
contributed articles

86 COMMUNICATIONS OF THE ACM | JANUARY 2014 | VOL. 57 | NO. 1

THE TRANSACTION ABSTRACTION encapsulates the
mechanisms used to synchronize accesses to data
shared by concurrent processes, dating to the 1970s
when proposed in the context of databases to ensure
consistency of shared data.7 This consistency was
determined with respect to a sequential behavior
through the concept of serializability;25 concurrent
accesses must behave as if executing sequentially or
be atomic. More recently, researchers have derived
other variants (such as opacity13 and isolation30)
applicable to different transactional contexts.

The transaction abstraction was first considered
as a programming language construct in the form of
guards and actions by Liskov and Scheifler more than
30 years ago,22 then adapted to various programming
models, including Eden,1 ACS,12 and Argus.21 The
first hardware support for a transactional construct
was proposed in 1986 by Tom Knight,19 basically
introducing parallelism in functional languages by
providing synchronization for multiple memory

words. Later, the notion of transaction-
al memory was proposed in the form
of hardware support for concurrent
programming to remedy the trickiness
and subtleties of using locks (such as
priority inversion, lock-convoying, and
deadlocks)18 (see Figure 1).

Since the advent of multicore ar-
chitectures approximately 10 years
ago, the very notion of transactional
memory has become an active topic
of research (http://www.cs.wisc.edu/
trans-memory/biblio/list.html). Hard-
ware implementations of transaction-
al systems18 turned out to be limited
by specific constraints programmers
could “abstract away” only through
unbounded hardware transactions.
However, purely hardware implemen-
tations are complex solutions most in-
dustrial developers no longer explore.
Rather, a hybrid approach was adopted
through a best-effort hardware compo-
nent that must be complemented by
software transactions.4

Software transactions were origi-
nally designed in the mid-1990s as a
reusable and composable solution
to execute a set of shared memory
accesses fixed prior to execution.29
More recently, they were applied to
handle when the control flow is not
predetermined.17 Early investiga-
tions of the performance of software
transactions questioned their ability
to leverage multicore architectures.2
However, these results were revisited
by Dragojevic et al.,6 showing a high-
ly optimized software-transactional

Democratizing
Transactional
Programming

DOI:10.1145/2541883.2541900

Control transactions without compromising
their simplicity for the sake of expressiveness,
application concurrency, or performance.

BY VINCENT GRAMOLI AND RACHID GUERRAOUI

 key insights

 Though powerful, the transaction paradigm

can sometimes restrict application

concurrency and performance.

 Democratizing transactional programming

aims to make the paradigm useful for novice

programmers who want concurrency to be

transparent and for expert programmers

who are able to address its underlying

challenges while compromising neither

composition nor correctness.

 The key challenge is how to offer multiple

synchronization semantics of sequences

of shared data accesses without

compromising safety and liveness.

JANUARY 2014 | VOL. 57 | NO. 1 | COMMUNICATIONS OF THE ACM 87

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 B
Y

 A
L

I
C

I
A

 K
U

B
I

S
T

A
/A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

memory (STM) with manually instru-
mented benchmarks and explicit
privatization whose throughput still
outperforms sequential code by up
to 29 times on SPARC processors with
64 concurrent threads and by up to
nine times on x86 with 16 concurrent
threads. However, performance re-
mains the main obstacle preventing
wide adoption of the transaction ab-
straction for general-purpose concur-
rent programming.

In classic form, transactions pre-
vent expert programmers from ex-
tracting the same level of concurrency
possible through more primitive syn-
chronization techniques. This obser-
vation is folklore knowledge, yet we
show for the first time, in this article
through a simple example, that this
limitation is inherent in the trans-
action concept in its classic form ir-
respective of how it is used. It can be
viewed as the price of bringing concur-
rency to the masses and making it pos-
sible for average programmers to write
parallel programs that use shared
data. Nevertheless, some program-

mers are indeed concurrency experts
and might find it frustrating if they are
not able to use their skills to enhance
concurrency and performance.

Not surprisingly, researchers have
been exploring relaxation of the clas-
sic transaction model23,24,27 that en-
ables more concurrency. Doing so
while keeping the simplicity of the
original model has proved to be a
challenge; the idea is to preserve the
original sequential code while com-
posing applications devised by dif-
ferent programmers, possibly with
different skills.

Here, we endorse mixing differ-
ent transaction semantics within
the same application, with strong
semantics to be used by novice pro-
grammers and weaker semantics by
concurrency experts. The challenge
is to ensure the polymorphic system
mixing different semantics still en-
ables code reuse, composing it in a
smooth manner. Before describing
how such mixing can be addressed,
we take a closer look at the meaning
of reuse and composition.

