “A methodology

for architecture exploration of heterogeneous signal processing systems.” In Proceedings of

SIPS’99. 1999.

[Lieverse et al., 2001] P. Lieverse, P. van der Wolf, K. Vissers, and E. Deprettere. “A methodology

for architecture exploration of heterogeneous signal processing systems.” Journal of VLSI

Signal Processing for Signal, Image and Video Technology, vol. 29(3):pp. 197–207, 2001.

[Liu and Issarny, 2004] J. Liu and V. Issarny. “QoS-aware service location in mobile ad hoc net-

works.” In Proceedings of the 5th IEEE International Conference on Mobile Data Manage-

ment (MDM), pp. 224–235. 2004.

[Livne, 1999] E. Livne. “Special issue: Multidisciplinary design optimization.” Journal of Aircraft,

vol. 36, Jan. 1999.

[Loyall et al., 1998] J. P. Loyall, R. E. Schantz, J. A. Zinky, and D. E. Bakken. “Specifying and

measuring quality of service in distributed object systems.” In Proceedings of the 1st Interna-

tional Symposium on Object-Oriented Real-Time Distributed Computing (ISORC). 1998.

[Maier et al., 2001] M. Maier, D. Emery, and R. Hilliard. “Software architecture: introducing IEEE

standard 1471.” Computer, vol. 34(4):pp. 107–109, Apr. 2001.

[Malone and Crowston, 1994] T. W. Malone and K. Crowston. “The interdisciplinary study of co-

ordination.” ACM Computing Surveys (CSUR), vol. 26(1):pp. 87–119, 1994.

[Margulis and Fester, 1991] L. Margulis and R. Fester. Symbiosis as a source of evolutionary innov-

ation: speciation and morphogenesis. MIT Press, Cambridge, Massachusetts, 1991.

[McCarthy, 1963] J. McCarthy. “A Basis for a Mathematical Theory of Computation.” In P. Braffort

and D. Hirschberg, (eds.) Computer Programming and Formal Systems, pp. 33–70. North-

Holland, Amsterdam, 1963.

[McCulloch, 1945] W. McCulloch. “A heterarchy of values determined by the topology of nervous

nets.” Bulletin of Mathematical Bioscience, vol. 7:pp. 89–93, 1945.

[McNamee et al., 2000] D. McNamee, C. Krasic, K. Li, A. Goel, E. Walthinsen, D. Steere, and

J. Walpole. “Control challenges in multi-level adaptive video streaming.” In Proceedings of

the 39th IEEE Conference on Decision and Control, vol. 3, pp. 2228–2233. 2000.

[M.D. Ercegovac, 1989] T. L. M.D. Ercegovac. “On-line arithmetic for DSP applications.” In Pro-

ceedings of the 32nd Midwest Symposium on Circuits and Systems, 1989, vol. 1, pp. 365–368.

1989.

[Miettinen, 1999] K. Miettinen. Nonlinear multiobjective optimization. Boston: Kluwer Academic,

1999.

[Miller, 1965] R. E. Miller. Switching theory. Vol. II: Sequential circuits and machines. New York

Wiley, 1965. In particular chapter 10: Speed independent switching circuit theory.

[Montanari and Rossi, 1995] U. Montanari and F. Rossi. “Contextual nets.” Acta Informatica,

vol. 32:pp. 545–96, 1995.

[Moore, 1965] G. E. Moore. “Cramming more components onto integrated circuits.” Electronics

Magazine, vol. 38(8):pp. 114–117, Apr. 1965.

[Morse, 1980] J. Morse. “Reducing the size of the nondominated set: pruning by clustering.” Com-

puters and operations research, vol. 7(1–2):pp. 55–66, 1980.

[Mottahed and Manoochehri, 2000] B. D. Mottahed and S. Manoochehri. “Optimal design of elec-

tronic system utilizing an integrated multidisciplinary process.” IEEE Trans. on advanced

packaging, vol. 23(4):pp. 699–707, Nov. 2000.

file:citeseer.nj.nec.com/loyall98specifying.html
file:citeseer.nj.nec.com/loyall98specifying.html
file:citeseer.nj.nec.com/mccarthy63basis.html
http://www.intel.com/research/silicon/moorespaper.pdf

152 BIBLIOGRAPHY

[Muller, 2001] G. Muller. “The arisal of a system architect.” http://www.extra.research.

philips.com/natlab/sysarch/MaturityPaper.pdf, Sep. 2001. Gaudi Project.

[Muller, 2004] G. Muller. CAFCR: A multi-view Method for embedded systems architecting; Bal-

ancing Genericity and Specificity. Ph.D. thesis, Delft University of Technology, 2004.

[Nahrstedt, 1999] K. Nahrstedt. “To overprovision or to share via QoS-aware resource manage-

ment?” In Proceedings. The Eighth International Symposium on High Performance Distrib-

uted Computing, pp. 205–212. 1999.

[Nahrstedt et al., 1998] K. Nahrstedt, H. H. Chu, and S. Narayan. “Qos-aware resource management

for distributed multimedia applications.” Journal of High Speed Networks, vol. 7:pp. 229–57,

1998.

[Nahrstedt et al., 2001] K. Nahrstedt, D. Xu, D. Wichadakul, and B. Li. “QoS-aware middle-

ware for ubiquitous and heterogeneous environments.” IEEE Communications Magazine,

vol. 39(11):pp. 140–148, Nov. 2001.

[Nair and Keane, 1999] P. B. Nair and A. J. Keane. “Coevolutionary genetic adapta-

tion - a new paradigm for distributed multidisciplinary design optimization.” In

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference

and Exhibit, 40th, St. Louis, MO, pp. 1910–1919. 1999.

[Nair and Keane, 2000] P. B. Nair and A. J. Keane. “A coevolutionary architecture for distributed

optimization of complex coupled systems.” AIAA, 2000.

