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Demographic Estimation from Face Images:
Human vs. Machine Performance
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Abstract—Demographic estimation entails automatic estimation of age, gender and race of a person from his face image,

which has many potential applications ranging from forensics to social media. Automatic demographic estimation, particularly

age estimation, remains a challenging problem because persons belonging to the same demographic group can be vastly

different in their facial appearances due to intrinsic and extrinsic factors. In this paper, we present a generic framework for

automatic demographic (age, gender and race) estimation. Given a face image, we first extract demographic informative features

via a boosting algorithm, and then employ a hierarchical approach consisting of between-group classification, and within-

group regression. Quality assessment is also developed to identify low-quality face images that are difficult to obtain reliable

demographic estimates. Experimental results on a diverse set of face image databases, FG-NET (1K images), FERET (3K

images), MORPH II (75K images), PCSO (100K images), and a subset of LFW (4K images), show that the proposed approach

has superior performance compared to the state of the art. Finally, we use crowdsourcing to study the human perception ability

of estimating demographics from face images. A side-by-side comparison of the demographic estimates from crowdsourced data

and the proposed algorithm provides a number of insights into this challenging problem.

Index Terms—Demographic estimation, demographic informative feature, quality assessment, hierarchical approach, crowd-

sourcing, human vs. machine
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1 INTRODUCTION

HUMANS can glean a wide variety of information
from a face image, including identity, age, gen-

der, and race (see Fig. 1). The identification-specific
characteristics of face images have been well ex-
plored in face recognition research and various appli-
cations [1], e.g., access control, video surveillance, and
criminal investigation. In contrast, there is relatively
less research [2] on how to accurately estimate the
demographic information from a face image. Specifically,
we consider age, gender, and race in this paper.

There has been a growing interest in automatic ex-
traction of demographic information from face images
or videos, due to many emerging applications [2], [5],
[6]. These include (i) access control, e.g., an automatic
age estimation system can prevent minors from pur-
chasing alcohol or cigarette from vending machines;
(ii) human-computer interaction, e.g., a smart shopping
cart can dynamically change advertisement on a bill
board based on the demographics of the customers
passing by; and (iii) law enforcement, e.g., an automatic
demographic estimation system can help to identify
the suspect more efficiently and accurately by filtering
the mugshot database with the estimated age, gender,
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Identity: ABC

Age: 42

Race: White

Moustache: Yes

Beard: Yes

Mole: Yes

Scar: Yes

Gender: Male

Hair: Short, brown

Fig. 1. A wide variety of information can be gleaned

from a face image, such as identity, age, gender, race,

and scars, marks and tattoos (SMT).

and race from the face image of a suspect.
Despite recent progress [7], [8], [33], automatic de-

mographic estimation remains a difficult problem.
The challenges in automatic demographic estimation
come from the large intra-class facial appearance vari-
ations due to both intrinsic and extrinsic factors1.
Figure 3 shows that extrinsic factors, such as environ-
ment, lifestyle, and health, could lead to dramatically
different facial appearances of identical twins.

1.1 Proposed Approach

Among the sizable literature on demographic estima-
tion summarized in Tables 1–3, most prior work is
limited to estimating a single demographic attribute.
Research on age, gender, and race estimation via a
generic framework is still quite limited. For example,
only three publications [7], [8], [33] provide a joint

1. http://www.skincarephysicians.com/agingskinnet/basicfacts
.html
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Fig. 2. Overview of the proposed approach for automatic demographic estimation. I and Γ are the input and

preprocessed face images, respectively; ψ and Ψ denote the BIF extraction process, and D → S denotes

the demographic informative feature selection; x and x
′ denote the BIF feature vector before and after feature

selection, respectively; and QA(·) is the quality assessment process.

(a) (b)

Fig. 3. Different facial appearances of identical twins

possibly due to extrinsic factors such as (a) environ-

mental conditions (e.g., sunshine)2, and (b) lifestyle3.

estimate of age, gender, and race using a generic
framework. Even these methods have some serious
limitations. For example, age estimation in [7] is lim-
ited to age group classification, namely child, youth
and old. Approaches in [8], [33] have fairly high
computational costs. Additionally, studies on human
perception of demographics from face images are
still sparse. For example, the largest datasets used
to obtain human estimates of age and gender only
contain 500 and 300 images, respectively (see Tables 1
and 2). For race classification, to our knowledge, no
performance on human estimates has been reported
(see Table 3).

In this paper, we present a generic framework for
automatic demographic estimation from a single face
image (see Fig. 2). We extract the previously proposed
biologically inspired features (BIF) [24] from a face
image, and select demographic informative features
using a boosting algorithm. We then propose a hierar-
chical estimator consisting of between-group classifi-
cation and within-group regression to predict the age,
gender, and race. We also design a quality assessment
method to detect low-quality face images, which arise
from large pose, illumination, and expression vari-
ations. Further, we report human perceptual ability
in demographic estimation using crowdsourcing on
a diverse set of face image databases (1, 002 images
from FG-NET [20], 2, 000 images from MORPH II [63],
and 4, 200 images from the Pinellas County Sheriff’s
Office (PCSO)) described in Appendix A. This allows

2. http://www.antell-md.com/newyorkplasticsurgeon/plastic
surgerytwins.htm

3. http://www.cbc.ca/news/background/health/identical-twi
ns.html

a comparison of the abilities of machine and human
to estimate demographics.

The main contributions of this paper include: (i) a
generic framework for demographic estimation (age,
gender, and race) from a face image; (ii) a hierarchical
approach for coarse-to-fine age estimation; (iii) a face
image quality assessment method for the purpose of
demographic estimation; (iv) studies on the ability of
human in demographic estimation using crowdsourc-
ing; and (v) studies on the generalization ability of the
proposed approach with cross-database testing, and
data drawn from the general population of faces.

This paper is built upon our preliminary work
[56]. The main differences are summarized as follows.
(i) While [56] focused only on age estimation, this
work addresses age, gender, and race estimation. (ii)
Demographic informative features are designed using
BIF with a boosting algorithm. (iii) A quality assess-
ment metric is introduced to enable rejection of low-
quality face images for the purpose of demographic
estimation. (iv) Human estimates on gender and race
are studied. (v) Comprehensive evaluations are per-
formed using the FG-NET, FERET, MORPH II, PCSO,
and LFW databases.

1.2 Prior Work

A number of studies in the biological, psychological,
and cognitive sciences have reported on how the
human brain perceives, represents, and remembers
faces. In particular, various aspects of human demo-
graphic estimation have been studied in the field of
psychology [9]–[11]. These studies provide some con-
text for the performance of automatic demographic
estimation reported in the literature. However, to our
knowledge, no large scale studies on the accuracy of
human demographic estimation have been reported
on public-domain databases (e.g., MORPH II [63] and
FG-NET [20]). On the related note, there are some
studies on human vs. machine performance on face
recognition. Due to limited space, we refer interested
readers to reviews in [3], [4].

Attempts to design computational models based
on psychological studies for automatic demographic
estimation started in the 1990s [12], [13]. Since then,
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TABLE 1

A summary of machine and human performance on age estimation reported in literature.