Inherent Appeal of Transactions

The transaction paradigm is appeal-
ing for its simplicity, as it preserves
sequential code and promotes concur-
rent code composition.

Algorithm 1. An implementation of a

linked list operation with transactions

1: tx-contains(val)
p
:

2: int results;

3: node *prev, *next;

4: transaction {

5: curr = set → head;

6: next = curr → next;

7: while next → val < val do

8: curr = next;

9: next = curr → next;

10: result = (next → val ==

val);

11: }

12: return result;

Preserving sequentiality. Transac-
tions preserve the sequential code in
that their use does not alter it beyond
segmenting it into several transac-
tions. More precisely, the regions of
sequential code that must remain

contributed articles

88 COMMUNICATIONS OF THE ACM | JANUARY 2014 | VOL. 57 | NO. 1

transactions, a programmer is able to
compose the removal of a name and
creation of a new name into a rename
action. If a user renames a file from
one directory d1 to another directory d2
and another user renames a file from
d2 to d1, directories must be protected
to avoid deadlocks; that is, Bob must
first understand the locking strategy
of Alice to ensure the liveness of his
own operations. For this reason, the
header of the Linux kernel file mm/
filemap.c includes 50 lines of com-
ments explaining the locking strategy.
Lock-free techniques are even more
complex, requiring a multi-word com-
pare-and-swap operation to make the
two renaming actions atomic while re-
taining concurrency.11

In contrast, a transactional system
detects a conflict between the two re-
naming transactions and lets only one
of them resume and possibly commit;
the other is restarted or resumed later.
Deciding on a conflict-resolution strat-
egy is the task of a dedicated service, or
“contention manager,” for which vari-
ous strategies and implementations
have been proposed.28

Inherent Limitation of Transactions

A transaction delimits a region of ac-
cesses to shared locations and pro-
tects the set of locations accessed in
this region. By contrast, a (fine-grain)
lock generally protects a single loca-
tion, even though it is held during a
series of accesses, as depicted in Al-
gorithm 3. This difference is crucial,
as it translates into the differences
between transactions and locks in
terms of expressiveness, concurrency,
and performance.

Lacking expressiveness. To rein-
force our point that transactions are
inherently limited in terms of expres-
siveness we define “atomicity” as a bi-

atomic in a concurrent context are sim-
ply delimited, typically by a transac-
tion{…} block, as depicted in Algo-
rithm 1; the original structure depicted
in Algorithm 2 remains unchanged.

Programming with transactions
shifts the inherent complexity of con-
current programming to implemen-
tation of the transaction semantics
that must be done once and for all.
Due to transactions, writing a concur-
rent application follows a divide-and-
conquer strategy where experts write
a live, safe transactional system with
an unsophisticated interface, and
the novice writes a transaction-based
application or delimits regions of se-
quential code.
Algorithm 2. The linked list node
1: Transactional structure node:

2: intptr_t val;

3: struct node * next;

4: //Metadata management is

implicit

5: Lock-based structure node_lk:

6: intptr_t val;

7: struct node_lk * next;

8: volatile pthread_spinlock_

tlock;

Traditional synchronization tech-
niques generally require programmers

first re-factorize the sequential code.
Using lock-free techniques, they typi-
cally use subtle mechanisms (such as
logical deletion14) to prevent incon-
sistent memory de-allocations. Using
lock-based techniques, they usually ex-
plicitly declare and initialize all locks
before using them to protect memory
accesses, as in Algorithm 2 line 8.

The transaction abstraction hides
both synchronization internals and
metadata management. If locks or
timestamps are used internally, they
are declared and initialized transpar-
ently by the transactional system. All
memory accesses within a transaction
block are transparently instrumented
by the transactional system as if they
were wrapped. The wrappers can then
exploit the metadata, locks, and time-
stamps to detect conflicting accesses
and potentially abort a transaction.

Enabling composition. Transac-
tions allow Bob to compose existing
transactional operations developed by
Alice into a composite operation that
preserves the safety and liveness of its
components15 (see Figure 2).

Alternative synchronization tech-
niques do not facilitate composition.
Consider a simple directory abstrac-
tion mapping a name to a file. With

Figure 1. History of transactions.

2010s1980s1970s

1990s

Almes et al. 1985, Liskov 1985

2000s

Knight 1986

Harris et al. 2005

Felber et al. 2009

Liskov and Scheifler 1982

Papadimitriou 1979

Eswaran et al. 1976 Guerraoui et al. 1992

Herlihy and Moss 1993

Shavit and Touitou 1995

Dragojevic et al. 2011

Herlihy et al. 2003

Figure 2. Bob composes Alice’s component operations remove and create into a new

operation rename that preserves the safety and liveness of its components.