[Najjar et al., 1999] W. A. Najjar, E. A. Lee, and G. R. Gao. “Advances in the dataflow computa-

tional model.” Parallel Computing, vol. 25:pp. 1907–1929, 1999.

[Nemhauser and Wolsey, 1988] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimiz-

ation. John Wiley & Sons, New York, 1988.

[Noble et al., 1997] B. Noble, M. Satyanarayanan, D. Narayanan, J. T. on, J. Flinn, and K. Walker.

“Agile application-aware adaptation for mobility.” In 16th ACM Symposium on Operating

System Principles. St. Malo, France, 1997.

[Oosterhoff and de Ridder, 2000] F. Oosterhoff and H. de Ridder. “Transparent visual presentation:

image information and ambiguity.” In Proceeding of Presence 2000. Delft University of Tech-

nology, 2000.

[Oosterom et al., 2002] P. Oosterom, J. Stoter, W. Quak, and S. Zlatanova. “The balance between

topology and geometry.” In Proceeding of Spatial Data Handling Symposium. SDH 2002,

2002.

[Opdahl and Henderson-Sellers, 2001] A. L. Opdahl and B. Henderson-Sellers. “Grounding the

{OML} metamodel in ontology.” The Journal of Systems and Software, vol. 57:pp. 119–143,

2001.

[Ossher and Tarr, 2001] H. Ossher and P. Tarr. “Using multidimensional separation of concerns to

(re)shape evolving software.” Communications of the ACM, vol. 44(10):pp. 43–50, Oct. 2001.

[Pamela, 1993–2002] Pamela. “The Pamela project.” www.pds.twi.tudelft.nl/pamela/,

1993–2002.

[Panangaden, 1995] P. Panangaden. “The expressive power of indeterminate primitives in asyn-

chronous computation.” In Foundations of Software Technology and Theoretical Computer

Science, pp. 124–150. 1995.

[Panangaden and Shanbhogue, 1988] P. Panangaden and V. Shanbhogue. “McCarthy’s amb cannot

implement fair merge.” In K. Nori, (ed.) Proceeding of the 8th conference on foundations of

software technology and theoretical computer science, Lecture Notes in Computer Science

338, pp. 348–363. 1988.

[Panangaden and Shanbhogue, 1992] P. Panangaden and V. Shanbhogue. “The expressive power

of indeterminate dataflow primitives.” Information and Computation, vol. 98(1):pp. 99–131,

1992.

[Panangaden and Stark, 1988] P. Panangaden and E. Stark. “Computations, residuals and the power

http://www.extra.research.philips.com/natlab/sysarch/MaturityPaper.pdf
http://www.extra.research.philips.com/natlab/sysarch/MaturityPaper.pdf
http://www.pds.twi.tudelft.nl/pamela/
www.pds.twi.tudelft.nl/pamela/
file:citeseer.nj.nec.com/panangaden95expressive.html
file:citeseer.nj.nec.com/panangaden95expressive.html
file:citeseer.nj.nec.com/panangaden92expressive.html
file:citeseer.nj.nec.com/panangaden92expressive.html

153

of indeterminacy,.” In T. Lepisto and A. Salomaa, (eds.) Proceedings of ICALP 1988, Lecture

Notes in Computer Science 317, pp. 439–454. 1988.

[Papadopoulos and Arbab, 1998] G. Papadopoulos and F. Arbab. “Coordination models and lan-

guages.” Tech. Rep. SEN-R9834, Centrum voor Wiskunde en Informatica, Amsterdam, The

Netherlands, Dec. 1998.

[Papalambros and Michelena, 2000] P. Y. Papalambros and N. F. Michelena. “Trends and challenges

in system design optimization.” In International Workshop on Multidisciplinary Design Op-

timization. 2000.

[Pareto, 1896] V. Pareto. “Cours d’economie politique.” Rouge, Lausanne, Switzerland, 1896.

[Park et al., 2002] C. Park, J. Jung, and S. Ha. “Extended synchronous dataflow for efficient DSP

system prototyping.” Design Automation for Embedded Systems, vol. 6:pp. 295–322, 2002.

[Parks, 1995] T. M. Parks. Bounded Scheduling of Process Networks. Ph.D. thesis, University of

California at Berkeley, 1995.

[Pasman, 1999] W. Pasman. “Comparing 3-d model descriptions for wireless augmented reality.”

Tech. Rep. 3, Ubiquitous Communications, http://www.ubicom.tudelft.nl, 1999.

[Pasman and Jansen, 2001] W. Pasman and F. Jansen. “Distributed low-latency rendering for mobile

augmented reality.” In Proceedings of International Conference of Augmented Reality. IEEE

and ACM (ISAR 2001), 2001.

[Pasman and Jansen, 2002] W. Pasman and F. Jansen. “Comparing object simplification methods

for thin client 3D.” IEEE Transactions on Visualization and Computer Graphics, 2002.

[Patterson and Hennessy, 1990] D. A. Patterson and J. L. Hennessy. Computer architecture: a

quantitative approach. San Mateo: Kaufmann, 1990.

[Persa and Jonker, 2000] S. Persa and P. Jonker. “Hybrid tracking system for outdoor augmented

reality.” In Proceeding 2nd International symposium on mobile multimedia systems and ap-

plications, pp. 41–47. MMSA 2000, 2000.

[Peterson, 1981] J. Peterson. Petri net theory and the modeling of systems. Prentice-Hall, Englewood

Cliffs, 1981.

[Pouwelse et al., 1999] J. Pouwelse, K. Langendoen, and H. Sips. “A feasible low-power

augmented-reality terminal.” In 2nd IEEE and ACM Int. Workshop on Augmented Reality

(IWAR’99), pp. 55–63. San Francisco, CA, 1999.

[Pouwelse et al., 2000] J. Pouwelse, K. Langendoen, and H. Sips. “Dynamic voltage scaling on a

low-power microprocessor.” In 2nd Int. Symposium on Mobile Multimedia Systems & Applic-

ations (MMSA’2000), pp. 157–164. Delft, The Netherlands, 2000.

