
DEMODS: A Description Model

for Data-as-a-Service

Quang Hieu Vu∗, Tran-Vu Pham†, Hong-Linh Truong‡, Schahram Dustdar‡, Rasool Asal∗

∗ETISALAT BT Innovation Center, Khalifa University, UAE, quang.vu@kustar.ac.ae; rasool.asal@bt.com
†Faculty of Computer Science and Engineering, HCMC University of Technology, Vietnam, t.v.pham@cse.hcmut.edu.vn

‡Distributed Systems Group, Vienna University of Technology, Austria, {truong,dustdar}@infosys.tuwien.ac.at

Abstract—Cloud computing based Data-as-a-Service (DaaS)
has become popular. Several data assets have been released in
DaaSes across different cloud platforms. Nevertheless, there are
no well-defined ways to describe DaaSes and their associated
data assets. On the one hand, existing DaaS providers simply
use HTML documents to describe their service. This simple way
of service description requires user to manually perform service
lookup by reading the HTML documents to understand DaaSes
as well as their provided data assets. On the other hand, existing
service description techniques are not suitable for describing
DaaSes because they consider only service information. The
lack of well-structured/linked model to describe DaaSes hinders
the automatic service lookup for DaaSes and the integration
of DaaSes into data composition and analytic tools. In this
paper, we propose DEMODS, a DEscription MOdel for DaaS,
which introduces a general linked model to cover all basic
information of a DaaS. Besides the basic DaaS description model,
we also introduce an extended model that integrates existing
work in describing quality of data, data and service contract,
data dependency, and Quality of Service (QoS). We present a
mechanism to incorporate DEMODS into both new and existing
DaaSes. Finally, a prototype of DEMODS has been developed to
evaluate the effectiveness of the proposed model.

Keywords - Cloud computing, Data-as-a-Service (DaaS),

data marketplace, service and data description, discovery.

I. INTRODUCTION

Data-as-a-Service (DaaS) is a type of cloud computing

services that provide data on demand. A DaaS typically

exposes its provided data to consumers through APIs, either

for the consumer to download or query data from different

data assets. By using DaaSes, consumers do not need to

fetch and store giant data assets and search for the required

information in the data asset. Instead, they simply find a

suitable DaaS that provides the data asset having the desired

information and call the corresponding APIs to retrieve the

data. With recent developments in cloud computing, it has

become easier to build DaaSes that provide bigger data assets

at lower costs on the clouds. Since the last couple of years

we have witnessed the rapid growth in the number of DaaSes.

Typical DaaS providers support from generic data assets, such

as Amazon [1], Microsoft Azure Data Marketplace [2] and

Infochimps [3], to specific data assets, like Gnip [4].

While there have been existed in the market a number

of DaaSes, there is no well-defined structured model in the

description of their services. Each DaaS has a unique way to

describe its provided service as well as supplied data assets.

For example, in the DaaS provided by Amazon [1], data

are stored in snapshots of EBS (Elastic Block Store), where

only a list of data assets available in the service, their short

description, and links to data asset providers are given. In

this way, if a user wants to know more about the data assets,

he/she needs to visit the link of data asset providers. On the

other hand, Microsoft Azure Data Marketplace provides more

information in its DaaS [2], e.g., by describing in detail fields

in provided data assets in addition to their general description.

Despite the difference, both Amazon and Microsoft require

their users to manually read HTML documents to understand

provided services and data assets. This disadvantage strongly

hinders the discovery of services as well as data assets based

on complex data concerns.

In this paper, we aim to address the lack of well-structured

models in DaaS description by proposing DEMODS – a DE-

scription MOdel for DaaS – as a conceptual information model

for DaaSes. Our description model includes basic information

of a DaaS to describe the DaaS itself, its general APIs,

available data assets in the DaaS as well as APIs for querying

data from the data assets, and pricing models associated with

both data assets and the DaaS. Besides the basic model,

we also introduce an extended model that integrates existing

work, e.g., in data contract, data dependency, and quality of

service. Finally, we show how to employ DEMODS in existing

DaaS service engineering techniques in order to provide rich

service information for DaaS service discovery and lookup. In

summary, our paper makes the following major contributions.

• We propose both a basic version and its extended one of

DEMODS, a description model for DaaS.

• We introduce a mechanism to incorporate DEMODS in

both existing and new DaaSes.

• We develop a prototype as a proof-of-concept for the

proposed model and show how useful the model is with

concrete examples.

The rest of the paper is organized as follows. In Section II,

we present our motivation and related work. In Section III, we

discuss all aspects of a DaaS that needs to be addressed in its

description. In Section IV, we present DEMODS, our DaaS

description model. In Section V, we discuss the integration be-

tween DEMODS and DaaS. We describe an implementation of

a prototype for the proposed model in Section VI. Finally, we

conclude the paper and discuss our future work in Section VII.