Publication Face representation
Face database

(#subjects, #images)
Human perception of age

Performance measure and

accuracy (MAE† , 5-year CS‡ )

Lanitis et al. (2002) [17] 2D shape, Raw intensity FG-NET (NA, 565) Studied on 32 face images MAE: 4.3

Geng et al. (2007) [19]
Active appearance model
(AAM)

FG-NET (82, 1002)
MORPH (NA, 433)

Studied on 51 face images
from FG-NET

FG-NET / MORPH
MAE: 6.8 / 8.8
CS: ∼65% / ∼46%

Yang and Ai (2007) [7]
LBP,
Haar-like features

FERET (1196, 3540)
CMU-PIE (68, 696)
Snapshot (NA, 9000)

Not studied
FERET / CMU-PIE / Snapshot
Age group: 92.1% / 87.5% / 93.2%

Fu and Huang (2008) [21] Manifold of raw intensity YGA (1600, 8000) Not studied
MAE: 5∼6
CS: F: ∼55%, M: ∼50%

Suo et al. (2008) [22]
Holistic and local topology,
2D shape, color, and gradient

FG-NET (82, 1002)
Private (NA, 8000)

Studied on 500 images from a
private database

FG-NET / Private
MAE: 6.0 / 4.7
CS: ∼55% / ∼66%

Guo et al. (2009) [23]
Biologically inspired
features (BIF)

FG-NET (82, 1002)
YGA (1600, 8000)

Not studied
FG-NET / YGA
MAE: 4.8 / F: 3.9, M: 3.5
CS: 47% / F: 75%, M: 80%

Guo and Wang (2011) [25] BIF MORPH II (NA, 55132) Not studied MAE: 4.2

Choi et al. (2011) [26] AAM, Gabor, LBP
FG-NET (82, 1002)
PAL (NA, 430)
BERC (NA, 390)

Not studied
FG-NET / PAL / BERC
MAE: 4.7 / 4.3 / 4.7
CS: ∼73% / ∼70% / ∼65%

Luu et al. (2011) [27]
Holistic contourlet
appearance model

FG-NET (82, 1002)
PAL (NA, 443)

Not studied
FG-NET / PAL
MAE: 4.1 / 6.0
CS: ∼74% / NA

Chang et al. (2011) [28] AAM
FG-NET (82, 1002)
MORPH II (NA, 5492)

Not studied
FG-NET / MORPH II
MAE: 4.5 / 6.1
CS: 74.4% / 56.3%

Wu et al. (2012) [29]
Grassmann manifold
of 2D shape

FG-NET (82, 1002)
Passport (109, 233)

Not studied
FG-NET / Passport
MAE: 5.9 / 8.8
CS: 62% / 40%

Thukral et al. (2012) [30]
Grassmann manifold
of 2D shape

FG-NET (82, 1002) Not studied MAE: 6.2

Chao et al. (2013) [32]
AAM with distance
metric adjustment

FG-NET (82, 1002) Not studied MAE: 4.4

Lu and Tan (2013) [31] Manifold of raw intensity MORPH II (NA, 20000) Not studied
White / Black
MAE: 5.2 / 4.2
CS: 67% / 59%

Hadid and Pietikäinen (2013) [8] Raw intensity, volume LBP Internet videos (NA, 2000) Not studied
Age group classification:
83.1%

Guo and Mu (2013) [33] BIF MORPH II (NA, 55132) Not studied MAE: 4.0

Geng et al. (2013) [34] AAM, BIF
FG-NET (82,1002)
MORPH II (13000, 55132)

Studied on 51 and 60
images, respectively, from
FG-NET and MORPH II

FG-NET / MORPH II
MAE: 4.8 / 4.8

Proposed method Demographic informative features

FG-NET (82, 1002)
MORPH II (20569, 78207)
PCSO (81533, 100012)
LFW (4211, 4211)

Studied on 1002, 2000, 2200 and
4211 images, respectively, from
FG-NET, MORPH II, PCSO, and
LFW

FG-NET / MORPH II / PCSO / LFW
MAE: 3.8 / 3.6 / 4.1 / 7.8
CS: 78.0% / 77.4% / 72.6% / 42.5%

†MAE (Mean Absolute Error) [17] is the average of the absolute difference between the estimated age and ground-truth age (true age). ‡CS (Cumulative Score) [19] reflects the percentage of
correct age estimates w.r.t. different absolute errors.

a significant progress has been made on automatic
demographic estimation, and a number of approaches
have been reported in the literature [8], [17], [19], [21],
[23], [27], [29], [33], [39], [44], [51], [54].

A few survey papers on demographic estimation
methods are available. Most of the age estimation
methods published prior to 2011 are reviewed in [16].
A comparison of representative gender classification
methods is provided by Mäkinen and Raisamo [35].
Here, we provide a brief review of existing de-
mographic estimation methods by grouping them
into three main categories: anthropometry-based ap-
proach, image-based approach, and appearance-based
approach.

The anthropometry-based approach adopted in
[13], [14], [22], [36], utilizes the distance ratios between
individual facial landmarks to describe the topological
and configural differences among face shapes across
different demographic groups. In age estimation, it is
natural to consider the anthropometric features due
to the craniofacial growth; however, they are mainly
useful to distinguish children from adults, since the
facial shape becomes quite stable for adults [21]. Ad-
ditionally, anthropometry-based approach requires ac-
curate facial landmark localization and, in some cases,
even manual annotation, which limits their usability
in automatic demographic estimation systems.

Image-based approach, such as in [7], [18], [23],

[25], [33], [39], [54], differentiates faces of different
demographic groups by relying on texture, e.g., skin,
wrinkle and facial marks. Texture features such as
Gabor, LBP, PCA, Haar, and BIF have been widely
used to represent both the holistic and local face
regions. Image-based approach has been found to be
effective in all the three demographic estimation tasks
considered here, but it is typically less efficient due to
high feature dimensionality.

The appearance-based approach, such as in [17],
[19], [21], [26], [27], [34], [43], [48], utilizes facial
appearance (both texture and shape) to differentiate
faces among individual demographic groups. Active
Appearance Model (AAM) and its variations [27], [42]
are widely used to model the facial texture and shape.
Similar to the anthropometry-based approach, the
appearance-based approach demands highly accurate
facial landmark localization.

In Tables 1–3, we summarize machine and hu-
man performance on age, gender and race estimation
tasks, respectively, covering automatic estimation ap-
proaches, human estimation experiments, databases,
and performance. Public-domain face databases that
are widely used in such studies are described in
Appendix A.

The remainder of this paper is structured as follows.
In Section 2 we detail the proposed automatic demo-
graphic estimation approach. In Section 3 we describe
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TABLE 2

A summary of machine and human performance on gender classification reported in literature.

Publication Face representation
Face database

(#male, #female) images
Human perception of gender Gender classification accuracy

Moghaddam and Yang (2000) [37] Raw intensity FERET (1044, 711) Studied on 254 face images 96.6%

Gutta et al. (2000) [39] Raw intensity FERET (1906, 1100) Not studied 96%

Wu et al. (2003) [41] Haar-like features
FERET (5500, 5500)
Private (1300, 1300)

Not studied 88%

Saatci and Town (2006) [43] AAM Combined (NA, NA) Not studied 94.8%

Baluja and Rowley (2007) [44] Pixel intensity difference FERET (1495, 914) Not studied 94.4%

Yang and Ai (2007) [7] LBP, Haar-like features
FERET (NA, NA)
CMU-PIE (NA, NA)
Snapshot (4696, 3737)

Not studied
FERET / CMU-PIE / Snapshot
93.3% / 91.1% / 96.3%

Gao and Ai (2009) [45] Raw intensity
Snapshot (900, 900)
Consumer (650, 650)
Multi-race (1200, 1200)

Not studied

Snapshot / Consumer
93.7% / 92.8%
Multi-race (Mong./Cau./Afr.)
91.5% / 92.8% / 88%

Tariq et al. (2009) [55] 2D shape Silhouetted profile (230, 211) Not studied 71.2%