[Pouwelse et al., 2001] J. Pouwelse, K. Langendoen, and H. Sips. “Dynamic voltage scaling on a

low-power microprocessor.” In 7th ACM Int. Conf. on Mobile Computing and Networking

(MobiCom), pp. 251–259. Rome, Italy, 2001.

[Pouwelse, 2003] J. A. Pouwelse. Power Management for Portable Devices. Ph.D. thesis, Delft

University of Technology, 2003. ISBN 90-6464-993-6.

[Pouwelse et al., 2004] J. A. Pouwelse, J. R. Taal, R. L. Lagendijk, D. H. J. Epema, and H. J. Sips.

“Real-time video delivery using peer-to-peer bartering networks and multiple description cod-

ing.” In Proceedings to IEEE Symposium on Systems, Man and Cybernetics. The Hague, The

Netherlands, 2004.

[Procter, 2000] P. Procter, (ed.) Cambridge International Dictionary of English. Cambridge Univer-

sity Press, 2000.

[Ptolemy, 1995–2002] Ptolemy. “The Ptolemy project.” www.ptolemy.eecs.berkeley.

edu/, 1995–2002.

[Rabaey, 2001] J. M. Rabaey. “Wireless beyond the third generation-facing the energy challenge.”

In Proceedings of the 2001 International Symposium on Low Power Electronics and Design,

pp. 1–3. ISLPED’01, ACM, New York, NY, USA, 2001.

[Rajkumar et al., 1997] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. “A resource allocation

http://www.ubicom.tudelft.nl
http://www.ptolemy.eecs.berkeley.edu/
www.ptolemy.eecs.berkeley.edu/
www.ptolemy.eecs.berkeley.edu/
file:citeseer.nj.nec.com/article/rajkumar97resource.html
file:citeseer.nj.nec.com/article/rajkumar97resource.html

154 BIBLIOGRAPHY

model for QoS management.” In IEEE Real-Time Systems Symposium, pp. 298–307. 1997.

[Rathgeb, 1991] E. Rathgeb. “Modeling and performance comparison of policing mechanisms for

ATM networks.” IEEE Journal on Selected Areas in Communications, vol. 9(3):pp. 325–334,

apr 1991.

[Rechtin and Maier, 1997] E. Rechtin and M. W. Maier. The Art of Systems Architecting. CRC,

1997.

[van Reeuwijk et al., 2001] C. van Reeuwijk, F. Kuijlman, and H. Sips. “Spar: a set of extensions

to java for scientific computation.” In In Proceedings of the ACM 2001 Java Grande/ISCOPE

Conference. 2001.

[Remondo and Niemegeers, 2003] D. Remondo and I. G. Niemegeers. “Ad hoc networking in future

wireless communications.” Computer Communications, vol. 26:pp. 36–40, 2003.

[RM-ODP-10746, 1998] RM-ODP-10746. Information technology Open Distributed Processing

reference model. International organization for standardization (ISO) and International Elec-

trotechnical Commission (EIC), Dec. 1998. ISO/IEC 10746.

[Roscoe, 1997] B. Roscoe. The theory and practice of concurrency. Prentice Hall series in computer

science. Prentice Hall, 1997.

[Rosenman and Gero, 1985] M. Rosenman and J. Gero. “Reducing the Pareto optimal set in multi-

criteria optimization.” Engineering Optimization, vol. 8:pp. 189–206, 1985.

[Russell, 1989] J. R. Russell. “Full abstraction for nondeterministic dataflow networks.” In 30th

Annual Symposium on Foundations of Computer Science, pp. 170–5. 1989.

[Russell, 1990] J. R. Russell. “On oraclizable networks and Kahn’s principle.” In Conference Record

of the Seventeenth Annual ACM Symposium on Principles of Programming Languages, pp.

320–8. 1990.

[Saaty, 1990] T. L. Saaty. “How to make a decision: The analytic hierarchy process.” European

Journal of Operational Research, vol. 48:pp. 9–26, 1990. Special issue: Decision making by

the Analytic Hierarchy process: theory and applications.

[Salhi et al., 1996] A. Salhi, H. Glaser, D. D. Roure, and J. Putney. “The prisoners’ dilemma revis-

ited.” Tech. Rep. DSSE-TR-96-2, Department of Electronics and Computer Science, Univer-

sity of Southampton, 1996.

[Satyanarayanan, 2001] M. Satyanarayanan. “Pervasive computing: vision and challenges.” IEEE

Personal Communications, vol. 8(4), 2001.

[van der Schaaf, 1999] A. van der Schaaf. “The ubicom system focus point.” Tech. rep., Ubiquitous

Communications, 1999. Proceeding of the Ubiconference 99.

[van der Schaaf et al., 2000] A. van der Schaaf, J. A. L. Arellano, and R. I. L. Lagendijk. “On

balancing multiple video streams with distributed QoS control in mobile communications.”

In 2nd Int. Symposium on Mobile Multimedia Systems & Applications (MMSA’2000). 2000.

[van der Schaaf and Lagendijk, 2000] A. van der Schaaf and R. Lagendijk. “Independence of source

and channel coding for progressive image and video data in mobile communications.” Visual

Communications and Image Processing (VCIP2000), Jun. 2000.

[van der Schaaf et al., 2001] A. van der Schaaf, K. Langendoen, and R. Lagendijk. “Design of an

adaptive interface between video compression and transmission protocols for mobile commu-

nications.” In 11th Packet Video Workshop (PV-2001). Kyongju, Korea, 2001.

[Schmidt, 2002] D. C. Schmidt. “Middleware for real-time and embedded systems.” Communica-

tions of the ACM, vol. 45(6):pp. 43–48, 2002.

[Schreiber et al., 2000] R. Schreiber, S. Aditya, B. R. Rau, V. Kathail, S. Mahlke, S. Abraham, and

G. Snider. “High-level synthesis of nonprogrammable hardware accelerators.” Tech. Rep.

HPL-2000-31, HP Laboratories Palo Alto, May 2000.