II. MOTIVATION AND RELATED WORK

A. Motivation and Approach

Our work is motivated by the lack of a rich information

model for DaaS in data marketplaces. On the one hand, even

though DaaS plays a central role to deliver data from data

providers to data consumers in data marketplaces, existing

DaaS providers have their own way to describe DaaSes,

mostly using HTML documents. On the other hand, existing

service description techniques are not adequate in supporting

description for DaaS, as data assets in data marketplaces

are associated with different properties and there is a clear

separation of information about provided services and supplied

data assets. This lack of information model leads to three basic

drawbacks as follows.

• Service and data discovery cannot be done automatically.

When a data consumer wants to find specific data assets,

specific data in data assets, or specific types of DaaSes,

he/she has to visit DaaS providers one by one to look for

their provided service and data asset description. This

manual way is time-consuming and mostly suitable for

human beings. Furthermore, given the number of DaaS

providers as well as data assets could be very large, this

way of discovery is tedious.

• On-demand data integration, service integration, and

query optimization cannot be supported. While data

integration is desirable when data consumers want to

retrieve data from different DaaSes, service integration

is needed when users want to use services from different

DaaS providers. On the other hand, query optimization

is important when different DaaSes, for example, set

different prices and data agreement and have different

quality for the same type of data or data service. Manual

discovery of DaaSes and data assets does not foster on-

the-fly data/service integration and query optimization.

• Service/data information and DaaS engineering cannot

be tied. In particular, service description and service

implementation are currently independent on each other,

and hence there could be inconsistency between what

is described in HTML documents and what is actually

implemented in DaaSes.

Our approach to address these drawbacks is to develop a

unified, yet scalable, information model for DaaS. Partially,

our DEscription MOdel for DaaS (DEMODS) is based on

linked data principles in which different types of data could

be linked to. The role of DEMODS and how useful it is in

an ecosystem of a DaaS as well as in an ecosystem of a data

marketplace are depicted in Figure 1. As illustrated, DEMODS

could be used at both the service and data discovery level out-

side DaaSes to support automatic service and data discovery

and the service implementation level inside DaaSes to support

data integration, query optimization, and consistency among

service description, payment, and authorization processes. In

particular, by leveraging DEMODS, automatic service and

data discovery can help data consumers to find services as

well as data assets according to several criteria easily. On the

DEMODS1

DaaS1

DaaS User

Data Consumer Data Provider

is-a is-a

Data Storage

submit data 
and description

request 
data

DaaS2

Query 
Processing

retrieve data

Authentication
& Authorization

Data 
Management

Payment
Other 

services

manage data

DEMODSn

Data/
Service 

Discovery

service 
lookupget service 

description

get service 
description

get service 
description

Data/
Service 

Integration

data/
service 

request

get service description

Fig. 1. DaaSes, users, and the use of DEMODS in a data marketplace

other hand, with the sharing knowledge of DEMODS, it is

easy to maintain consistency among different components in

such ecosystems. Furthermore, semantic data integration could

be done to collect data from different data assets and query

optimization could be performed across multiple DaaSes.

B. Related Work

In Service Oriented Computing, particularly Web Services

technologies, there exist different types of service descriptions

for various purposes. The well-known Universal Description

Discovery and Integration (UDDI) was designed for registering

and locating Web-based business services in business directo-

ries by describing basic information about Web Services, such

as provider, contact, address, and functionality. Technically,

a Web service is commonly described by Web Service De-

scription Language (WSDL). WSDL and its extensions, such

as SAWSDL [5], have the mechanism for describing service

interfaces and bindings that are necessary for invoking a Web

service. To enable automatic discovery and invocation of Web

services, there have been a number of ontology-based service

description models introduced, such as DAML-S [6] and

OWL-S [7]. For managing Web service evolution, SEMF [8]

was introduced. The Unified Service Description Language

(USDL) was ambitiously introduced for both technical and

business services [9].

Despite the abundance of web service description models,

none of them is good enough for describing DaaSes due to one

main reason: they can only model information about services,

their functional capabilities, interaction mechanisms, etc., but

are not able to describe multiple types of data assets delivered

by DaaSes. Descriptions about data assets in DaaSes not just

include common types of metadata, such as data size, data

provider, and data schemas in contemporary data catalogs

[10], [11], but also consist of, e.g., APIs for accessing data

assets, data contract, and pricing models. SEMF, for example,

links different types of service information, including also

service licensing. However, SEMF considers description only

at the service level, thus it cannot be used for modeling data

assets within services. The USDL supports different service



information, covering technical interface, service capabilities,

pricing, legal, etc, but at the service level only. For this reason,

we develop DEMODS particularly for describing DaaSes.