Alice

rename(f1, f2)

remove(f1)

create (f2)
A

B

Bob

Figure 3. Transactions preclude 20%

of the correct schedules of a simple

concurrent linked list program.

 Admitted
 schedules

 Precluded
 schedules

contributed articles

JANUARY 2014 | VOL. 57 | NO. 1 | COMMUNICATIONS OF THE ACM 89

nary relation over shared memory ac-
cesses π and π′ of a single transaction
within an execution α: atomicity(π, π′)
is true if π and π′ appear in α as if both
occur at one common indivisible point
of the execution. It is important to note
this relation is not transitive; that is,
atomicity(π1, π2) ∧ atomicity(π2, π3) 
atomicity(π1, π3).

Algorithm 3. An implementation of a

linked list operation with locks

1: lk-contains(val)
p
:

2: int results;

3: node_lk *prev, *next;

4: lock(&set → head → lock);

5: curr = set → head;

6: lock(&curr → next → lock);

7: next = curr → next;

8: while next → val < val do

9: unlock(&curr → lock);

10: curr = next;

11: lock(&next → next →

lock);

12: next = curr → next;

13: unlock(&curr → lock);

14: result = (next → val ==

val);

15: unlock(&next → lock);

16: return result;

As π2 may appear to have executed at
several consecutive points of the execu-
tion, the points at which π1 and π2 ap-
pear to have occurred may be disjoint
from the points at which π2 and π3 ap-
pear to have occurred.

A process locking x (with mutual
exclusion) during the point interval
(p1; p2) of α, in which it accesses x guar-
antees any of its other accesses during
this interval will appear atomic with
its access to x; for example, in the fol-
lowing lock-based program, where
r(x) and w(x) denote (respectively)
read and write accesses to shared
variable x, process (or more precisely
thread) Pl guarantees atomicity(r(x);
r(y)) and atomicity(r(y), r(z)) but not
atomicity(r(x), r(z)):

Pl = lock(x) r(x) lock(y) r(y) unlock(x)
lock(z) r(z) unlock(y) unlock(z).

Conversely, a process Pt executing
the following transaction block ensures
atomicity(r(x); r(y)), atomicity(r(y), r(z))
but also atomicity(r(x), r (z)), the transi-
tive closure of the atomicity relations
guaranteed by Pl. Using classic trans-

actions, there is no way to write a pro-
gram with semantics similar to Pl or
ensure the two former atomicity rela-
tions without also ensuring the latter.

Pt = transaction{ r(x) r(y) r(z) }.

This lack of expressiveness is not relat-
ed to the way transactions are used but
to the transaction abstraction itself.
The open/close block somehow blindly
guarantees that all the accesses it en-
capsulates appear as if there was an in-
divisible point in the execution where
all take effect.

Effect on concurrency. Not surpris-
ingly, the limited expressiveness of
transactions translates into a concur-
rency loss; for example, consider the
transactional linked list program in
Algorithm 1. Clearly, the value of the
head → next pointer observed by the
transaction (line 6) is no longer impor-
tant when the transaction is checking
whether the value val corresponds to a
value of a node further in the list (line
7), yet a concurrent modification of
head → next can invalidate the transac-
tion when reading next → val, as trans-
actions enforce atomicity of all pairs of
accesses; this is a false-conflict leading
to unnecessary aborts. Conversely, the
hand-over-hand locking program of Al-
gorithm 3 allows such a concurrent up-
date (line 7) when checking the value
(line 8), starting from the second itera-
tion of the while-loop.

To quantify the effect of the limited
expressiveness of transactions on the
number of accepted schedules, con-
sider a concurrent program where the
process Pt executes concurrently with
processes P1 = transaction{w(x)}
and P2 = transaction{w(z)}. As there
are four ways to place the single access
of one of these two processes between
accesses of Pt and five ways to place the
remaining one in the resulting sched-
ule, there are 20 possible schedules.
Note that all are correct schedules of a
sorted linked list implementation.