[Shannon, 1948] C. Shannon. “A mathematical theory of communication.” Bell Systems Technical

Journal, vol. 27:pp. 379–423, 623–656, 1948.

[Sobieszczanski et al., 1998] S. J. Sobieszczanski, J. Agte, and R. J. Sandusky. “Bi-level integrated

file:citeseer.nj.nec.com/article/rajkumar97resource.html
file:citeseer.nj.nec.com/article/rajkumar97resource.html
http://citeseer.nj.nec.com/14560.html
http://citeseer.nj.nec.com/14560.html
http://www.ubicom.tudelft.nl/docs/PV2001submit.pdf
http://www.ubicom.tudelft.nl/docs/PV2001submit.pdf
http://www.ubicom.tudelft.nl/docs/PV2001submit.pdf
http://fog.hpl.hp.com/techreports/2000/HPL-2000-31.html

155

system synthesis (BLISS).” Tech. Rep. NASA/TM-1998-208715, National Aeronautics and

Space Administration, 1998.

[Staehli et al., 1995] R. Staehli, J. Walpole, and D. Maier. “A quality-of-service specification for

multimedia presentations.” Multimedia Systems, vol. 3:pp. 251–63, 1995.

[Steenkiste, 1999] P. Steenkiste. “Adaptation models for network-aware distributed computations.”

In Proceeding of the 3rd Workshop on Communication, Architecture, and Applications for

Network-based Parallel Computing (CANPC’99). 1999.

[Steere et al., 2000] D. Steere, M. Shor, A. Goel, J. Walpole, and C. Pu. “Control and modeling

issues in computer operating systems: resource management for real-rate computer applic-

ations.” In Proceedings of the 39th IEEE Conference on Decision and Control, vol. 3, pp.

2212–2221. 2000.

[Stefanov et al., 2002] T. Stefanov, B. Kienhuis, and E. Deprettere. “Algorithmic transformation

techniques for efficient exploration of alternative application instances.” In Proceedings of

the Tenth International Symposium on Hardware/Software Codesign (CODES 2000), pp. 7–

12. 2002.

[Stefanov et al., 2004] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprettere. “Sys-

tem design using Kahn process networks: the Compaan/Laura approach.” In Proceedings of

Design, Automation and Test in Europe Conference and Exhibition, vol. 1, pp. 340–345. 2004.

[Stoilov and Stoilova, 1999] T. Stoilov and K. Stoilova. “Real time noniterative coordination in

multilevel systems.” In Proceedings of Symposium on Large Scale Systems. Theory and Ap-

plications (LSS’98), pp. 447–452. 1999.

[Strehl et al., 2001] K. Strehl, L. Thiele, M. Gries, D. Ziegenbein, R. Ernst, and J. Teich. “Funstate-

an internal design representation for codesign.” IEEE Transactions on Very Large Scale In-

tegration (VLSI) Systems, vol. 9:pp. 524–44, 2001.

[Stuhlmüller et al., 2000] K. Stuhlmüller, N. Farber, M. Link, and B. Girod. “Analysis of video

transmission over lossy channels.” In IEEE Journal on Selected Areas in Communications,

vol. 18, pp. 1012–1032. 2000.

[Taal et al., 2003] J. Taal, I. Haratcherev, K. Langendoen, and R. Lagendijk. “Quality of service

controlled adaptive video coding over IEEE 802.11 wireless links.” In ICME, special session

on Networked Video. Baltimore, MD, 2003.

[Taal et al., 2002] J. Taal, K. Langendoen, A. van der Schaaf, H. van Dijk, and R. Lagendijk. “Ad-

aptive end-to-end optimization of mobile video streaming using QoS negotiation.” In ISCAS,

special session on Multimedia over Wireless Networks, vol. I, pp. 53–56. Scottsdale, AZ,

2002.

[Tappeta et al., 2000] R. V. Tappeta, J. E. Renaud, and J. F. Rodriguez. “An interact-

ive multiobjective optimization design strategy for multidisciplinary systems.” In

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference

and Exhibit, 41st, Atlanta, GA, AIAA-2000-1665. 2000.

[Tasic and Serdijn, 2002a] A. Tasic and W. Serdijn. “Concept of spectrum-signal transformation.”

In Proceedings IEEE International Symposium on Circuits and Systems. ISCAS 2002, 2002a.

[Tasic and Serdijn, 2002b] A. Tasic and W. A. Serdijn. “K-Rail diagrams: Comprehensive tool for

full performance characterization of voltage-controlled oscillators.” In Proceedings of Inter-

national Conference on Electronics, Circuits, and Systems. ISECS 2002, 2002b.

[Tripathi, 2002] A. Tripathi. “Challenges designing next-generation middleware systems.” Commu-

nications of the ACM, vol. 45(6):pp. 39–42, 2002.

[Verdu, 1998] S. Verdu. “Fifty years of Shannon theory.” IEEE Transactions on Information Theory,

vol. 44(6):pp. 2057–2078, 1998.

[Verhoeven and van den Bos, 2001] C. Verhoeven and C. van den Bos. “Reconfiguration of radio

receiver front-ends in mobile communications.” In Proceedings of the 8th Symposium on

Communications and Vehicular Technology. IEEE Benelux SCVT 2001, 2001.

http://www.ubicom.tudelft.nl/docs/Ubicom-Publication_2002_15.pdf
http://www.ubicom.tudelft.nl/docs/Ubicom-Publication_2002_15.pdf
http://ieeexplore.ieee.org/iel4/18/15554/00720531.pdf

156 BIBLIOGRAPHY

[VRML-97, 1997] VRML-97. Virtual Reality Model Language (VRML97) International Standard.

The VRML Consortium, 1997. ISO/IEC 14772-1:1997.

[Walpole et al., 1999] J. Walpole, C. Krasic, L. Ling, D. Maier, C. Pu, D. McNamee, and D. Steere.