DEMODS includes information about services at service level

and also information about data assets delivered by DaaSes

such as data category, data agreement and licensing, and

quality of data. DEMODS can be used with other existing

service description models such as WSDL, service agreement

model [12], service licensing model [13], etc. At the data asset

level, DEMODS is not designed to replace metadata models

used for describing data assets delivered by DaaSes. Instead,

DEMODS provides a mechanism for integrating with those

models. For example, DEMODS can be linked with the Open

Data Protocol (for publishing information about data struc-

ture) [14], or Dublin Core (general purpose metadata) [15].

III. DAAS SERVICE INFORMATION CHARACTERISTICS

Before introducing a general information model for DaaS

description, it is necessary to analyze basic characteristics of

DaaSes. In this section, we will focus on a general classifi-

cation of DaaSes, basic levels of DaaS description, types of

information used in DaaSes, and DaaS description in relation

to DaaS engineering.

A. Types of DaaS

In general, we observe three types of DaaSes – depending

on the number and relationships of data assets in their services:

generic, specialized, and hybrid

• Generic DaaS category: DaaSes in this category provide

several independent data assets in their services. They

usually support operations for accessing individual data

assets as a whole as well as internal parts of data assets.

As a result, service description is mainly associated with

data assets and APIs for data assets. Examples include

Microsoft Azure Data Marketplace [2], Infochimps [3],

Amazon Public Datasets [1], and Socrata [16].

• Specialized DaaS category: DaaSes in this category only

provide data based on a single data asset or a limited

number of related data assets in their services. They often

support operations to work on data assets collectively,

instead of individual data assets, and hence service in-

formation focuses on describing service as a whole and

service APIs. Examples include Gnip [4] and networks

of bio-diversity data assets.

• Hybrid DaaS category: In the hybrid model, a generic

DaaS provides data assets from many different special-

ized DaaSes on their behalf, together with its own data

assets. Access to data assets within the hybrid DaaS

is done in two steps: (i) identify location of the data

assets (whether the data assets are of the generic DaaS or

specialized DaaSes) (ii) retrieve the data assets using the

generic DaaS APIs or the APIs of the specialized DaaS

which provides the data assets. Therefore, service infor-

mation needs to include the information about the generic

service itself, its APIs, and provided data assets together

with information about specialized DaaSes within it.

B. Structure and description levels of DaaS

DaaSes in the three different categories of DaaSes described

in the previous section can be generalized in a unified structure

as follows. For each DaaS, there exists a generic set of APIs for

its operations, such as for searching, downloading, uploading,

and updating data assets. A DaaS operates on a number of

data assets and a set of specialized DaaSes. For operations

on specific data assets, e.g. querying or retrieving part of the

data asset, each data asset has its own APIs. Similarly, for

operations on specialized DaaSes, each DaaS is also associated

with a specific set of APIs. As specialized DaaSes operate

directly on some specific data assets, specialized DaaS APIs

can be used to manipulate internal structure of data assets

it provides. Note that data assets might not be static but

dynamically updated by data providers.

Based on the analysis of DaaSes described in the previous

subsection, we observe that there exist two main levels of

DaaS description.

• Service level: provides general description about DaaS

such as provider, name, identification, etc. From opera-

tional point of view, operations at Daas level, such as dis-

covery, data asset/service registration, etc., are supported

by DaaS service level APIs. These APIs concentrate on

retrieving data from multiple data assets and are often

found in specialized DaaSes.

• Data asset level: includes information specific to partic-

ular data assets. Operations on data assets are supported

by data asset level APIs or specialized DaaS APIs. These

APIs focus on retrieving data from individual data assets.

C. DaaS information types

In addition to identifying levels of description as discussed

in the previous section, it is important to identify common

types of information in DaaSes. Without having common

information types, each DaaS may define its own types of

information, and hence it becomes impossible to support data

integration and query optimization across DaaSes. In particu-

lar, with respect to data integration, it is necessary to have a

common agreement in the definition of data domains and data

categories (e.g., if a data asset is classified in the category

of bio-medical, what type of data is expected in the data

asset?). On the other hand, with respect to query optimization,

common agreed pricing models defining how users are charged

for using data and service are expected (e.g., if a DaaS is

charged as pay-per-use, what does it mean?). Besides these

common information types to support data integration and

query optimization, it is worth to note that there could be other

types of common information that are useful for advanced

service lookup such as compliance laws, privacy information,

and QoS information types.