Wu et al. (2010) [46] Facial surface normals
UND (100, 100)
FERET (100, 100)

Studied on 80 face images
UND / FERET
91.7% / 83.4%

Mozaffari et al. (2010) [47]
LBP, DCT, and
geometric distances

AR (56, 70)
Iranian (56, 70)

Not studied
AR / Iranian
96.0% / 97.1%

Wang et al. (2010) [48] AAM and LPP FG-NET (555, 447) Studied on 8 face images 84.3%

Dong and Woodard (2011) [49] Eyebrow shape
MBGC (59, 99)
FRGC (50, 50)

Not studied
MBGC / FRGC
96% / 97%

Zhang and Wang (2011) [50]
Hierarchical and discriminative
Bag-of-Words

UND Collection F (562, 380) Not studied 97.7%

Bekios-Calfa et al. (2011) [51] PCA and ICA
UCN (5628, 5041)
FERET (591, 402)
PAL (219, 357)

Not studied
UCN / FERET / PAL
95.4% / 94.0% / 89.8%

Ballihi et al. (2012) [52] 3D geometrical features FRGC v2 (264, 202) Not studied 86.1%

Tapia and Perez (2013) [54] LBP
FERET (212, 199)
UND (301, 186)
LFW (4500, 2943)

Not studied
FERET / UND / LFW
99.1% / 94.0% / 98.0%

Chen and Ross (2013) [53] Local gradient Gabor pattern AR (50, 50) Not studied 94%

Hadid and Pietikäinen (2013) [8] Raw intensity, volume LBP Combined (NA, 1000) Not studied 96.8%

Guo and Mu (2013) [33] BIF MORPH II (46645, 8487) Not studied 96.0%

Proposed method Demographic informative features

MORPH II (65601, 12606)
PCSO (75006, 25006)
FERET (1722, 1007)
LFW (4211, 4211)

Studied on 2000, 2200, and 4211
images, respectively, from MORPH II,
PCSO and LFW databases

MORPH II / PCSO / FERET / LFW
97.6% / 97.1% / 96.8% / 94%

TABLE 3

A summary of machine and human performance on race classification reported in literature.

Publication Face representation
Face race database
(#races, #images)

Human perception of race Race classification accuracy

Gutta et al. (2000) [39] Raw intensity FERET (4, 3006) Not studied 92%

Yang and Ai (2007) [7] LBP, Haar-like features
CMU-PIE (2, 696)
Merged (2, 12696)

Not studied
CMU-PIE / Merged
93.2% / 97.0%

Tariq et al. (2009) [55] Shape Profile (4, 441) Not studied 71.7%

Hadid and Pietikäinen (2013) [8] Raw intensity, volume LBP Videos (2, NA) Not studied 100%

Chen and Ross (2013) [53] Local gradient Gabor pattern MORPH and CAS-PEAL (3, 750) Not studied 98.7%

Guo and Mu (2013) [33] BIF MORPH II (2, 53160) Not studied 98.9%

Proposed method Demographic informative features
MORPH II (2, 78207)
PCSO (2, 100012)
LFW (2, 4211)

Studied on 2000 images each from
MORPH II and PCSO databases, and
4211 images from LFW database

MORPH II / PCSO / LFW
99.1% / 98.7% / 90%

While [39], [55], and [53] studied race classification using four (Caucasian, South Asian, East Asian, and African) and three (Asian, Caucasian, and African) race groups, respectively, no human
performance is reported on these race groups. In addition, black and white groups constitute the majority of subjects in the public-domain MORPH II database (see Appendix A). Therefore, in
this work, we focus on the classification between black and white.

the experiments on demographic estimation by hu-
mans using crowdsourcing. Experimental results are
presented in Section 4, and finally we conclude this
work in Section 5.

2 AUTOMATIC DEMOGRAPHIC ESTIMATION

2.1 Face Preprocessing

There are many different types of appearance varia-
tions in facial images. For example, as shown Fig. 4
(a), face images can be either in gray-scale or color,
and some of the color images have a color cast. There-
fore, color in face images is not always available and
reliable. There are also large pose variations, which
lead to misalignment between face images.

To compensate for these variations, we design a face
preprocessing procedure. We first convert a color face
image into a gray-scale image to mitigate the influence
of inconsistent colors. We utilize a widely used model
in PAL and NTSC: I = 0.2989 ∗ R + 0.5870 ∗ G +
0.1140 ∗ B, where R, G, and B are the red, green,
and blue channels of a color image, respectively; I

is the output gray-scale face image. To reduce the
effect of scale, rotation, and translation variations, a
face image is then rectified based on the two eyes and
cropped to 60×60 pixels with a 32-pixel interpupillary
distance (IPD). We detect the face and the eyes using
Cognitec’s FaceVACS SDK [57]. Finally, to suppress
both low-frequency illumination variation and high-
frequency noise (e.g., photon and sensor noise), we
apply Difference of Gaussians (DoG) filtering,

Γ(x, y) = I(x, y) ∗ (G(x, y, σ1)−G(x, y, σ2)) , (1)

where G(·) is a Gaussian smoothing function. In our
experiments, we use σ1 = 0.2, and σ2 = 1.0 for DoG
filtering.

2.2 Demographic Informative Representation

Since we aim to perform age, gender, and race es-
timations under a generic framework, it is desir-
able to have a face representation appropriate for all
these three tasks. Following the success of biologically
inspired features (BIF) [58] in object detection and
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(a) (b) (c)

Fig. 4. Examples of face preprocessing: (a) input im-

ages with pose variations from FG-NET and MORPH

II; (b) intermediate gray-scale images after geometric

normalization; and (c) output of preprocessing.

classification [59], face recognition [60], and automatic
age estimation [23], [25], [33], we choose to use BIF.

In its simplest form, the extraction of BIF consists
of two layers of computational units, where simple
S1 units in the first layer are followed by complex
C1 units in the second layer. The S1 units correspond
to the classical simple cells in the primary visual
cortex [64]. They are typically implemented with the
convolution of a preprocessed image Γ with a family
of Gabor filters [61],

ψu,v(z) =
‖ku,v‖

2

σ2
e−

‖ku,v‖2‖z‖2

2σ2

[

eiku,vz − e−
σ2

2

]

, (2)

where z = (x, y), σ is the relative width of the
Gaussian envelope function w.r.t. the wavelength, and
u and v are the orientation and scale parameters of
Gabor kernels, respectively. The wave vector ku,v is
defined as,

ku,v = kve
iφu , (3)

with kv = kmax

fv defining the frequency, and φu = πu
8

defining the orientation. kmax and f are constants
specifying the maximum frequency and scaling factor
between two neighboring kernels, respectively. The
C1 units correspond to cortical complex cells which
are robust to shift and scale variations. They can be
calculated by pooling over the preceding S1 units with
the same orientation but at two successive scales.

To compute S1 layer features, we build a family of
Gabor filters similar to those in [61], but we use 8 ori-
entations (u ∈ [0, 7]) and 12 scales (v ∈ [1, 12]) as sug-
gested in [23]. We apply “MAX” pooling operator [24]
and “STD” normalization operator [23] to extract C1

features from the S1 layer. The 8 orientation and 6
scale features in the C1 layer are finally concatenated
into a single feature vector x. As shown in Fig. 5, the
BIF extraction is denoted as,

x = ΨMAX,STD(Re(Γ ∗ ψ)), (4)

where Ψ denotes two consecutive operations of
“MAX” and ”STD” on a filtered image Γ.