“Quality of service semantics for multimedia database systems.” In Proceedings of the eight

working conference on Database Semantics: Semantic Issues in Multimedia Systems, pp.

393–412. 1999.

[Wan et al., 2001] M. Wan, Z. Hui, V. George, M. Benes, A. Abnous, V. Prabhu, and J. Rabaey.

“Design methodology of a low-energy reconfigurable single-chip dsp system.” Journal of

VLSI Signal Processing Systems for Signal, Image, and Video Technology, vol. 28:pp. 47–61,

2001.

[Wand et al., 1999] Y. Wand, V. C. Storey, and R. Weber. “An ontological analysis of the relationship

construct in conceptual modeling.” ACM Transactions on Database Systems, vol. 24(4):pp.

494–528, Dec. 1999.

[Wand and Weber, 1990] Y. Wand and R. Weber. “An ontological model of an information system.”

IEEE Transactions on Software Engineering, vol. 16(11):pp. 1282–1292, Nov. 1990.

[Wand and Weber, 1995] Y. Wand and R. Weber. “On the deep structure of information systems.”

Information Systems Journal, vol. 5(3):pp. 203–23, Jul. 1995.

[West and Schwan, 2001] R. West and K. Schwan. “Quality events: A flexible mechanism for qual-

ity of service management.” In Proceedings of the IEEE Real-Time Technology and Applica-

tions Symposium. 2001.

[Winkowski, 1998] J. Winkowski. “Processes of contextual nets and their characteristics.” Funda-

menta Informaticae, vol. 36:pp. 71–101, 1998.

[Winskel, 1993] G. Winskel. The formal semantics of programming languages: an introduction.

MIT Press, Cambridge, Mass., 1993.

[Wittgenstein, 1963] L. Wittgenstein. Philosophical investigations (Philosophische Untersuchun-

gen). Blackwell and Mott, Oxford, 1963, 2nd edn. Translation from German by Anscombe,

G.E.M.

[Wuu, 1993] S. Wuu, T.-Y.; Vrudhula. “A design of a fast and area efficient multi-input Muller C-

element.” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 1(2):pp.

215–219, 1993.

[Yuan and Nahrstedt, 2001] W. Yuan and K. Nahrstedt. “A middleware framework coordinating

processor/power resource management for multimedia applications.” In Proceedings of IEEE

Globecom 2001. 2001.

[Zhao et al., 2002] F. Zhao, J. Shin, and J. Reich. “Information-driven dynamic sensor collabora-

tion.” IEEE Signal Processing Magazine, vol. 19(2):pp. 61–72, 2002.

[Ziegenbein et al., 2002] D. Ziegenbein, K. Richter, R. Ernst, L. Thiele, and J. Teich. “SPI – a

system model for heterogeneously specified embedded systems.” IEEE Trans. Very Large

Scale Integration (VLSI) Systems, vol. 10(4):pp. 379–389, 2002.

[Zitzler and Thiele, 1999] E. Zitzler and L. Thiele. “Multiobjective evolutionary algorithms: A com-

parative case study and the strength Pareto approach.” IEEE Transactions on Evolutionary

Computation, vol. 3(4):p. 257, 1999.

[Zlatanova, 2001] S. Zlatanova. “3D modelling for augmented reality.” In Proceedings of the 3rd

ISPRS Workshop on Dynamic and Multi-Dimensional GIS, pp. 415–420. 2001.

file:citeseer.nj.nec.com/west01quality.html
file:citeseer.nj.nec.com/west01quality.html
file:citeseer.nj.nec.com/ziegenbein02spi.html
file:citeseer.nj.nec.com/ziegenbein02spi.html
http://citeseer.nj.nec.com/zitzler99multiobjective.html
http://citeseer.nj.nec.com/zitzler99multiobjective.html