D. DaaS description information in DaaS service engineering,

management and discovery

DaaS description has different roles in DaaS service en-

gineering, management, and discovery. While the ultimate

goal of having an integrated DaaS description model is to



Service name

Service provider

Service description

Service pricing

Data asseti

APIi Categories

Data fields

APIi

Data asset size

Data asset provider

Data asset description

Data asset version

Created on

Last modified on

Data asset pricing

Data asset name

API pricing

Inputs

Outputs

API name

Pricing model

Category classifiction

Domain definition

Service UUID

General service 
description

Data asset UUID

Data asset 
description

API UUID

API 
description

External 
Information models

Data asset contract

Contract model

Service contract

QoS model

Quality of Service

Fig. 2. An overview of DEMODS

have enough information to support many tasks (e.g., data

discovery and composition), the model can have a strong

impact also on service engineering and management within

DaaSes. Specifically, from the service engineering perspective,

at the moment, DaaSes could be implemented as either SOAP

or REST with only information about service and service API

available. Other information is currently gathered in different

and specific ways, where there is no good support. As a

result, by having an integrated model, we aim at improving

contemporary service engineering processes for DaaSes. A

trivial example is to leverage DaaS description to maintain

consistency across different components from service man-

agement, account management, to cost management.

Furthermore, from service management and discovery per-

spective, big DaaSes or small/network of DaaSes have differ-

ent ways to collect and manage different types of DaaS infor-

mation that should be studied. In parallel with an integrated

DaaS description information model, we aim at analyzing

and proposing techniques for collecting and managing DaaS

description information.

IV. CONCEPTUALIZING DAAS SERVICE DESCRIPTION

In this section, we will introduce DEMODS, our proposed

model for capturing description of DaaS. Figure 2 presents our

DEMODS that is developed based on the concept of linked

data in which different types of description, represented in

different models, can be linked to characterize the description

of DaaS at the service and the data asset levels. The General

Service Description represents DaaS information at the service

level and the Data Asset Description presents the description

of data assets within DaaSes. Both levels of description have

links to several external models classified into API Description

and External Information Models for services and data assets.

A. General Service Description

An important part of the service description is to describe

the service itself without considering published data assets. In

general, basic information of a service includes service univer-

sally unique identifier (UUID), service name, service provider,

service pricing models (i.e., the cost for using the service),

and service description. Additionally, service information may

include general APIs that are used to access data assets at a

high level. For example, a DaaS may provide a general API

called get(data-asset, data-field), which retrieves data of the

specified data-field in the input data asset. It is interesting

to note that different from conventional API description, the

description for APIs in DaaS may have an associated cost (i.e.,

the cost of using or calling APIs). This is a special feature of

DaaS that allows users to have several options to pay for the

service (e.g., by monthly plan or pay-as-you-go through every

API call). We will elaborate different payment schemes of

DaaS later in Section VI-A. The General Service Description

component in Figure 2 illustrates basic information at the

service description level.

B. Data Asset Description

While basic information of DaaS is described at the service

description level, which can be used for service discovery,

integration, and utilization, all important information of pub-

lished data assets are defined at the data asset description

level. As shown in the Data asset description component in

Figure 2, each data asset provided by a DaaS is associated

with general information about its UUID, its name, its size,

its provider, its version, created date, last modified date, and

its description. Additionally, to support better service lookup,

it is desirable to have a description of categories the data asset

belongs to as well as fields in the data asset. Finally, similar

to the description at the service level, data asset description

also consists of APIs and the specification of data asset usage

cost (e.g., the cost of downloading the whole data asset). It is

important to note that the APIs in the data asset description

level are low-level APIs that access data within the data assets.

On the other hand, the APIs in the service description level are

high-level APIs that can access different data assets as well as

multiple data assets at once.

C. External Information Models

Linking to outside external information models (or external

ontologies) is important to DEMODS to support semantic

service lookup. As shown in Figure 2 and Table I, there

are a number of description items that should not be defined

internally. Instead, these items should be open for definitions

from outside, or in other words they could be linked to outside

models (or ontologies). These items include categories of data

assets that link to Category classification, fields in data assets

that link to Domain definition, and costs of the service, data

assets, as well as APIs that link to Pricing model. As pointed

in [24], [25], ontologies are typically used as a way to

support data integration and semantic services. Furthermore,

external information models give DEMODS flexibility to



Model Description Examples

Pricing describe how to charge consumers for using DaaSes and
data assets.

General QoS ontologies and service agreements
specifications usually allow to describe simple
pricing information [17], [18], [12]

Category classification define categories to which DaaSes and their data assets
belong. This can be done by using category specifica-
tions or tagging.