The S1 layer provides a multi-scale representation
for face images, and the C1 layer provides robust-
ness against translation, rotation, and scaling that

8 directions
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Fig. 5. Major steps in calculating biologically inspired

features (BIF).

could not be handled in the face preprocessing stage.
However, a multi-scale representation also implies
a high feature dimensionality. In our approach, the
dimensionality d of the feature vector x is 4, 280,
which makes it difficult to perform demographic es-
timation efficiently. To address this issue, based on a
training set D, we perform feature selection (FS) to
reduce the feature dimensionality while retaining the
discriminability of BIF features.

Formally, given a training set with m samples,

D = {(xi, yi) : xi ∈ R
d, yi ∈ N, i ∈ [1,m]}, (5)

where xi is a d-dimensional BIF vector from the ith

training image, and yi is its associated label, our
objective is to select a low-dimensional (d′) subset of
BIF features,

S = {x′

i : x
′

i ∈ R
d′

,x′

i ⊂ xi, i ∈ [1,m]}, (6)

d′ ≪ d, that can retain the discriminative informa-
tion for demographic estimation. In our experiments,
d′ = 800 is used for all the three demographic
estimation tasks. The label yi depends on individ-
ual demographic estimation tasks: for age estimation,
yi ∈ [0, 70]; for gender and race classification, yi
represents binary classes, e.g., yi ∈ {0, 1} indicating
{male, female} or {white, black}.

We use multi-class AdaBoost [40], [65] to select
the demographic informative features. A multi-level
decision tree (DT) is used as the weak classifier hj(xi).
In our experiments, we use a 7-level decision tree for
age estimation, and 1-level decision tree for gender
and race classification. The feature selection procedure
is outlined in Algorithm 1.

Figure 6 shows the top 50 most informative fea-
tures for the three different demographic estimation
problems; the extracted features look fairly symmet-
ric. The most informative features for age estimation
are located in the regions where wrinkles typically
appear [66], such as the eye and mouth corners,
nasolabial folds, and cheeks. For gender classification,
besides the features located around the eyes and lip,
the jaw is also found to be salient, which is consistent
with human perception experiments [67]. For race
(white vs. black) classification, the most informative
features are around the eyes, nose, and lip, which is
also consistent with human perception studies [68].
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Input: Training set D = {(xi, yi)}
m
i=1; desired

feature dimensionality d′.
Output: Selected feature set S.

Initialization: w
(1)
i ← 1

m
; J ← ∅

for t ← 1 to d′ do

Normalize the weights: w
(t)
i ←

w
(t)
i∑

m
j=1 w

(t)
i

for j ← 1 to d and j 
∈ J do
Train a multi-class weak classifier, hj(xi)
Compute the weighted error:

ǫ
(t)
j ←

m
∑

i=1

w
(t)
i e (hj(xi), yi), where e(·) = 0

if xi is classified correctly and 1 otherwise

Find the best feature index: ĵ ← argmin
j

ǫ
(t)
j

Update the selected indexes: J ← J ∪ {ĵ}
Update the weights:

w
(t+1)
i ← w

(t)
i β

1−e(h
ĵ
(xi),yi)

t , where βt =
ε
(t)

ĵ

1−ε
(t)

ĵ

Result: S = {xi(J)}
m
i=1.

Algorithm 1: Demographic informative feature
selection.

2.3 Hierarchical Demographic Estimation

While age estimation is naturally formulated as a
regression problem, gender and race classifications are
binary classification tasks. To handle regression and
classification problems using a generic framework,
we present a hierarchical approach consisting of a
classification stage followed by a regression stage. In
the classification stage (Fig. 7 (a)), three binary SVM
classifiers (B1, B2,1 and B2,2) are used to build a
two-level binary decision tree (BDT) [62], and a test
face image is classified into one of the four groups.
In the regression stage (Fig. 7 (b)), a separate SVM
regressor (R1,1, R1,2, R2,1, and R2,2) is trained within
each group to make an accurate age prediction. With
this hierarchical estimation approach, we can perform
different demographic estimation tasks flexibly. For
example, while age estimation goes through both the
classification and regression stages, gender and race
classifications only require the B1 classifier in the
classification stage. Thus, we have three different B1

classifiers that are trained using age, gender, and race
data, respectively. The output of B1 is always binary
(0 or 1). Additionally, hierarchical methods have also
been found to be more effective than direct regressions
for age estimation [26], [30].

Hierarchical methods have been studied for age
estimation problems in [26], [30], but our approach
differs from these methods in two aspects. (i) While
[26], [30] directly partition the entire age range (e.g.,
0–70) into multiple groups, we use a BDT to perform
coarse-to-fine classification. (ii) After the group classi-
fication stage, we train individual regression models
with overlapping age ranges (i.e., age overlap ∆ in

(a) (b) (c)

Fig. 6. The top 5 (blue) and top 6-50 (green) most in-

formative BIF features selected for estimating (a) age,

(b) gender, and (c) race. The rectangle size indicates

the scale of the corresponding BIF feature.

(a)

Age

ranges

(b)

B1

Group G1 Group G2

B2,1 B2,2

Group G1,1 Group G1,2 Group G2,1 Group G2,2

Age

ranges [0, r2,1) [r2,1, r1) [r1, r2,2) [r2,2, r] 

Group G1,1 Group G1,2 Group G2,1 Group G2,2

R1,1 R1,2 R2,1 R2,2

[0, r2,1+ ) [r2,1- , r1+ ) [r1- , r2,2+ ) [r2,2- , r] 

>=r1<r1

<r 2,1
>=r

2,1 <r 2,2
>=r

2,2

Age Age Age Age

Fig. 7. Learning a hierarchical age estimator: (a)

binary decision tree for classifying non-overlapping

groups (e.g., male vs. female; white vs. black; age < r1
vs. age ≥ r1), and (b) within-group age regressors

learned from overlapping age groups.

Fig. 7 (b)). This mitigates the error due to incorrect
age group classification of face images that are close to
the group boundaries. Since we only use overlapping
group ranges in the regression stage, this does not in-
troduce label ambiguity [26] during the classification
stage. Age estimation experiments on FG-NET show
that the hierarchical estimation approach without us-
ing BDT or overlapping ranges leads to higher MAEs
(5.0 and 5.2 years, respectively) than the proposed
approach (4.8 years). We use the RBF kernel for all
the SVM classifiers and regressors. For each dataset,
we use ∆ = 5, and select the parameters c and γ

of the RBF kernel using a 5-fold cross-validation on
the training set. The thresholds r1, r2,1, and r2,2 used
to partition the label space (i.e., the age range) are
empirically determined.

2.4 Face Image Quality Assessment

It is well known that the performance of a face
recognition system depends on the quality of face
images. While face image quality is not easy to define,
it is influenced by factors such as IPD, pose, blur,
illumination, etc. [69], [70]. We also notice this to
be true for demographic estimation. In this section,
we present a learning-based quality assessment (QA)
method to identify and reject low-quality face images.
Quality assessment is mainly to detect low-quality
face images due to variations of pose, illumination, oc-
clusion, blur, etc. However, these low-quality images
may also include visually satisfactory face images
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Fig. 8. Demographic estimation obtained using the MTurk crowdsourcing service: (a) overview of the estimation

process, and illustrations of three HITs for (b) age estimation, (c) gender classification, and (d) race classification.

Images shown to the MTurk workers are exactly the same as those were input to our algorithm.

that the system is less likely to make estimates with
high confidence (e.g., samples near the age group
boundaries).