Index of citations

Abdelzaher et al. [2002], 47, 145

Abraham and Rau [2000], 65, 145

Adis [2003], 143, 145

Aditya and Rau [2000], 65, 145

Agha [2002], 48, 145

Al-Karaki and Chang [2004], 143–145

Alexandrov and Lewis [2000a], 66, 145

Alexandrov and Lewis [2000b], 66, 145

Andrade and Fiadeiro [2001], 8, 145

Apt and Plotkin [1986], 92, 145

Aurrecoechea et al. [1999], 37, 45, 145

Bézivin and Gerbé [2001], 11, 146

Bakker et al. [2001], 29, 30, 145

Balling and Rawlings [2000], 66, 145

Bertsekas [1999], 73, 74, 76, 146

Bhattacharya and Bhattacharyya [2001], 84,

146

Bhattacharyya et al. [1999], 85, 146

Bhatti and Knight [1999], 47, 49, 146

Bianchi et al. [1998], 49, 146

Bilsen et al. [1996], 85, 107, 108, 146

Blake et al. [1998], 143, 146

Bohdanowicz and Weber [2002], 140, 146

Bohdanowicz [2000], 118, 146

Bohdanowicz [2001], 140, 146

Bosch [2004], 144, 146

Braithwaite [1962], 48, 146

Braun and Kroo [1997], 66, 146

Brock and Ackermann [1981], 82, 83, 92,

95, 146

Buck [1993], 85, 106, 147

Bunge [1977], iv, 5, 14–18, 147, 162

Bunge [1979], 5, 13, 14, 16, 17, 144, 147

Cassandras and Lafortune [1999], 82, 147

Chatterjee et al. [1997], 48, 49, 147

Chen et al. [2001], 47, 147

Cisco Systems [2003], 143, 147

Clements et al. [2003], 144, 147

Coello Coello [1999], 66, 147

Crochiere and Rabiner [1981], 99, 147

Crumley [1995], 56, 147

Czarnecki and Eisenecker [2000], 6, 147

David and Alla [2001], 82, 147

Deprettere et al. [2002], 85, 147

Dijkhoff et al. [2000], 23, 148

Dijkstra [1976], 92, 148

Dilts et al. [1991], 7, 40, 148

Dorf [1989], 57, 148

Dou [1652], 3, 148

Duran-Limon and Blair [2004], 143, 148

Edwards et al. [1997], 82, 85, 148

Elrad et al. [2001], 48, 148

Foundation [1984], 34, 148

Fowler [2003], 11, 148

Frodigh et al. [2001], 132, 148

Frølund and Koistinen [1998], 48, 148

Girod and Farber [1999], 127, 148

Goel et al. [1999], 49, 148

Goldie and Pinch [1991], 50, 148

Gould [1977], 9, 32, 148

Graaf et al. [2003], 144, 148

Green and Rosemann [2000], 19, 148

Gruber [1993], 6, 14, 15, 148

Haimes et al. [1989], 61, 71, 72, 148

Hansen et al. [2001], 49, 148

Healey [1999], 14, 148

157

158 INDEX OF CITATIONS

Heusdens et al. [2001], 54, 149

Hoare [1985], 82, 149

Hofstadter [1985], 7, 48, 149

Holland [1992], 9, 149

Holloway et al. [1997], 82, 149

Holzmann [1997], 112, 149

IEEE-1471 [2000], 11, 13, 14, 17, 18, 144,

149

Introna [2001], 56, 57, 149

Irvine [2001], 14, 149

Jorge et al. [2000], 66, 149

Jukic et al. [2004], 144, 149

Kahn and MacQueens [1977], 81, 86, 89,

149

Kahn [1974], 81, 82, 95, 149

Kailath et al. [2000], 47, 136, 149

Karaivanova et al. [1995], 66, 149

Kiczales et al. [1997], 6, 149

Kiczales et al. [2001], 6, 149

Kienhuis [1999], 33, 80, 86, 149

Kim et al. [2000], 66, 149

Kodiyalam and Sobieszczanski [2000], 66,

150

Koliver et al. [2002], 47, 150

Kon et al. [2002], 48, 150

Kroo and Manning [2000], 66, 150

Kumar et al. [2002], 59, 150

Kung [1988], 94, 150

Lagendijk [2000a], iii, 150

Lagendijk [2000b], 4, 150

Lakshman and Yavatkar [1996], 49, 150

Lan and Tewfik [1998], 127, 150

Lee and Messerschmitt [1987], 107, 150

Lee and Messerschmitt [1994], 118, 150

Lee and Parks [1995], 85, 86, 106, 150

Lee and Sabata [1999], 49, 150

Lee and Sangiovanni-Vincentelli [1998],

88, 150

Lee et al. [1999a], 66, 150

Lee et al. [1999b], 49, 150

Lee [2001], 85, 144, 150

Li and Nahrstedt [1998], 47, 150

Li et al. [1999], 47, 151

Lieberherr et al. [2001], 6, 58, 151

Lieverse et al. [1999], 43, 151

Lieverse et al. [2001], 80, 81, 83, 85, 86,

106, 151

Liu and Issarny [2004], 143, 151

Livne [1999], 65, 151

Loyall et al. [1998], 47, 151

M.D. Ercegovac [1989], 88, 151

Maier et al. [2001], 11, 14, 151

Malone and Crowston [1994], 56, 151

Margulis and Fester [1991], 32, 151

McCarthy [1963], 94, 95, 151

McCulloch [1945], 7, 151

McNamee et al. [2000], 47, 151

Miettinen [1999], 42, 62, 71, 151

Miller [1965], 88, 96, 151

Montanari and Rossi [1995], 82, 151

Moore [1965], 8, 151

Morse [1980], 62, 151

Mottahed and Manoochehri [2000], 65, 151

Muller [2001], 11, 151

Muller [2004], 13, 152

Nahrstedt et al. [1998], 50, 152

Nahrstedt et al. [2001], 45, 152

Nahrstedt [1999], 45, 152

Nair and Keane [1999], 67, 152

Nair and Keane [2000], 67, 152

Najjar et al. [1999], 85, 106, 152

Nemhauser and Wolsey [1988], 70, 152

Noble et al. [1997], 113, 152

Oosterhoff and de Ridder [2000], 26, 152

Oosterom et al. [2002], 26, 152

Opdahl and Henderson-Sellers [2001], 19,

152

Ossher and Tarr [2001], 6, 62, 152

Pamela [1993–2002], 89, 90, 152

Panangaden and Shanbhogue [1988], 94,

95, 152

Panangaden and Shanbhogue [1992], 93,

152

Panangaden and Stark [1988], 92, 152

Panangaden [1995], 83, 91, 93, 95, 152

Papadopoulos and Arbab [1998], 56, 153

Papalambros and Michelena [2000], 65,

153

Pareto [1896], 42, 153

Park et al. [2002], 84, 153

Parks [1995], 85, 86, 102, 106, 110, 153

159

Pasman and Jansen [2001], 26, 31, 55, 58,

133, 153

Pasman and Jansen [2002], 26, 153

Pasman [1999], 133, 153

Patterson and Hennessy [1990], 38, 153

Persa and Jonker [2000], 23, 153

Peterson [1981], 82, 153

Pouwelse et al. [1999], 29, 30, 153

Pouwelse et al. [2000], 117, 153

Pouwelse et al. [2001], 32, 153

Pouwelse et al. [2004], 143, 153

Pouwelse [2003], 144, 153

Procter [2000], 4, 153