SNaP Ontologies [19], Upper Tag Ontology
[20], NAO [21]

Domain definition define and describe the structure of data provided by
DaaSes by indicating whether there exist specific spec-
ifications for describing structure data or for annotating
information about data structure into data assets

OData [14] (for publishing data structure infor-
mation) and OpenAnnotation [22] (for annotat-
ing data with metadata about data structure)

Contract specify service/data contracts associated with DaaSes
and with data assets

Web services Level Agreement (WSLA) [12],
Service Licensing [13], the Abstract Data Con-
tract Model [23]

QoS specify the quality capabilities of DaaSes QoS ontology [17], [18]

TABLE I
EXTERNAL INFORMATION MODELS LINKED INTO DEMODS

support different types of data assets from different domains

and different requirements for services and data assets. For

example, a data marketplace for data assets in the news and

media domain may select the SNaP ontologies as a way to

categorize its data assets, but such ontologies are not suitable

for geodata. In DEMODS, by allowing external information

models to be used, different data marketplaces may simply

select suitable models to support by creating links to these

models. Moreover, even if a service has special requirements

in data usage, data concerns as in [26], or Quality of Service

(QoS), these requirements could be easily specified as models

outside and then are linked to DEMODS through external

information models.

In DEMODS, possible external models (or ontologies) and

their description are presented in Table I. Among external

models, Pricing, Category classification and Contract are

needed at both service and data asset levels. On the other

hand, QoS is solely applied at the service level while Domain

definition is only applied at the data asset level. In our view,

Category classification or Contract can be treated separately

for the service level and for the data asset level, because in

terms of classification or contract, service and data have dif-

ferent taxonomies or contractual conditions. However, Pricing

should not be treated separately since common pricing plans

can be applied for both service and data. However, existing

pricing description models either cover only service pricing

(e.g., pay-per-transactions) or data pricing (e.g., pay-per-the

quantity/quality of data). Therefore, we need to combine these

models for describing pricing plans for DaaSes. In general,

while we propose DEMODS as a basic description for DaaS,

it is possible to extent it to support other aspects of DaaS by

creating an extra annotation for the description and link it to

an outside topology (e.g., privacy ontology).

V. DEMODS AND DAAS INTEGRATION

To some extent, DaaS can be considered as a special

type of web service in which data is provided on demand.

Therefore, DaaSes can be implemented as WSDL- or REST-

based Web services, as WSDL and REST are the most popular

technologies for services. To allow DEMODS to be used

with DaaSes, we need to extract DaaSes related description

and represent them in DEMODS. This can be done through

the engineering process of DaaSes and during the operation

of DaaSes. In particular, for each type of representation,

it is important to have a corresponding parser to extract

different pieces of service and data information such as service

description, data asset description, or cost model. For example,

with respect to the use of WSDL with annotations for DaaS

description, an XML parser is needed to extract information

about the service. On the other hand, if the description is

done through annotations in HTML documents, an HTML

parser is needed. Despite the difference in implementation,

these parsers must provide a set of unified operations to extract

service and data description. In this way, assume that a user is

only interested in data categories of published data assets, he

can call the corresponding operation from parsers to extract

this information without worrying about the representation of

DEMODS. All parsers could be incorporated into different

manual and automatic description extraction and collection

processes as follows.

• Separate tools/processes that include parsers can be

used by DaaSes themselves, service providers and data

providers to upload service and data descriptions. These

tools will extract the right information and store into DE-

MODS Information Services which manage DEMODS-

based information. These tools/processes can be provided

as a stand-alone one used manual by humans as well as

can be integrated into DaaSes so that when the DaaSes

have new descriptions or new data assets added into

the DaaSes, the DaaSes automatically send descriptions

to DEMODS Information Services. A popular way, for

example, is that these tools/processes can be integrated

into existing interfaces for data providers in contemporary

DaaSes. In this model, DEMODS information could be

collected from DaaS providers by “push” actions: DaaS

providers are expected to actively submit their service

and data description to the service.

• Crawlers that include parsers can automatically monitor

and extract information for DEMODS Information Ser-

vices. This model works in a similar way to the well-

known web crawler model but for DEMODS Informa-

tion Services. In this model, DEMODS information is

collected with “pull” actions: a crawler is designed to

visit web pages of DaaS providers to collect service



information, which can be either in the description file

or in metadata of HTML documents, e.g., according to

hRESTS model.

As we discussed above, we support the use of DEMODS

Information Services to store DEMODS information. Such

services can be an element in a specific data marketplace or

they can serve for different data marketplaces. From these

services, one can find out DaaSes and relevant data assets.

However, we can also link WSDL-based and REST-based ser-

vice description of DaaSes, usually obtained directly from the

application server hosting DaaSes, to corresponding external

DEMODS. For example, it is possible to create annotations

for the service description as in SAWSDL [5] by employing

the “attrExtensions” elements of in the SAWSDL to link

DEMODS information. Another way is that links to DEMODS

description can be embedded directly in HTML documents by

exploiting hRESTS model [27].

The two above-mentioned models of extracting description

could be applied in the development of new DaaSes or in

the integration of existing DaaSes. In particular, it would be

easier for DaaS providers to use DEMODS to provide descrip-

tion information when engineering new DaaSes. Relying on

DEMODS, DaaSes could be responsible for providing tools

for collecting relevant types of descriptions for data assets

and perform syntax and semantic compliance/validation of

collected descriptions, while data providers have to actually

provide descriptions about their data assets when the data

providers offer the data assets via DaaSes. This way would

avoid the situation that DaaSes have to collect all descriptions,

which, in many cases, is too costly for DaaSes. Furthermore,

this way fits well with the sharing liability and responsibility

between DaaSes and data providers when offering data assets

in data marketplaces.