However, most transactional
memory systems guarantee each of
their executions is equivalent to an
execution where sequences of reads
and writes representing transac-
tions are executed one after another
(serializability) in an order where
no transaction terminating before
another start is ordered after (strict-

Performance
remains the main
obstacle preventing
wide adoption of
the transaction
abstraction for
general-purpose
concurrent
programming.

contributed articles

90 COMMUNICATIONS OF THE ACM | JANUARY 2014 | VOL. 57 | NO. 1

contains, add, remove, and size
operations with an update ratio and a
size ratio of 10%, respectively. As the
existing lock-free data structures do
not support atomic size we had to use
the copyOnWriteArraySet work-
around of this package, comparing
it against the linked list implementa-
tion building on TL2.

Figure 4 uses the throughput (com-
mitting transactions per time unit)
of the bare sequential implementa-
tion (without synchronization) as the
baseline, illustrating the throughput
speedup (over sequential) a program-
mer can achieve through either the
classic transactions or the existing
java.util.concurrent package.
When its normalized throughput is 1,
the throughput of the corresponding
concurrent implementation equals the
throughput of the sequential imple-
mentation. In particular, the graph in-
dicates the existing collection performs
2.2x faster than classic transactions on
64 threads. The poor performance of
classic transactions is due to their lack
of concurrency, a problem addressed in
the next section.

Democratizing Transactions

Traditionally, transactional systems
ensure the same semantics for all their
transactions, independent of their role
in concurrent applications. However,
as discussed, these semantics are over-
ly conservative and, by limiting concur-
rency, could also limit performance.
Without additional control, skilled
programmers would be frustrated by
not being able to obtain highly efficient
concurrent programs. To adequately
exploit the concurrency allowed by the
semantics of an application, program-
mers must be willing to trade simplic-
ity for additional control.

To be a widely used program-
ming paradigm, the transactional
abstraction must be democratized,
or universally useful and available
to all programmers. Not only should
transactions be an off-the-shelf so-
lution for novices, they should also
permit additional control to experts
in concurrent programming. Simple
default semantics should be able to
run concurrently with transactions
of more complex semantics, captur-
ing more subtle behaviors. The con-
currency challenge is twofold: The

To adequately
exploit the
concurrency
allowed by the
semantics of
an application,
programmers
must be willing to
trade simplicity for
additional control.

ness). (This guarantee is often satis-
fied, as a large variety of transactional
memory systems ensures opacity,13 a
consistency criterion even stronger
than this strict serializability, as it
additionally requires noncommitted
transactions never observe an incon-
sistent state.) These transactional
memory systems preclude four of
these schedules (see Figure 3): those
in which Pt accesses x before P1 (Pt is
serialized before P1, or Pt ≺ P1), P1 ter-
minates before P2 starts (P1 ≺ P2) and
in which P2 accesses z before Pt (P2 ≺ Pt).
This limitation translates here into
concurrency loss.

Worth noting is that a programmer
could exploit weaker transactional
memory systems to export these se-
rializable histories.10,26 Such systems
would offer a transaction that might
not be appropriate for all possible
uses; for example, it might be pos-
sible that one transaction reads an
inconsistent state before aborting.
In fact, the concurrency limitation is
due to transactional memory systems
providing a unique but general-pur-
pose transaction.

Effect on performance. The meta-
data management overhead of soft-
ware transactions when starting,
accessing shared memory, and com-
mitting is typically expected by the
programmer to be compensated by
exploiting concurrency.6 In scenarios
like the linked list program outlined
earlier where transactions fail to fully
exploit all available concurrency, their
performance cannot compete with
other synchronization methodologies.
Recall this is due to the expressiveness
limitation inherent in transactions;
the limitation is thus not tied to the
way transactions are used but to the
abstraction itself.

To depict the effect on perfor-
mance, we compared the existing Java
concurrency package to the classic
transaction library TL25 on a 64-way
Niagara 2 SPARC-based machine.
Note this is the Java implementation
of the TL2 algorithm that detects
conflicts at the level of granular-
ity of fields and is distributed within
DeuceSTM,20 a bytecode instrumen-
tation framework offering a suite of
TM libraries. We present the results
obtained on a simple Collection
benchmark of 212 elements providing

contributed articles

JANUARY 2014 | VOL. 57 | NO. 1 | COMMUNICATIONS OF THE ACM 91

transaction abstraction must allow
expert programmers to easily express
hints about the targeted application
semantics without modifying the se-
quential code, and the semantics of
each transaction must be preserved,
even though multiple transactions of
different semantics can access com-
mon data concurrently. This second
property, semantics, is crucial but
makes development of a transactional
system even more complex.