The training set for learning the hierarchical de-
mographic estimator in Section 2.3 is also used to
build our quality assessment model. Taking age es-
timation as an example, we partition the training set
into high-quality (positive) and low-quality (negative)
subsets based on a threshold P for the training set
age estimation error (see Appendix B). However, it
is inevitable that the positive and negative sets are
severely imbalanced. To address this problem, re-
sampling with replacement is used for the positive
samples. In each resampling of positive samples, the
same number of positive samples is drawn as the
negative samples. This resampling is performed (K)
times to build an ensemble classifier to distinguish
between high-quality and low-quality face images,

QA(x) =
1

K

K
∑

k=1

Qk(x), (7)

where Qk(·) is a binary SVM classifier with the RBF
kernel, and Qk(·) = 1 if a face image is of high quality,
and Qk(·) = 0, otherwise. Based on the ensemble
classifier, we reject a test face image xt only when
QA(xt) = 0. Such a conservative rejection criterion
assures a low rejection rate during testing but is
still effective in improving the overall accuracy of
demographic estimation. In our age estimation exper-
iments, K = 5 is used, and P is set so that we reject
about 5% of the test images. The proposed quality
assessment approach is also applied on the datasets
used in human age estimation experiments, for a
fair comparison of human vs. machine performance.
Given the high accuracy of our method for gender
and race classification, no quality assessment is done
for these two problems.

3 DEMOGRAPHIC ESTIMATION BY HUMAN

3.1 Design of Human Estimation Tasks

As a baseline, we gather demographic estimates made
by human workers using the Amazon Mechanical

Turk (MTurk) crowdsourcing service4. The human
intelligence tasks (HITs) consist of displaying a face
image with a prompt string asking a single question
about the demographics of the person in the face
image (see Fig. 8). The GUI was designed to constrain
user’s input to a valid age range for age estimation,
and to binary choices for gender and race classifi-
cation; this cuts down unintentional mistakes by the
MTurk workers. For each task, we enforced that each
MTurk worker could provide only a single response to
avoid bias. All the face images were stored in our lab’s
server; Adobe SWF is used to display face images to
the MTurk workers. This way, the face images could
not be downloaded by MTurk workers.

We collected age estimates provided by the crowd
for the entire FG-NET database (1, 002 images), a
subset of MORPH II (2, 000 images), and a subset
of PCSO (2, 200 images) with 10 MTurk workers per
image. There is no way to measure the human gender
and race estimation accuracies on FG-NET because the
real gender and race of subjects in FG-NET are not
available. Therefore, gender and race estimations by
the crowd are performed only on subsets of MORPH
II and PCSO databases, with three workers per image.
For race classification on PCSO, we use a different
2, 000-image subset to ensure a balance of white and
black subjects (see Appendix A). Age, gender and
race estimates were also collected for a subset of LFW
(4, 211 images) with three workers per image. In total,
we posted 112, 519 HITs on MTurk. The payment for
each age estimation HIT was 3 cents, and the payment
for each gender and race classification HIT was 2 cents
for a total cost of about $3, 000.

3.2 Crowdsourced Response Data

As is typical of crowdsourcing experiments, some of
the response data is noisy and unusable. For example,
in age estimation without constraining user’s input,
some workers submitted an empty text box, a 3-digit
age, an age range instead of a specific age (e.g., 52–
60), or age in words such as “forty”. When workers

4. https://www.mturk.com
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Fig. 9. The difference in human age estimation performance between using 3, 6, and 9 randomly selected (RS)

MTurk workers and all 10 workers.

entered an age range, we used the middle of the
range as their estimate, and we manually converted
the word entries to integers. We rejected the remaining
problematic cases (e.g., empty text boxes, age over
100), and obtained replacement estimates from addi-
tional workers. Out of the initial 10, 020 FG-NET age
estimates, we found only 16 to be unusable, and out
of the initial 22, 000 PCSO age estimates, we found
only 604 to be unusable5.

Given the 10 age estimates of each face image,
a straightforward way to compute the error of the
human estimates would be to discard the highest and
lowest age estimates for each image, take the mean
of the remaining 8 estimates, and compute the mean
absolute error (MAE) [15]. However, such a strategy
does not represent the performance of individual
human workers; rather it represents the performance
of a group of workers collectively. Therefore, in our
experiments, we directly calculate the MAE of 8 indi-
vidual age estimates (still discarding the highest and
lowest estimates to reduce the impact of input errors
by workers) w.r.t. the ground-truth age.

One question regarding crowdsourcing is how
many estimates per image are sufficient. Since we
initially collected 10 human age estimates per image
(for FG-NET, a subset of MORPH II, and a subset of
PCSO), we randomly select 3, 6, and 9 human age
estimates for each image, and calculate the average
age for each image. We repeat each experiment five
times, report the average age estimates with 3, 6, and
9 MTurk workers, and compare them with those using
all 10 MTurk workers. The results in Fig. 9 show that
three MTurk workers per image are sufficient for the
age estimation task.

For gender and race classifications, a worker has
less room to make errors than the age estimation.
We believe three MTurk workers per image are also
sufficient for the human experiments on gender and
race classification tasks. So for gender and race classi-
fication results, we report the majority choice among
the three HITs per image, which is a reasonable binary
decision rule based on May’s theorem [72].

5. The human age estimates of face images in the FG-NET
database are available at: http://www.cse.msu.edu/rgroups/bio
metrics/pubs/databases.html

4 EXPERIMENTAL RESULTS

Our approach for demographic estimation tasks has
been evaluated on the FG-NET [20], FERET [38],
MORPH Album2 [63], PCSO, and LFW [71] databases
summarized in Appendix A. Human demographic es-
timates obtained via crowdsourcing are also reported
as baselines, which facilitate an understanding of the
differences between human (crowdsourced worker)
and our algorithm in demographic estimation from
a face image. Additionally, our approach is also com-
pared with the state of the art (Tables 1–3).

4.1 Age Estimation

Table 4 lists the Mean Absolute Error (MAE) of age
estimation by our approach and human. Without
quality assessment (QA) applied to FG-NET, the MAE
of human is 4.7 years, which is slightly better than that
of the proposed approach (4.8 years). However, with
QA applied to FG-NET, our system achieves much
lower MAE (3.8 years) than human (4.5 years). While
the MAEs of human estimates on MORPH II and
PCSO without QA are 6.3 and 7.2 years, respectively,
the MAEs of the proposed approach without QA are
3.8 and 4.3 years, respectively. With QA to reject
some low-quality images (see Fig. 4 in Appendix B),
the MAEs are further reduced for both human (4.3
and 6.6 years) and the proposed approach (3.6 and
4.1 years). On MORPH II and PCSO, the proposed
age estimation approach always performs better than
human. In Fig. 11, we show the correlations between
the ground-truth ages (true ages), and age estimates
by the proposed approach and human on the MORPH
II subset with 2, 000 images. We notice that while
human tends to overestimate the ages of individual
subjects (Fig. 11 (b)), the proposed approach provides
relatively unbiased estimates (Fig. 11 (a)).

The main reason why human outperforms the pro-
posed approach (in terms of MAE) on FG-NET with-
out QA is the significantly biased age distribution (a
majority of images belong to subjects less than 18
years of age) in FG-NET (see Fig. 1 (a) in Appendix A).
As a result, the training set used to train our algorithm
does not contain a sufficient number of images in the
age range 30–69 (∼4.5 images per age). In contrast,
both MORPH II and PCSO have subjects with more
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Fig. 10. Age estimation performance with and without quality assessment by the proposed approach and human.

TABLE 4

Mean Absolute Error (MAE) of age estimation on

FG-NET, MORPH II, and PCSO databases (in years).