For existing DaaSes, depending on whether it is easy to

modify the existing HTML service description or to collect

data to build a service description file, the proper approach

could be selected. Once the description is done, the next

step could be to contact centralized servers to submit the

description file or the link to the HTML description document.

Alternative, a plugin could be installed locally to point to

the description file or the HTML document. This plugin will

then take care of the information submission process and send

updated information to the server at interval time or when the

description file is changed.

VI. PROTOTYPE AND EXPERIMENT

A. Prototype

We have developed a prototype of DEMODS and DEMODS

Information Service. Our DEMODS information is currently

based on XML that provides mechanisms to link to different

external information models based on XML, OWL and RDF.

The service was implemented on top of Google Apps Engine

(GAE) 1 to provide features for user to upload, search, and

1The service is accessible at http://demodsmanagement.appspot.com
and supporting materials are available at http://www.infosys.tuwien.ac.at/
prototype/SOD1/demods.html

retrieve DEMODS-based description. In this prototype, we de-

veloped proof-of-concept models for General Service Descrip-

tion, API Description and Data Asset Description (see Figure

2). For External Information Models, we utilized ODATA [14]

for domain definition and the Abstract Data Contract Model

[23] for data contract. For QoS and quality of data we reuse

our previous work in [26] while we used a simple category

classification description based on tagging. Due to the lack

of existing information models that cover suitable pricing

descriptions for DaaSes, we have also developed a model for

describing pricing information that covers different payment

plans as follows.

• Payment on access (API call): consumers are charged

every time they call provided APIs in the service to

retrieve data. To describe this pricing model, the API

usage fee has to be included in the API description.

• Payment on resource consumption: consumers are

charged on the amount of resource consumption to pro-

cess the request and return the data to users. For example,

Amazon charges the resource consumption based on I/O

requests to data assets stored in its EBS. In this case,

the pricing description can include only basic unit prices

(e.g., how much does it cost for one processing hour) but

the real cost of DaaS usage can only be determined at

runtime.

• Payment on data type and data size: users are charged on

the type and the size of the requested data. An example

of this model is the pricing model of Gnip [4]. Similar to

the previous case, only basic unit prices can be described.

• Payment on plan (fixed payment in a period): consumers

subscribe for data usage in a period (e.g., a week, a

month, or a year) and only pay once for this period

with or without maximum limitations for how frequent

they access data and how much data they retrieve from

DaaSes. This model is well-supported in current data

marketplaces.

As illustrated in Figure 3, without considering GUI, the

prototype consists of three main components: the parsers, the

search engine, and the database. Supporting for these compo-

nents is a crawler, which is able to follow external information

models to extract information from outside DEMODS.

• The parser is in charge of extracting DEMODS informa-

tion and putting the extracted information in the database.

There could be multiple parsers in this component in-

cluding XML parser to parse XML based description,

HTML parser to parse HTML documents, etc. In the

current prototype, however, we only implemented an

XML parser.

• The search engine is responsible for getting DEMODS

information from the database to serve query purpose.

Similar to the parser component, there could be multiple

sub-components inside the search engine, which supports

different search levels from simple to advanced. In this

prototype, we supported simple search features that al-

lows to search data assets based on different criteria using



DEMODS 
information

External 
references

Data storage

XML 
Parser

Parser

HTML 
Parser

...

Search engine

Simple 
Search

Advanced 
Search

...

GUI

Google Apps Engine

Crawler

Fig. 3. A prototype of DEMODS Information Service

underlying GAE query mechanisms.

• Finally, the DEMODS database consists of two main

parts: one is used to store DEMODS information while

the other is used to store links and information obtained

from external information models.

B. Experiments

1) Using DEMODS for existing DaaSes: We conducted

case studies to see how DEMODS can be used for existing

DaaSes. It is interesting to realize that Infochimps offer two

types of DaaS: one service provides downloadable data assets

(obtained as a whole) while the other supports data assets with

APIs for data extraction. On the other hand, Microsoft Azure

Marketplace only supports data assets with APIs while Ama-

zon Public Datasets only provides data assets to download.

These DaaSes employ a very simple category to classify data

assets in which only Microsoft Azure Marketplace specifies

the structure of data assets using OData. The other two DaaSes

provide no description on data asset structure. This simple

type of description is well imported to DEMODS. Actually,

DEMODS is able to provide better description using category

classification, and domain definitions imported from outside.

In terms of pricing model, these DaaSes define only few pric-

ing options and apply these options to all data assets and APIs.