Relaxation and sequentiality. Sev-
eral transaction models have been
proposed as a relaxed alternative to
the classic one. Examples are open
nesting24 and transactional boosting.16
Both exploit commutativity by con-
sidering transactional operations at
a high level of abstraction. Both also
acquire abstract locks to apply nested
operations and require the program-
mer to specify compensating actions
or inverse operations to roll back these
high-level changes. To avoid deadlocks
due to acquisition of new locks at abort
time, the programmer may follow lock-
order rules or exploit timeouts. Alter-
natively, other approaches extend the
interface of the transactional memory
system with explicit mechanisms
like functions light-reads, unit-
loads, snap, and early release; for
example, programmers can use early
release explicitly to indicate from
which point of a transaction all con-
flicts involving its read of a given loca-
tion can be ignored.17 The challenge is
thus to achieve the same concurrency
achievable through these models while
preserving sequential code and com-
position of transactions.

The elastic transaction model8
aims to preserve sequential code
and guarantee composition, provid-
ing, together with the classic form
of transaction model, a semantics of
transactions that enables program-
mers to efficiently implement search
structures. As in a classic transaction,
the programmer must delimit the
blocks of code that represent elas-
tic transactions, preserving sequen-
tial code as depicted in Algorithm 4.
Elastic transactions bypass deadlocks
by updating memory only at commit
time, avoiding the need to acquire ad-
ditional locks upon abort.

Unlike classic transactions, during
execution, an elastic transaction can

be cut (by the elastic transactional sys-
tem) into multiple classic transactions,
depending on the conflicts it detects.

Algorithm 4. Java pseudocode of the

add() operation with elastic trans-

actions
1: public boolean add (E e):

2: transaction(elastic) {

3: Node(E)prev = null

4: Node(E)prev = head

5: E v

6:

7: if next == null then // empty

8: head = newNode(E)(e,next)

9: return false

10: while (v = next.getVal-

ue()).compareTo(e) < 0 do

// non-empty

11: prev = next

12: next = next.getNext()

13: if next == null then

break

14: if v.compareTo(e) == 0 then

15: return false

16: if prev == null then

17: Node(E)n = new Node(E)

(e,next)

18: head = n

19: else prev.setNext(new

Node(E)(e,next))

20: return true

21: }

Consider the following history of
shared accesses in which transaction
j adds 1 while transaction i is parsing
the data structure to add 3 at its end:

H = r(h)i, r(n)i, r(h)j, r(n)j, w(h)j, r(t)i, w(n)i.

This history is neither serializable25
nor opaque13 since there is no history
in which transactions i and j execute
sequentially and where r(h)i occurs be-
fore w(h)j and r(n)j occurs before w(ni;
the high-level insert operations of this
history are atomic. A traditional trans-
actional scheme would detect two
conflicts between transactions i and
j and prevent them both to commit.
Nevertheless, history H does not vio-
late the correctness of the integer set;
1 appears to be added before 3 in the
linked list, and both are present at the
end of the execution.

The programmer must label trans-
action i as being elastic to solve this
issue. History H can then be viewed
as the combination of several transac-
tions:

f(H) = [r(h)i, r(n)i]s1, r(h) j, r(n) j, w(h) j,
[r(t)i, w(n)i]s2.

In f(H), elastic transaction i is cut into
two transactions: s1 and s2. Crucial
to the correctness of this cut, no two
modifications on n and t have occurred
between r(n)s1 and r(t)s2. Otherwise, the
transaction would have to abort.

These cuts enable more concurren-
cy than what an expert programmer
could accomplish with classic trans-
actions for two main reasons: First,
the cuts are tried dynamically at run-
time depending on the interleaving of

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
1 2 8

Number of threads

N
o

rm
a

li
ze

d
 t

h
ro

u
g

h
p

u
t

324 16 64

Figure 4. Throughput (normalized over the sequential throughput) of classic transactions

and existing concurrent collection.

 Collection
 Classic transactions

contributed articles

92 COMMUNICATIONS OF THE ACM | JANUARY 2014 | VOL. 57 | NO. 1

ate (not too recent) version consistent
with this start time.

Algorithm 5. Java pseudocode of the

size() operation with a snapshot

transaction

1: public int size():

2: transaction(snapshot) {

3: int n = 0

4: Node(E)curr = head

5:

6: while curr ≠ null do

7: curr = curr.getNext()

8: n++

9: return n

10: }

However, the mixture of the snapshot
with classic and elastic transactions
requires the transaction system make
sure all updates (elastic and classic) re-
cord the old value before overriding it.

The mixture problem might be
more subtle if a relaxed transaction ig-
nores a conflict involving a concurrent
strong transaction that cannot ignore
it. Elastic and opaque transactions typ-
ically handle this issue for read-write
conflicts by requiring only the reading
transaction decides on conflict reso-
lution. Unlike writes, reads are idem-
potent so the semantics of the writing
transaction is never altered by the out-
come of the conflict resolution. Our
solution relies on two features: having
invisible reads, so the writing transac-
tion does not observe the conflict, and

enforcing commit-time validation, so
the reading transaction always detects
the conflict.