Database
Proposed algorithm Human workers
w/o QA w/ QA w/o QA w/ QA

FG-NET 4.8±6.2 3.8±4.2 4.7±5.0 4.5±4.8
MORPH II 3.8±3.3 3.6±3.0 6.3±4.9 4.3±3.8
PCSO 4.3±3.7 4.1±3.3 7.2±5.7 6.6±4.9

We reject 5% of all the test images when quality assessment (QA) is used. For both the proposed
algorithm and human workers, standard deviation is calculated from all the face images, because
MTurk workers cannot do demographic estimation following a 5-fold cross-validation protocol.
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Fig. 11. Correlations between (a) age estimates by the

proposed algorithm vs. true ages, (b) age estimates

by human vs. true ages, and (c) age estimates by

the proposed algorithm vs. human on the MORPH II

subset with 2,000 images.

uniform age distributions. Hence, our approach has
consistently low MAEs across individual age ranges
(see Fig. 12 (b)). These comparisons suggest that the
age estimation performance of human is relatively in-
dependent of the age distribution in the database and
the database size because of their prior knowledge.

While MAE reflects the overall performance of an
age estimation method, it does not explicitly reveal
the system accuracy within a particular age error
range, which is important for practical applications.
Therefore, in Fig. 10 we show the Cumulative Score
(CS) [19] of age estimation by human and the pro-
posed approach within 0–10 years absolute error. Our
approach performs consistently better than human on
all the three databases with and without QA.

The first row in Fig. 15 shows examples of good
and poor age estimates by our approach and human.
The first row of Fig. 15 (d) reveals an interesting phe-
nomenon: the estimates from the proposed method
are poor compared with the ground-truth ages but are
fairly consistent with human perception. In these ex-
amples, one may question the accuracy of the labeled
ages in the database. For example, Fig. 5 in Appendix

(a) FG-NET (b) MORPH II & PCSO
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Fig. 12. Per age range MAE of age estimation by

human (top) and the proposed algorithm (bottom).

C shows two images where human estimation errors
are large (≥ 30 years), but obviously the labeled (real)
ages in the database are wrong.

Table 1 lists age estimation results from state-of-the-
art methods on FG-NET and MORPH II, where MAE
and the “CS at 5-year absolute error” are reported.
The best known MAE performance on FG-NET is 4.1
years [27], which is better than our approach without
quality assessment (MAE of 4.8 years). However, as
show in Fig. 14, our approach performs much better
than [27] in the useful (operational) error range of 0–
5 years absolute error6. A comparison with [27] on
MORPH II cannot be done, because MORPH II was
not evaluated in [27]. The best known performance
on MORPH II as reported in the literature is 4.0-year
MAE [33], which is the same as our approach without
quality assessment7, but worse than our method with
quality assessment (MAE of 3.7 years). Compared
to [33], we use a larger set of MORPH II (78, 207
images vs. 55, 132 images in [33]). Additionally, while
the training set in [33] is constructed with relatively
balanced race and gender groups, the training set
in our experiments is randomly selected from the
MORPH II database. The CS curve on MORPH II was
not provided in [33], so we cannot compare the two
methods in the operational error range of 0–5 years.

In the above experiments, we always use the real
age, also called chronological age, as the ground-truth

6. An absolute error larger than five years defines an age range
larger than 10 years, which is less helpful in practical applications.

7. To compare with [33], we reduced the size of our training set
by randomly selecting 20% of the training images.
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Fig. 13. Performance of the proposed age estimation method with appearance (human estimated) age (red

curve) and real age (blue curve) as the ground-truth age. No quality assessment is applied in these experiments.
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Fig. 14. A comparison of the proposed approach and

the state-of-the-art method, CAM [27] on FG-NET.

age. If the real age is not available, the appearance age,
which is the age perceived by human, has to be used
as the ground truth to train the age estimation system.
We have also evaluated our age estimation algorithm
by using appearance age as the ground-truth age for
(i) the FG-NET database, (ii) a subset from MORPH
II (2, 000 images), and (iii) a subset from PCSO (2, 200
images). Figure 13 shows that the age estimates by our
method are fairly robust to whether appearance age
or real age is used as the ground truth. One reason for
this is that appearance age is highly correlated with
the real age (see Fig. 11 (b)).

4.2 Gender Classification

In this section, the proposed approach is evaluated on
gender classification, and compared with the human
performance. Since no gender information is provided
with images in FG-NET, gender classification experi-
ments are performed on MORPH II and PCSO. The
FERET database is also used to compare the proposed
approach with published methods. We do not perform
human estimation of gender on FERET due to its
smaller size than other public-domain databases, such
as MORPH II.

The gender classification results obtained from the
proposed approach and human workers are shown
in Table 5. The table includes the overall accuracy
(males vs. females), and the 2 × 2 confusion matrix
for each method. Based on the overall accuracy, our
approach performs slightly better than human on both
MORPH II (97.6% vs. 96.9%) and PCSO (97.1% vs.
96.5%) databases. Regarding the per gender accuracy,
the misclassification rate of females is higher than
that of males for both our approach and human. For
example, on MORPH II, the misclassification rates

TABLE 5

Confusion matrix for gender classification (in %).

Database
Proposed method True

gender
Human workers

Female Male Female Male

MORPH II
91.9 8.1 Female 94.1 5.9
1.3 98.7 Male 0.4 99.6

Overall 97.6 96.9

PCSO
95.7 4.3 Female 93.5 6.5
2.4 97.6 Male 0.4 99.6

Overall 97.1 96.5

FERET
94.8 5.2 Female

N/A
2.0 98.0 Male

Overall 96.8 N/A

for females by our approach and human are 8.1%
and 5.9%, respectively, which are much higher than
the misclassification rates for males, 1.3% and 0.4%,
respectively. This is not surprising because many im-
portant facial features of females, such as the hairstyle
and the shape of eyebrows, may change frequently.
The second row in Fig. 15 gives some examples of
correct and incorrect gender classification results.

Table 2 lists the gender classification accuracies of
state-of-the-art methods. The best known accuracy
on the MORPH II database is 96.0% [33]. Our ap-
proach achieves a higher accuracy of 97.6%, which
is a 40% reduction in the gender classification er-
ror reported in [33]. Additionally, while a subset of
55, 132 face images was used in [33], we use a larger
MORPH II subset containing 78, 207 images. The best
known accuracy for gender classification on FERET
is 99.1% [54], which is higher than our accuracy of
96.8%. However, we should point out that only 199
female and 212 male images were used in [54], while
we use a larger FERET subset with 1, 007 female and
1, 712 male images.

4.3 Race Classification

We conducted experiments on MORPH II and PCSO
databases to distinguish between black and white
subjects, who constitute the majority of subjects in
these two databases. Results in Table 6 show that
our approach consistently outperforms human on
both databases. For example, the proposed approach
achieves 1.3% (99.1% vs. 97.8%) and 2.2% (98.7%
vs. 96.5%) higher overall accuracies than human on
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Fig. 15. Examples of good and poor demographic estimates for age (top row), gender (middle row), and race

(bottom row). (a) Proposed algorithm and human workers provide good estimates; (b) Proposed algorithm

provides good estimates but human workers do not; (c) Proposed algorithm provides poor estimates compared

to human workers; and (d) Both the proposed algorithm and human workers provide poor estimates.

TABLE 6

Confusion matrix for race classification (in %).

Database
Proposed method True

Race
Human workers

Black White Black White

MORPH II
99.1 0.9 Black 95.9 4.1
1.1 98.9 White 0.3 99.7

Overall 99.1 97.8

PCSO
97.5 2.5 Black 97.3 2.7
0.9 99.1 White 0.8 99.2

Overall 98.7 96.5

MORPH II and PCSO, respectively. While our ap-
proach performs better than human in classifying
black subjects, human is relatively better at classifying
white subjects. The third row in Fig. 15 gives some
examples of correct and incorrect race classifications
by our approach and human.