While Microsoft Azure Data Marketplace and Infochimps also

define data contract/license, there is no such definition in

Amazon Public Datasets. Again, since DEMODS is able to

carry much more detail information, these descriptions could

be easily imported to DEMODS. In general, while DEMODS

could be used for all existing DaaSes, it provides a high level

of flexibility and extensibility to all future DaaSes. Table II

summarizes our mappings of key descriptions of existing

DaaSes into DEMODS. In overall, our DEMODS is flexible

and extensible, while description models employed in these

studied DaaSes are not.

2) Examples of information search: Given information

from the above three DaaSes, we illustrate a simple query,

which we cannot get a satisfied answer from any existing

Internet search engine or keyword search/listing features pro-

vided by existing DaaSes, to prove the usefulness of DEMODS

and DEMODS Information Service. The query is to find data

assets having statistics of unemployment. If we execute this

query with Internet search engines such as Google, we will

Fig. 4. Example of the search result returned by DEMODS Information
Service

receive a bundle of results none of which is useful. However,

when executing this query leveraging DEMODS information,

for example by specifying “Unemployment” as the search

keyword, DEMODS will present useful results about data

assets satisfying the query. In particular, there are a number of

data assets provided by Infochimps that satisfy the search key-

word while there are only two data assets provided Microsoft

Azure Marketplace and no data asset provided by Amazon

Public Datasets. The search can also be further refined by, for

example, specifying the maximum budget (e.g., to 100 USD)

to retrieve the desirable data asset and obtain the filtered result

as shown in Figure 4. Note that while we only implemented

a simple search engine that supports search over four criteria:

data asset description, data asset provider, service provider,

and cost in our prototype, advanced search features can be

plugged into our DEMODS Information Service to support

search conditions that cover different aspects, such as data

agreement, pricing models, quality of data, etc.

3) Examples of description collection: When a provider

wants to release a new DaaS or when an existing DaaS wants

to further expose its service using DEMODS, the provider

can leverage our prototype management service to submit its

service and data description by simply following these two

manual steps. First, the provider obtains the XML schema of

DEMODS (as a description template) and prepare necessary

description complying with DEMODS. After that, the provider

can upload its description file into our prototype. Alterna-

tively, the provider can develop a tool to produce DEMODS-

compliant description and upload its description. Note that

while the current prototype requires the provider to upload ser-

vice description manually, it is straightforward to provide Web

services APIs for collecting DEMODS information, including

an HTML parser that extracts information from HTML file to

support description in HTML and plugins that allow to extract

information directly from description files inside DaaSes in

other to allow information to be updated easier.

VII. CONCLUSIONS AND FUTURE WORK

While the DaaS model has been increasingly used for

facilitating the sharing and integration of data assets via open

APIs, the description of DaaSes and their data assets have



Description Microsoft Azure
Marketplace

Infochimps Amazon Public Datasets DEMODS

Data asset
UUID

public URI public URI ids of EBS snapshot mapped to uuid of data assets

Category simple hierarchical
category

simple hierarchical category simple hierarchical
category

mapped to tags in the category classifi-
cation schema

Pricing free, subscription model
with limited transactions
for individual data assets

free, subscription pricing
models for all APIs (at
service level) and premium
APIs pricing models for
individual data assets

subscription pricing
models and pay-per-use
models for all public data
assets

mapped to pricing models in General
Service Description

Downloadable
data assets

not supported size, format, licensing,
quality, price

size, snapshot ID, contract mapped to data asset information, in-
cluding size, format, data contract, qual-
ity of data, and pricing

Data assets
with APIs

detailed APIs, data
licensing, and pricing
models

detailed APIs and pricing
models

does not exist mapped to data asset APIs, pricing and
contract models

Data structure annotated with OData no no mapped to OData

TABLE II
MAPPING DESCRIPTION FROM REAL-WORLD DAASES TO DEMODS

not been well-researched. In this paper, we have introduced

a novel conceptual information model for DaaSes. Our DE-

MODS is capable of linking different types of descriptions that

characterize both service and data aspects found in DaaSes.

Currently, we have built a prototype of DEMODS to test

our proposed model with well-known DaaSes. Our next step

is to integrate this prototype with advanced data and service

discovery features for DaaSes. After that, we will investigate

dynamic data integration and query optimization based on

automatic discovery of data from DaaSes. Furthermore, we

aim at integrating our DEMODS into a specific DaaS for

facility monitoring data marketplaces. Finally, a thorough

performance evaluation will be executed.

ACKNOWLEDGEMENTS

This work is partially supported by the Vienna Science and

Technology Fund (WWTF), project ICT08-032.