Ptolemy [1995–2002], 86, 90, 153

RM-ODP-10746 [1998], 13, 14, 18, 154

Rabaey [2001], 88, 153

Rajkumar et al. [1997], 48, 49, 153

Rathgeb [1991], 59, 154

Rechtin and Maier [1997], 10, 154

Remondo and Niemegeers [2003], 143, 154

Roscoe [1997], 82, 87, 88, 154

Rosenman and Gero [1985], 62, 154

Russell [1989], 91, 95, 154

Russell [1990], 83, 90, 154

Saaty [1990], 31, 43, 66, 154

Salhi et al. [1996], 56, 154

Satyanarayanan [2001], 58, 154

Schmidt [2002], 48, 154

Schreiber et al. [2000], 65, 154

Shannon [1948], 50, 53, 154

Sobieszczanski et al. [1998], 66, 154

Staehli et al. [1995], 48, 155

Steenkiste [1999], 46, 47, 155

Steere et al. [2000], 47, 155

Stefanov et al. [2002], 85, 155

Stefanov et al. [2004], 144, 155

Stoilov and Stoilova [1999], 65, 155

Strehl et al. [2001], 84, 155

Stuhlmüller et al. [2000], 127, 128, 155

Taal et al. [2002], 11, 44, 47, 58, 155

Taal et al. [2003], 144, 155

Tappeta et al. [2000], 66, 155

Tasic and Serdijn [2002a], 133, 155

Tasic and Serdijn [2002b], 29, 133, 155

Tripathi [2002], 48, 155

VRML-97 [1997], 25, 155

Verdu [1998], 50, 155

Verhoeven and van den Bos [2001], 28,

34, 155

Walpole et al. [1999], 48, 156

Wan et al. [2001], 88, 156

Wand and Weber [1990], 14, 18, 156

Wand and Weber [1995], 18, 19, 156

Wand et al. [1999], 18, 19, 156

West and Schwan [2001], 49, 83, 156

Winkowski [1998], 82, 156

Winskel [1993], 87, 88, 156

Wittgenstein [1963], 57, 156

Wuu [1993], 96, 156

Yuan and Nahrstedt [2001], 37, 156

Zhao et al. [2002], 59, 156

Ziegenbein et al. [2002], 84, 90, 156

Zitzler and Thiele [1999], 65, 71, 156

Zlatanova [2001], 26, 156

de Bruin and Nienhuys-Cheng [1998], 89,

147

de Kock et al. [2000], 83, 90, 98, 150

van Dijk and van Reeuwijk [1999], 29, 30,

115, 147

van Dijk et al. [2000a], 11, 58, 147

van Dijk et al. [2000b], 11, 125, 147

van Dijk et al. [2003], 12, 147

van Gemund [1996], 33, 88, 89, 148

van Reeuwijk et al. [2001], 33, 154

van den Bos and Verhoeven [2001], 132,

146

van den Bos [1999], 34, 146

van der Aalst [1999], 19, 145

van der Schaaf and Lagendijk [2000], 120,

154

van der Schaaf et al. [2000], 69, 154

van der Schaaf et al. [2001], 126, 139, 154

van der Schaaf [1999], 4, 154

AOSD-web [2001–2002], 48, 145

Boijmans Van Beuningen [1849,1958], 2,

146, 148

Coello Coello and Christiansen [1999], 65,

147

Samenvatting

DE trend in communicatiesystemen is om steeds meer functionaliteit in steeds klei-

nere apparaten te stoppen. Een steeds groter wordend deel van de functionaliteit

moet daarbij ook nog eens inspelen op veranderingen in de omgeving en in de ge-

moedstoestand van de gebruiker; de applicaties moeten zogezegd context-aware zijn.

Met de huidige stand van de techniek gaat dit niet lukken, al was het alleen maar van-

wege het beperkte budget aan beschikbare middelen dat dergelijke apparaatjes bij zich

kunnen dragen. Echter het functierepertoire van moderne mobiele communicatiesys-

temen is groter dan de functionaliteit die tegelijkertijd beschikbaar moet zijn, boven-

dien kunnen functies op verschillende manieren worden uitgevoerd. Het gevolg is dat

communicatiesystemen in een voortdurende staat van verandering zijn (in flux). De-

ze dissertatie beschrijft een ontwikkelmodel om de samenwerking tussen functies te

coördineren, gegeven het beperkte budget aan beschikbare middelen, maar gebruikma-

kend van het brede functierepertoire. De rode draad in deze dissertatie is het Ubicom

systeem, een communicatiesysteem dat de werkelijkheid van de gebruiker verrijkt met

animaties.

Probleem

Complexe systemen worden gekenmerkt door een veelvoud van disciplines die nodig

zijn voor de ontwikkeling van dergelijke systemen. Bovendien zijn dergelijke syste-

men in een voortdurende staat van verandering. Een modern systeem wordt geacht

instantaan te reageren op wisselende omgevingscondities en/of veranderende eisen van

haar gebruikers.

Het opdelen van een systeem in componenten is een beproefde methode van com-

plexiteitsbeheersing. Dit stelt echter hoge eisen aan de coördinatie van diverse compo-

nenten. Coördinatie is de lijm die van losse componenten weer een systeem maakt. Er

bestaan goede manieren om grote homogene systemen te ontwikkelen. Dergelijke ma-

nieren maken gebruik van de homogeniteit om de complexiteit te beheersen, meestal

met behulp van een centrale controller. Niet homogene, zogenaamde heterogene, sys-

temen vragen echter een oplossing zonder centrale controller, onder andere vanwege

het feit dat de schaalbaarheid van centraal beheerde oplossingen te wensen overlaat.

In deze dissertatie beschouwen we een gedistribueerde aanpak, waarin alle compo-

nenten tezamen verantwoordelijk zijn voor de kwaliteit van het systeem. De centrale

161

162 Samenvatting

vraag is dus hoe de coödinatie tussen de componenten effectief kan worden geregeld.

We zoeken nadrukkelijk naar een flexibel ontwikkelmodel. Dit model moet niet alleen

voldoen aan de eis van het systeem om context-aware te zijn, we willen ook de moge-

lijkheid hebben om nieuwe ontwikkelingen op enig gebied van de betrokken disciplines

eenvoudig op te kunnen nemen.

Resultaat

Deze dissertatie heeft drie pijlers: aspect specifieke beschrijving van communicerende

systemen, een onderhandelingsmodel ten behoeve van de coördinatie en de noodzaak

om uiteindelijk compositie te kunnen plegen.