Race classification accuracies from state-of-the-art
methods are shown in Table 3. The best known ac-
curacy for white vs. black classification on MORPH
II database (with 55, 132 images) is 98.9% [33]. Our
approach achieves a higher accuracy of 99.1% on a
larger MORPH II subset with 78, 207 images.

4.4 Generalization Ability

We evaluate the generalization ability of the pro-
posed approach using: (i) cross-database testing on
the MORPH II, PCSO, and FG-NET databases; and (ii)

(d) Gender and race classification on MORPH II and PCSO (in %)
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Fig. 16. Cross-database testing on MORPH II, PCSO
and FG-NET for three demographic estimation tasks.
No quality assessment is applied in these experiments.
∗The training sets for the cross-database testing on MORPH II, PCSO and FG-NET are PCSO, MORPH II,

and MORPH II and PCSO, respectively.

demographic estimation on a subset (4, 211 images) of
the more challenging LFW database [71].

The demographic estimation results with cross-
database testing on MORPH II, PCSO, and FG-NET
are shown in Fig. 16. As expected, cross-database test-
ing performance is lower than intra-database testing.
But, we believe these accuracies (not reported in other
published studies) are still quite good. Image quality
(resolution and illumination) differences between the
PCSO and MORPH databases are responsible for the
drop in performance. This suggests the need for train-
ing on a larger representative database encompassing
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Fig. 17. Performance of the proposed demographic es-

timation approach on a subset of the LFW database by

using human (crowdsourced) estimates of age, gender,

and race as the ground truth. No quality assessment is

applied in these experiments.

more variety in imaging conditions if the system is
applied in arbitrary settings.

It is reasonable to compare the cross-database per-
formance of the proposed approach with human per-
formance, since human performance is not tuned to
a particular database. For age estimation, the pro-
posed approach with cross-database testing performs
slightly better than human on MORPH II and PCSO,
but much worse on FG-NET. For gender and race
classification, human outperforms the proposed ap-
proach with cross-database testing. This is due to (i)
the significantly different age distributions between
FG-NET and the training dataset (MORPH II and
PCSO), and (ii) the prior knowledge of human.

The LFW database was collected for studying the
problem of unconstrained face recognition. We pro-
vide demographic estimation results on a subset
(4, 211 images) of the LFW database, where the face
images have relatively small pose variations (see Fig. 2
in Appendix A). The human estimates of age, gender,
and race (see the demographic distributions in Ap-
pendix A) are used as the ground truth to evaluate the
proposed approach. Demographic estimation results
are shown in Fig. 17. A baseline performance was re-
ported by Kumar et al. [2], where age group, gender,
and race were utilized as three of the 73 attributes to
distinguish different subjects. The sizes of the training
set in our approach and that in [2] are comparable,
and SVM classifiers were also used in [2]. Our gen-
der classification method achieves better performance
(94%) than that reported in [2] (91.38%), which shows
the importance of feature representation. These results
show that the proposed approach generalizes very
well to the challenging LFW face database.

4.5 Prototype System

To enable real-time demographic estimation (e.g., us-
ing a webcam), a prototype system of our approach
is implemented using C++. Online testing using the
prototype system involves the following steps: 1) face
detection and preprocessing (FP); 2) demographic in-
formative feature extraction (DIFE); 3) quality assess-

TABLE 7

Average time (sec.) per algorithmic step in our

prototype demographic estimation system.

FP DIFE QA GC GR Total
B1 B2,∗ R∗,∗

0.02 0.03 0.005 0.025 0.005 0.005 ∼0.09

A laptop with 2.9 GHz dual-core Intel Core i7 processor and 8G RAM was used.

ment (QA); and 4) hierarchical estimation, including
group classification (GC) and within-group regression
(GR). The computational cost of each step is given
in Table 7. Offline training takes ∼10 hours using
a training set of 10K images from MORPH II. Our
system operates at about 10 fps for 720p videos; this
speed on a commodity laptop is achieved primarily
due to the proposed feature selection and hierarchical
estimation methods.

Among the state-of-the-art methods for joint age,
gender, and race estimation [7], [8], [33], only [33]
reports the computational cost without face detection
and feature extraction (1.6 sec. per image), which is
40 times slower than the corresponding components
of the proposed approach (0.04 sec. per image).

5 CONCLUSIONS

This paper presents a generic framework for auto-
matic demographic (age, gender and race) estimation
from a given face image. We extract demographic
informative features from the commonly used biolog-
ically inspired features (BIF), and predict the demo-
graphic attributes of a face image using a hierarchical
classifier. Quality assessment is proposed to identify
low-quality face images, which allows possible reac-
quisition of new face images in cooperative scenarios,
or rejection of the input face image otherwise. Human
ability to estimate age, gender and race from the same
face images that are processed by our algorithm is
also evaluated using crowdsourced data obtained via
the Amazon Mechanical Turk (MTurk) service. A com-
parison shows that our algorithm can closely match
human performance in demographic estimation.

Our approach performs well on large and diverse
databases (including FG-NET, FERET, MORPH II,
PCSO, and LFW), and performs slightly better than
human on MORPH II and PCSO in all the three
demographic estimation tasks. Our approach also
outperforms state-of-the-art methods in most of the
experiments reported here. A prototype system of
our demographic estimation algorithm (C++ imple-
mentation) illustrates the feasibility of performing
age, gender and race estimation in real time using a
commodity processor. Future work includes the study
of the other-race effect in human perception of demo-
graphics, and automatic demographic estimation from
unconstrained face images.
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APPENDIX A
DATABASES FOR DEMOGRAPHIC ESTIMA-
TION

A number of face databases have been used to study
the demographic estimation problem [1]–[12]. How-
ever, many of these databases, such as the YGA [3],
Asian dataset [4], and BERC [6], are not available in
the public domain.

For facial aging and age estimation studies, the
two most popular databases are FG-NET [1] and
MORPH II [2]. For gender classification, the FERET
database [9] is the most popular. However, there is no
commonly used database for race classification. Our
experiments on demographic estimation are based
on these three public-domain databases, namely FG-
NET, FERET, and MORPH II. We also use a large
database, namely PCSO database, obtained from the
Pinellas County Sheriff’s Office. In addition, we used
a subset of the LFW database [17] to evaluate the
generalization ability of the proposed approach to the
general population of faces.

The FG-NET database, one of the first publicly
available face databases with real ages provided for
each subject, has played an important role in advanc-
ing research on age estimation. However, as shown
in Fig. 1 (a), the age distribution of this database is
strongly biased to younger ages (<18 years). Addi-
tionally, the number of subjects in FG-NET is small
(only 82 subjects), so it cannot be used effectively to
design reliable age estimation algorithms. However,
to compare the performance of our algorithm against
published results, we follow a leave-one-person-out
protocol on the FG-NET database.

The FERET database has been used for studying
gender classification [13]–[16]. However, since the race
distribution in FERET is biased significantly to whites
(see Table 1), and the age distribution of subjects is
highly concentrated to a few discrete ages (e.g., 20,
30, and 40), we only use FERET to study gender clas-
sification. We use the Color FERET database, which
contains 2, 719 frontal face images (fa and fb), with a
5-fold Leave-One-Fold-Out (LOFO) protocol.