A consequent algorithmic chal-
lenge relates to the composition of
the semantics. Bob can directly nest
Alice’s elastic transactions into an-
other transaction, choosing to label it
as elastic, snapshot, or classic, guar-
anteeing atomicity and deadlock free-
dom of its own operation; for exam-
ple, one can imagine Alice provides
an elastic contains(x) Bob compos-
es into a snapshot containsAll(C)
method that returns successfully only
if all elements of a collection C are
present. For safety’s sake, the stron-
gest semantics of the related transac-
tions (in this case the snapshot trans-
action) applies to all methods. Hence,
a novice programmer, unaware of the
various semantics, will always obtain
a safe composite transactional meth-
od whose opacity would be conveyed
to inner transactions. Which seman-
tics to apply (when the semantics are
incomparable) is an open question.

Effect on performance. To inves-
tigate the potential benefit of mixing
transactions of different semantics,
we ran the mixed transactions on the
collection benchmarks in the exact
same settings as before and reported
both the new and the previously ob-
tained results (see Figure 5). Each of
the three parse operations—con-

tains, add, and remove—is imple-

accesses; as this interleaving is gener-
ally nondeterministic, the program-
mer cannot just split transactions
prior to execution and ensure correct
executions. Second, as elastic trans-
actions rely on dynamic information,
they exploit more information than
static commutativity of operations;
for example, elastic transactions en-
able additional concurrency between
two linked list adds by allowing the
history involving transactions t1 and
t2: r(h)t1, r(n)t2, w(h)t2, w(n)t1 in which
neither r(n)t2 and w(n)t1 nor r(h)t1 and
w(h)t2 commute.

Composition and mixture of se-
mantics. The more semantics the
transactional system provides, the
more control it gives expert program-
mers, allowing them to boost per-
formance. The opacity semantics of
classic transactions benefit the novice
programmer, as they are always safe to
use. The elastic transactions can bring
added performance in search struc-
tures. A programmer can also consid-
er the mix of the opaque classic and
the relaxed elastic models with a new
semantics we call “snapshot” seman-
tics. This mix is particularly appealing
for obtaining (efficiently) a result that
depends on numerous elements of a
data type (such as a Java Iterator); see,
as an example, the snapshot transac-
tion implementing a size method in
Algorithm 5.

At first glance, providing as many
forms as possible in a single toolbox
system may seem to be the key solu-
tion for developing concurrent ap-
plications, but the challenge involves
the mixture of these semantics. Mix-
ing them requires letting them access
the same shared data concurrently. It
is crucial that the semantics of each
individual transaction is not violated
by the execution of concurrent trans-
actions of potentially different se-
mantics; for example, the key idea for
highly concurrent snapshot seman-
tics is to exploit multi-version concur-
rency control to let snapshots commit
while concurrent (elastic or classic)
updates commit. A typical implemen-
tation of a snapshot is to exploit a
global counter and a version number
per written value so the transaction
can fetch the counter at start time and
decide (while reading new locations)
to return a value that has an appropri-

Figure 5. Throughput (normalized over the sequential throughput) of mixed transactions,

classic transactions, and a collection package.

10

9

8

7

6

5

4

3

2

1

0
1 2 8

Number of threads

N
o

rm
a

li
ze

d
 t

h
ro

u
g

h
p

u
t

324 16 64

 Collection
 Classic transactions
 Snapshot+Elastic+Classic

contributed articles

JANUARY 2014 | VOL. 57 | NO. 1 | COMMUNICATIONS OF THE ACM 93

mented through an elastic transac-
tion, and the size operation, which
returns an atomic snapshot of the
number of elements, is implemented
through a snapshot transaction. The
mixed transaction model performs
4.3x faster than the classic transaction
model, TL2, improving on the concur-
rent collection package by 1.9x on 64
threads. Due to snapshot semantics,
the size operation commits more fre-
quently than with a classic transac-
tion. The reason is a snapshot size
could return values that were concur-
rently overridden, where classic size
would be aborted. Even though the
overhead of polymorphic transactions
makes them slower than the concur-
rent collection package at low levels of
parallelism, the performance scales
well, compensating for the overhead
effect at high levels of parallelism.