Systemen zijn concrete “dingen” met concrete eigenschappen. De waardering van

een eigenschap is echter context afhankelijk. Het hangt ervan af hoe je een systeem

benadert en hoe je een systeem in zijn omgeving plaatst. Om grip op de zaak te krij-

gen introduceren we het ontologiemodel van Bunge. Dit model biedt de mogelijkheid

om systemen te beschrijven vanuit verschillende perspectieven, waarbij de relaties tus-

sen de beschrijvingen onderling expliciet worden gemaakt. We gebruiken het Ubicom

systeem om de verschillende beschrijvingen te illustreren. Het gebruik van specifieke

beschrijvingen maakt dat een component een consistent beeld kan verkrijgen van zijn

omgeving (context) zonder dat het nodig is daarvoor een meta-model te ontwikkelen.

Merk op dat naburige componenten overlappende context hebben.

Bovenstaande observaties zijn geı̈mplementeerd in een onderhandelingsmodel: het

ARC model. Dit model berust op drie begrippen: abstractie, adaptatie, en coöperatie.

Componenten die het ARC model ondersteunen gebruiken een model (abstractie) om

hun omgevingskenmerken te beschrijven: verstoring, capaciteit en gebruik van mid-

delen. Met dit model kunnen componenten communiceren met naburige componenten

om een beeld te krijgen (adaptatie) – en te geven (coöperatie) – van de omgeving waarin

ze opereren. De communicatie verloopt via een drie-staps protocol: vraag, aanbod en

contract. Het uiteindelijke contract is typisch het resultaat van een zogenoemd multi-

objective optimalisatie probleem. Vanwege het feit dat een aanbod meerdere opties

bevat hoeft er niet eindeloos te worden onderhandeld

Een specifieke implementatie van het ARC model wordt gedaan in ons CAPN re-

kenmodel. In dit model beschouwen we datastromen die zo nu en dan moeten reageren

op externe gebeurtenissen. CAPN is in beginsel een niet deterministisch rekenmodel,

echter het model kan worden gemodelleerd in een rekenmodel dat wel deterministisch,

het Kahn model. Deze modellering levert een expliciete relatie op tussen het systeem

en zijn context. In specifieke gevallen kunnen we een symbolische expressie afleiden

die deze relatie beschrijft. De expliciete contextrelatie maakt het mogelijk om op een

deterministische wijze compositie te plegen.

Acknowledgement

This dissertation is the result of research conducted in the Ubicom programme. In the

dissertation I emphasise the multidisciplinary character of the project in more than one

way. For one, I write “we” instead of “I”, because I feel this research is the result of

joint work.

I am in depth to many people. I thank Prof. Ed Deprettere for inviting me to return

to Delft University of Technology after a few years in industry. I thank the Ubicom

project management team for offering me the position of system architect and giving

the opportunity to develop the position in an unforeseen interesting direction. The wide

scope of the project taught me many valuable things, for one thing: you don’t always

have to be in the right.

Prof. Henk Sips and Prof. Inald Lagendijk had a major positive influence on this

dissertation as my promotors. In our many discussions they insisted on being precise,

focused, and concrete. Initially we faced an exponentially growing multi-something

problem: multidisciplinary, multilevel multi-optimisation, etc. Gradually we got a grip

on the problem. I think we succeeded.

The ARC framework described in this dissertation is joined work with Dr. Koen

Langendoen. The validation and finesse though, is due to many invaluable discussions

I had with all researchers, Ph.D students, and graduate students involved in the Ubicom

project. The Ubicom community was open minded and willing to think, act, and con-

tribute. Thanks!

The CAPN model of computation would not have been developed without the in-

volvement of Prof. Ed Deprettere, Ir. Paul Lieverse, and Dr. Arjen van Gemund.

I unscrupulously borrowed ideas from the many vivid discussions I had with my

(part-time) roommates and neighbours: Dr. Arjan van der Schaaf, Ir. Maarten Ditzel,

Ir. Jacco Taal, Ir. Johan Pouwelse, Dr. Wouter Pasman, and Dr. Koen Langendoen.

Finally I thank my wife and children for their (im)patience and understanding; “sit

Heit alwer yn syn hok?”.

Hylke W. van Dijk,

July 4th, 2004,

Katlijk.

163

Curriculum Vitae

Hylke W. van Dijk was born in Wommels (1965). He received an ing. degree in ships

engineering (1987), but set sail as a programmer of educational software for the next

two years. In 1993, Hylke received an Ir. degree from the network theory (Electrical

Engineering) section of Delft University of Technology. He continued to work on

parallel implementations of Jacobi-type algorithms (SVD, EVD, RLS, etc.). In 1996,

Hylke joined Philips to educate customers about the potentials of an high-end multi

media processor: TriMedia. In 1998 he returned to Delft University of Technology as

a system architect for the Ubicom programme; a multidisciplinary research program

aiming at mobile visual augmented reality. Currently, Hylke is postdoc in the Soft-

ware Engineering group of Delft University of Technology; still working on complex

embedded systems their design, evaluation, and integration.

164

	Cover
	Contents
	Summary
	Introduction
	Communication systems
	Complex systems
	Democratic processing
	System Architect
	Outline

	Complex systems in perspective
	Ontology
	Ubicom
	Discussion

	Negotiated Quality of Service
	Views on QoS
	Adaptive Resource Contracts (ARC)
	Related work
	ARC structures: compositionality
	ARC Discussion
	ARC components

	Mathematical consideration of QoS
	Vector problem definition
	Related Work
	ARC structures: compositionality
	Case study
	Conclusion

	Context-aware process networks
	Kahn process networks
	Indeterminate processes
	CAPN semantics
	Analysis and application of CAPN

	Ubicom case studies
	Cascade structure
	Parallel structure
	ARC interfaces: Ubicom

	Conclusions
	Results
	Reflection
	Future improvements

	Bibliography
	Index of citations
	Samenvatting
	Acknowledgement
	Curriculum Vitae