MORPH is a large database of mugshot images,
each with associated metadata containing age, gen-
der, and race information. We investigate all the
three demographic estimation tasks on MORPH Al-
bum2 (MORPH II), with a commercial version of the
database containing 78, 207 images of 20, 576 sub-
jects that was released on February 2010. Results of
MORPH II are reported with a 5-fold LOFO protocol.

The PCSO database, contains mugshot images with
metadata, including the image capture date, date of
birth, gender, and race1. The complete PCSO database
available to us contains ∼1.5 million mugshots, out
of which we sample a subset of 100, 012 images of

1. Interested researchers may contact the PCSO to access this
database.

(c) PCSO
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(d) LFW
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(a) FG-NET (b) MORPH II

Fig. 1. Age distributions in (a) FG-NET (1,002 images),

(b) MORPH II (78,207 images), (c) PCSO (100,012

images), and (d) a subset of LFW (4,211 images)

databases.

81, 533 subjects with near-uniform age distribution.
Age estimation on PCSO demonstrates our capability
in handling a near-uniform age distribution (see Fig. 1
(c)), which is more challenging, since we cannot sacri-
fice the accuracy in a particular age range to improve
the overall performance, as in the case of FG-NET.
Gender and race classifications are also performed on
PCSO. Note that PCSO has a completely different race
distribution than MORPH II, e.g., more whites than
blacks. Results of PCSO are reported with a 5-fold
LOFO protocol.

Unlike the previously discussed databases, the LFW
database contains face images captured under uncon-
strained conditions. We perform age, gender, and race
estimation on a subset of LFW with 4, 211 subjects
(one image per subject), where the face images have
relatively small pose variations (see Fig. 2 (e)). Since
the real age, gender, and race for LFW images are
not available, we collected human (crowdsourced)
estimates of age, gender and race of each face image
using Amazon Mechanical Turk (MTurk) with three
workers per task. The appearance estimates of age,
gender, and race are used as the ground truth to
evaluate the proposed approach. Results of LFW are
reported with a 5-fold LOFO protocol.

The five databases used in our experiments cover a
wide variety of acquisition scenarios. FG-NET is com-
prised of personal photographs. FERET is collected
from cooperative subjects. MORPH II and PCSO are
two operational mugshot databases from law enforce-
ment agencies. LFW represents general population of
faces under unconstrained conditions. We summarize
the characteristics of these five databases in Fig. 1
and Table 1. Example face images from these five
databases are shown in Fig. 2.
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TABLE 1

Gender and race distributions for MORPH II, PCSO, FERET, and LFW databases.

# Images MORPH II PCSO FERET LFW

# Subjects Machine Human Machine Human Machine Machine

G
en

d
er Female

12,606

3,553

1,000

845

25,006

20,985

1,100

227

1,007

403

1,101

1,101

Male
65,601

17,023

1,000

943

75,006

60,548

1,100

138

1,712

591

3,110

3,110

R
ac

e

White
15,996

4,660

1,000

856

69,116

56,660

1,000

615

1,689

618

3,501

3,501

Black
58,326

14,405

1,000

932

26,457

20,742

1,000

451

215

78

352

352

Other
3,885

1,511

0

0

4,439

4,131

0

0

815

298

358

358

Total 78,207

20,576

2,000

1,788

100,012

81,533

4,200

1,431

2,719

994

4,211

4,211

Machine and Human denote the datasets used in demographic estimations by the proposed approach and human (MTurk workers),
respectively. Statistics of the LFW databases are based on the human estimates by MTurk workers.

(a) FG-NET

(b) FERET

(c) MORPH II

(d) PCSO

(e) LFW

Fig. 2. Example face images from the (a) FG-NET, (b) FERET, (c) MORPH II, (d) PCSO, and (e) LFW databases.

APPENDIX B
FACE IMAGE QUALITY ASSESSMENT

Quality assessment is learned in the training stage,
and then utilized in the testing stage. We partition
the training set into high-quality (positive) and low-
quality (negative) subsets. Taking age estimation as an
example, if 3% (P ) face images in the training set with
the largest absolute error of age estimation are used
as low-quality (negative) samples, the remaining 97%
(1−P ) face images in the training set will be the high-
quality (positive) samples (see Fig. 3 (a)). Figure 4
shows examples of low-quality face images detected
by the proposed quality assessment model.

APPENDIX C
DEMOGRAPHIC ESTIMATION BY HUMAN

In our experiments on demographic estimation by
human, the GUI constrains the user’s possible input
for age, gender, and race estimation tasks. Specifically,
we do not allow MTurk workers to input an age range;
otherwise, the task would be age group rather than
exact age estimation, which is studied in this work.
Only a binary choice is allowed for gender (female
vs. male) and race (black vs. white)2 classifications.
The main purpose of above constraints is to provide

2. We allow more options for race classification in the LFW
database, i.e., Black, White, Asian, and Unknown, but these human
estimates of age, gender and race are used as the ground truth,
not for the purpose of comparisons between human and machine
performance.
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Fig. 3. Learning-based quality assessment for demo-

graphic estimation: (a) positive (high-quality) and neg-

ative (low-quality) samples from the FG-NET database,

and (b) an ensemble quality assessment classifier

consisting of multiple binary SVM classifiers learned

with resampling of positive samples.

Fig. 4. Examples of low-quality (large pose and ex-

pression variations, overexposure, and out of image

facial regions) face images detected by the proposed

quality assessment method in the MORPH II database.

a fair comparison between the proposed demographic
estimation method and human. As shown in Table 1,
the number of subjects of “the other race” is much
smaller than those of black and white subjects, which
restricts the training of the classifier for “the other
race”. However, humans have been well “trained”
to distinguish different race groups in their daily

life. If we consider three race groups (black, white,
and other race), a fair comparison between human
and our algorithm may not be possible. The footnote
under Table 3 in the main manuscript explains the
race groups (such as Asian, Caucasian, and African)
considered by some of the published methods, but
no human performance is reported on these race
groups. Similarly, for gender classification, since the
face images submitted to MTurk only contain male
and female subjects, we believe it is reasonable to ask
the MTurk workers to make a binary decision: male
or female.

We also notice that the absolute age estimation
errors by human and machine are typically within
30 years on the FG-NET, MORPH II, and PCSO
databases. One may question the accuracy of the
real ages provided in the databases if significant age
estimation errors (by either human or machine) are
observed (e.g., >30 years). Figure 5 shows two exam-
ples from the PCSO database where human estimation
errors are larger than 30 years, but obviously the real
(labeled) ages provided in the database are incorrect.

In the comparisons between human and machine
performance, it is reasonable to compare human
performance with machine performance with cross-
database testing, because human performance is not
tuned to a particular database. We have also applied
quality assessment on the datasets used for reporting
human performance. Human performance is reported
with and without quality assessment, which is exactly
the same as how machine performance is reported.
There are some studies in literature where human vs.
machine performance is reported on face recognition.
Most of these publications were reviewed in [18], [19].
In this paper, we focus on the study of human vs.
machine performance on demographic estimation.

Another interesting problem in studying the hu-
man perception ability to demographics would be
the other-race effect, such as the East Asian’s per-
formance on Caucasian faces, and vice versa. There
is still some limitations in doing such studies via
MTurk because a recent study of human performance
on face recognition [19] by MTurk workers shows
that most of the MTurk workers (totally 307 unique
workers who provided ∼60, 000 responses) are from
India (55.1%) and US (27.4%), so the demographics of
MTurk workers may not be ideal for studying specific
cases such as East Asian’s performance on Caucasian
faces. In our future work, we may restrict the country
of origin of the MTurk workers to obtain the required
human responses from a particular race group or a
country of origin.
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