The mixture of elastic and clas-
sic transactions has been shown to
be effective in a non-managed lan-
guage—C/C++—as well. It improved
the performance of the tree library
implemented in the transactional va-
cation-reservation benchmark by 15%;3
it also improved the performance of a
list-based set running on a many-core
architecture by about 40x.9

Conclusion

The transaction is a proven, appealing
abstraction that has been the main
topic of many practical and theoreti-
cal achievements in research, despite
never being widely adopted in prac-
tice. The reason the transaction ab-
straction is appealing as a program-
ming construct is also the reason it
might not be used in practice. That is,
the appeal of transactions comes from
their simplicity and bringing multi-
core programming to novice program-
mers. Average programmers can write
concurrent code and, with little effort,
use transactions to protect shared
data against incorrectness. However,
the simplicity of the concept is also
its main source of rigidity, preventing
expert programmers from exploiting
their skills and enabling as much con-
currency as they could, thereby limit-
ing performance scalability. This limi-
tation is inherent to the concept, not
simply a matter of use.

Here, we have suggested a way out
by truly democratizing the transaction

concept and promoting the coexis-
tence of different transactional seman-
tics in the same application. Although
novice programmers would still be
able to exploit the simplicity of the
transaction abstraction in its original
(strong and hence simple) form, expert
programmers would be able to exploit,
whenever possible, more expressive se-
mantics of relaxed transaction models
to gain in concurrency.

As this polymorphism helps expert
programmers take full advantage of
transactions, they can likewise devel-
op new efficient libraries that moti-
vate other programmers to adopt this
abstraction. It also raises new chal-
lenges for guaranteeing the various
semantics can be used effectively in
the same system.

References

1. Almes, G.T., Black, A.P., Lazowska, E.D., and Noe,
J.D. The Eden system: A technical review. IEEE
Transactions on Software Engineering 11, 1 (Jan.
1985), 43–59.

2. Cascaval, C., Blundell, C., Michael, M., Cain, H.W., Wu,
P., Chiras, S., and Chatterjee, S. Software transactional
memory: Why is it only a research toy? Queue 6, 5
(Sept. 2008), 46–58.

3. Crain, T., Gramoli, V., and Raynal, M. A speculation-
friendly binary search tree. In Proceedings of ACM
SIGPLAN Conference on the Principles and Practice of
Parallel Computing (New Orleans, Feb. 23–27). ACM
Press, New York, 2012, 161–170.

4. Dice, D., Lev, Y., Moir, M., and Nussbaum, D. Early
experience with a commercial hardware transactional
memory implementation. In Proceedings of the
International Conference on Architectural Support
for Programming Languages and Operating Systems
(Washington, D.C., Mar. 7–11). ACM Press, New York,
2009, 157–168.

5. Dice, D., Shalev, O., and Shavit, N. Transactional locking
II. In Proceedings of the International Symposium on
DIStributed Computing, Vol. 4167 of LNCS (Stockholm,
Sept. 18–20). Springer, 2006, 194–208.

6. Dragojevic, A., Felber, P., Gramoli, V., and Guerraoui, R.
Why STM can be more than a research toy. Commun.
ACM 54, 4 (Apr. 2011), 70–77.

7. Eswaran, K.P., Gray, J.N., Lorie, R.A., and Traiger, I.L.
The notions of consistency and predicate locks in a
database system. Commun. ACM 19, 11 (Nov. 1976),
624–633.

8. Felber, P., Gramoli, V., and Guerraoui, R. Elastic
transactions. In Proceedings of the International
Symposium on DIStributed Computing, Vol. 5805 of
LNCS (Elche, Spain, Sept. 23–25). Springer, 2009,
93–107.

9. Gramoli, V., Guerraoui, R., and Trigonakis, V. TM2C:
A software transactional memory for many-cores.
In Proceedings of EuroSys (Bern, Switzerland, Apr.
10–13). ACM Press, New York, 2012, 351–364.

10. Gramoli, V., Harmanci, D., and Felber, P. On the
input acceptance of transactional memory. Parallel
Processing Letters 20, 1 (Mar. 2010), 31–50.

11. Greenwald, M. Two-handed emulation: How to
build non-blocking implementations of complex
data-structures using DCAS. In Proceedings of the
Symposium on Principles of Distributed Computing
(Monterey, CA, July 21–24). ACM Press, New York,
2002, 260–269.

12. Guerraoui, R., Capobianchi, R., Lanusse, A., and Roux,
P. Nesting actions through asynchronous message
passing: The ACS protocol. In Proceedings of the
European Conference on Object-Oriented Programming,
Vol. 615 of LNCS (Utrecht, The Netherlands, June 29–
July 3). Springer, 1992, 170–184.