REFERENCES

[1] Amazon Data Sets, http://aws.amazon.com/publicdatasets/.
[2] Microsoft Data Market, https://datamarket.azure.com/.
[3] Infochimps, http://www.infochimps.com/.
[4] Gnip, http://gnip.com/.
[5] Semantic Annotations for WSDL and XML Schema, http://www.w3.org/

TR/sawsdl/.
[6] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic web services,”

Intelligent Systems, vol. 16, no. 2, pp. 46–53, 2001.
[7] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,

S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin,
N. Srinivasan, and K. Sycara. (2004) Owl-s: Semantic markup for web
services. [Online]. Available: http://www.w3.org/Submission/OWL-S/c

[8] M. Treiber, H. L. Truong, and S. Dustdar, “Semf - service evolution
management framework,” in EUROMICRO-SEAA. IEEE, 2008, pp.
329–336.

[9] J. Cardoso, A. P. Barros, N. May, and U. Kylau, “Towards a unified
service description language for the internet of services: Requirements
and first developments,” in IEEE SCC. IEEE Computer Society, 2010,
pp. 602–609.

[10] G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman,
M. Manohar, S. Patil, and L. Pearlman, “A metadata catalog
service for data intensive applications,” in Proceedings of the

2003 ACM/IEEE conference on Supercomputing, ser. SC ’03.
New York, NY, USA: ACM, 2003, pp. 33–. [Online]. Available:
http://doi.acm.org/10.1145/1048935.1050184

[11] V. Khatri and C. V. Brown, “Designing data governance,” Commun.

ACM, vol. 53, pp. 148–152, January 2010. [Online]. Available:
http://doi.acm.org/10.1145/1629175.1629210

[12] A. Keller and H. Ludwig, “The wsla framework: Specifying and
monitoring service level agreements for web services,” J. Network Syst.

Manage., vol. 11, no. 1, pp. 57–81, 2003.
[13] G. R. Gangadharan and V. D’Andrea, “Service licensing: conceptualiza-

tion, formalization, and expression,” Service Oriented Computing and

Applications, vol. 5, no. 1, pp. 37–59, 2011.
[14] The Open Data Protocol (OData), http://www.odata.org/.
[15] Dublin Core Metadata Initiative, http://dublincore.org/.
[16] Socrata, http://www.socrata.com/.
[17] I. V. Papaioannou, D. T. Tsesmetzis, I. Roussaki, and M. E. Anagnostou,

“A qos ontology language for web-services,” in AINA (1). IEEE
Computer Society, 2006, pp. 101–106.

[18] G. Dobson, R. Lock, and I. Sommerville, “Qosont: a qos ontology
for service-centric systems,” in EUROMICRO-SEAA. IEEE Computer
Society, 2005, pp. 80–87.

[19] “Snap ontologies – simple news and press ontologies,” http://data.press.
net/ontology/, last access: 6 Oct, 2011.

[20] Y. Ding, E. K. Jacob, M. Fried, I. Toma, E. Yan, S. Foo, and
S. Milojević, “Upper tag ontology for integrating social tagging data,”
J. Am. Soc. Inf. Sci. Technol., vol. 61, pp. 505–521, March 2010.
[Online]. Available: http://dx.doi.org/10.1002/asi.v61:3

[21] S. Scerri, M. Sintek, L. van Elst, and S. Handschuh, “Nepomuk annota-
tion ontology specification,” http://www.semanticdesktop.org/ontologies/
nao, last access: 6 Oct, 2011.

[22] “Open annotation collaboration,” http://www.openannotation.org/, last
access: 6 Oct, 2011.

[23] H.-L. Truong, G. Gangadharan, M. Comerio, S. Dustdar, and F. D. Paoli,
“On Analyzing and Developing Data Contracts in Cloud-based Data
Marketplaces,” in Proceedings of the Asia-Pacific Services Computing

Conference 2011 (APSCC 2011), 2011, to appear.
[24] A. S. Aparı́cio, O. L. M. Farias, and N. dos Santos, “Applying ontologies

in the integration of heterogeneous relational databases,” in Proceedings

of the 2005 Australasian Ontology Workshop, 2005, pp. 11–16.
[25] D. Dou and P. LePendu, “Ontology-based integration for relational

databases,” in Proceedings of the 2006 ACM symposium on Applied

computing, 2006, pp. 461–466.
[26] H. L. Truong and S. Dustdar, “On analyzing and specifying concerns for

data as a service,” in APSCC, M. Kirchberg, P. C. K. Hung, B. Carminati,
C.-H. Chi, R. Kanagasabai, E. D. Valle, K.-C. Lan, and L.-J. Chen, Eds.
IEEE, 2009, pp. 87–94.

[27] J. Kopecky, K. Gomadam, and T. Vitvar, “hRESTS: An HTML mi-
croformat for describing RESTful Web services,” in Proceedings of

the International Conference on Web Intelligence and Intelligent Agent

Technology, 2008.