13. Guerraoui, R. and Kapalka, M. Principles of
Transactional Memory. Morgan & Claypool, San
Rafael, CA, 2010.

14. Harris, T. A pragmatic implementation of non-blocking
linked-lists. In Proceedings of the International
Symposium on DIStributed Computing, Vol. 2180 of
LNCS (Lisboa, Portugal, Oct 3–5). Springer, 2001,
300–314.

15. Harris, T., Marlow, S., Peyton-Jones, S., and Herlihy, M.
Composable memory transactions. In Proceedings of
the ACM SIGPLAN Conference on the Principles and
Practice of Parallel Computing (Chicago, June 15–17).
ACM Press, New York, 2005, 48–60.

16. Herlihy, M. and Koskinen, E. Transactional boosting:
A methodology for highly concurrent transactional
objects. In Proceedings of ACM SIGPLAN Conference
on the Principles and Practice of Parallel Computing
(Salt Lake City, Feb. 20–23). ACM Press, New York,
2008, 207–246.

17. Herlihy, M., Luchangco, V., Moir, M., and Scherer III,
W.N. Software transactional memory for dynamic-
sized data structures. In Proceedings of the ACM
Symposium on the Principles of Distributed Computing
(Boston, July 13–16). ACM Press, New York, 2003,
92–101.

18. Herlihy, M. and Moss, J.E.B. Transactional memory:
Architectural support for lock-free data structures.
SIGARCH Computer Architecture News 21, 2 (May
1993), 289–300.

19. Knight, T. An architecture for mostly functional
languages. In Proceedings of the ACM Conference on
LISP and Functional Programming (Cambridge, MA,
Aug. 4–6, 1986), 105–112.

20. Korland, G., Shavit, N., and Felber, P. Deuce:
Noninvasive software transactional memory.
Transactions on High-Performance Embedded
Architectures and Compilers 5, 2 (Jan. 2010).

21. Liskov, B. The Argus language and system. In
Proceedings of Distributed Systems: Methods and
Tools for Specification, An Advanced Course, Vol. 190
of LNCS. Springer, 1985, 343–430.

22. Liskov, B. and Scheifler, R. Guardians and actions:
Linguistic support for robust, distributed programs.
In Proceedings of the Symposium on the Principles
of Programming Languages (Albuquerque, NM). ACM
Press, New York, 1982, 7–19.

23. Lynch, N.A. Multilevel atomicity a new correctness
criterion for database concurrency control. ACM
Transactions on Database Systems 8, 4 (Dec. 1983),
484–502.

24. Moss, J.E.B. Open nested transactions: Semantics
and support. Poster presentation at the Workshop on
Memory Performance (Austin, TX, 2006).

25. Papadimitriou, C.H. The serializability of concurrent
database updates. Journal of the ACM 26, 4 (Oct.
1979), 631–653.

26. Ramadan, H.E., Roy, I., Herlihy, M., and Witchel, E.
Committing conflicting transactions in an STM. In
Proceedings of the ACM SIGPLAN Conference on
the Principles and Practice of Parallel Computing
(Raleigh, NC, Feb. 14–18), ACM Press, New York, 2009,
163–172.

27. Reuter, A. Concurrency on high-traffic data elements.
In Proceedings of the ACM Conference on the
Principles of Database Systems (Los Angeles, Mar.
29–31). ACM Press, New York, 1982, 83–92.

28. Scherer III, W.N. and Scott, M.L. Advanced contention
management for dynamic software transactional
memory. In Proceedings of the ACM Symposium on
the Principles of Distributed Computing (Las Vegas,
July 17–25). ACM Press, New York, 2005, 240–248.

29. Shavit, N. and Touitou, D. Software transactional
memory. In Proceedings of the ACM Symposium on
Principles of Distributed Computing (Ottawa, Aug.
20–23). ACM Press, New York, 1995, 204–213.

30. Shpeisman, T., Menon, V., Adl-Tabatabai, A.-L.,
Balensiefer, S., Grossman, D., Hudson, R.L., Moore,
K.F., and Saha, B. Enforcing isolation and ordering
in STM. In Proceedings of the ACM Conference on
Programming Language Design and Implementation
(San Diego, CA). ACM Press, New York, 2007, 78–88.

Vincent Gramoli (vincent.gramoli@sydney.edu.au)
is an assistant professor at the University of Sydney
and a researcher at the National Information and
Communication Technology Australia (NICTA).

Rachid Guerraoui (rachid.guerraoui@epfl.ch) is a
professor at École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland.

© 2014 ACM 0001-0782/14/01 $15.00

