
RESEARCH ARTICLE

Demographic History of Indigenous

Populations in Mesoamerica Based on

mtDNA Sequence Data

Antonio González-Martín1, Amaya Gorostiza1,2, Lucía Regalado-Liu1, Sergio Arroyo-

Peña1, Sergio Tirado1, Ismael Nuño-Arana3, Rodrigo Rubi-Castellanos4, Karla Sandoval5,

Michael D. Coble6¤, Héctor Rangel-Villalobos3*

1 Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense de

Madrid, Madrid, Spain, 2 Laboratorio de Identificación Genética, GENOMICA S.A.U., Grupo Zeltia, Parque
Empresarial Alvento, Calle Vía de los Poblados 1, Edificio B 1ª Planta, 28033, Madrid, Spain, 3 Instituto de
Investigación en Genética Molecular, Centro Universitario de la Ciénega, Universidad de Guadalajara,

Ocotlán, Jalisco, Mexico, 4 Laboratorio de Genética, Centro de Investigaciones Regionales Hideyo Noguchi,
Universidad Autónoma de Yucatán (UADY), Mérida, Yucatán, Mexico, 5 Department of Genetics, Stanford

University School of Medicine, Stanford, California, United States of America, 6 American Registry of
Pathology, Armed Forces DNA Identification Laboratory, Dover, Delaware, United States of America

¤ Current address: Applied Genetics Group, National Institute of Standards and Technology, Gaithersburg,
Maryland, United States of America

* hrangel13@hotmail.com

Abstract

The genetic characterization of Native American groups provides insights into their history

and demographic events. We sequenced the mitochondrial D-loop region (control region) of

520 samples from eight Mexican indigenous groups. In addition to an analysis of the genetic

diversity, structure and genetic relationship between 28 Native American populations, we

applied Bayesian skyline methodology for a deeper insight into the history of Mesoamerica.

AMOVA tests applying cultural, linguistic and geographic criteria were performed. MDS

plots showed a central cluster of Oaxaca and Maya populations, whereas those from the

North and West were located on the periphery. Demographic reconstruction indicates

higher values of the effective number of breeding females (Nef) in Central Mesoamerica

during the Preclassic period, whereas this pattern moves toward the Classic period for

groups in the North and West. Conversely, Nef minimum values are distributed either in the

Lithic period (i.e. founder effects) or in recent periods (i.e. population declines). The

Mesomerican regions showed differences in population fluctuation as indicated by the maxi-

mum Inter-Generational Rate (IGRmax): i) Center-South from the lithic period until the Pre-

classic; ii) West from the beginning of the Preclassic period until early Classic; iii) North

characterized by a wide range of temporal variation from the Lithic to the Preclassic. Our

findings are consistent with the genetic variations observed between central, South and

Southeast Mesoamerica and the North-West region that are related to differences in genetic

drift, structure, and temporal survival strategies (agriculture versus hunter-gathering,

respectively). Interestingly, although the European contact had a major negative
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demographic impact, we detect a previous decline in Mesoamerica that had begun a few

hundred years before.

Introduction

The peopling of the NewWorld is still a controversial debate today. In fact, there is no consen-

sus on whether the first settlers arrived in one [1,2] or several migration waves [3, 4]. Neverthe-

less, most recent research based on genetic data supports the view that the NewWorld was

peopled across the Bering Strait about 18,000 years before the present (ybp) [5]. Some authors

propose two routes for a rapid human expansion across the continent, one coastal and the

other inland; although other alternative routes have been proposed [6–8]. The hypothesis for

the human colonization of America is largely based on the study of mitochondrial DNA

(mtDNA) which, from the very first studies, has shown that extant Native American popula-

tions exhibit six mtDNA different haplogroups (hgs). These can be classified into the following

autochthonous hgs: A2, B2, C1, D1, D4h3, and X2a [9]. The fact that these lineages are

restricted to a specific geographical area allows us to reconstruct the micro-evolutionary his-

tory of Mesoamerica and bordering areas.

Current mtDNA studies in the new continent have focused on two new lines of research.

On the one hand, the genetic characterization of skeletal remains using ancient DNA tech-

niques provides information on the composition and genetic structure of pre-Columbian pop-

ulations [10–13]. On the other hand, the complete sequencing of mitochondrial genomes

allows for a greater analytical and interpretative depth of genetic information [14–17].

According to Kirchhoff [18], Mesoamerica is defined as neither a geographic region nor a

socio-political unit, but rather, as an area occupied by populations that share cultural charac-

teristics. It is also considered that at its peak the northern limit overlapped with the southern

frontier of southwestern North America [19, 20].

Considering cultural, geographical and historical criteria, Mesoamerica can be divided into

different cultural areas [21–24]. In this paper seven clusters have been considered [25–32] in

line with those used by other authors to reconstruct the history of Mesoamerica [33,34]. The

peoples who share these areas have common elements although they do not necessarily consti-

tute a single ethnic group, in fact, in many cases, they do not even share the same language.

Within these areas, and even between them, interactions and migrations occurred as a conse-

quence of geographical proximity [35, 36], trade [37, 38] and pre-hispanic politics [39, 40].

In this paper these seven regions have been used to present a systematic classification of the

results and as a starting point to explore the possible existence of genetic structure in the region.

It is necessary to clarify that, although the work is focused on Mesoamerica, some northern

populations come from Aridoamerica. This is an arid region north of Mesoamerica covering a

territory that is distributed between northern Mexico and southern USA, traditionally inhab-

ited by nomadic or seminomadic peoples [27].

Another important aspect concerning Mesoamerica is its chronological classification

according to archaeological data. In brief, it can be classified into five periods [19,23,41]. The

chronology begins with the archaic period or lithic stage (15000–2500 ybp) characterized by

the first evidence of a human presence. In the Preclassic period between 2500 ybp-150/200

years after present (yap), the settling of Mesoamerica gathered pace and the use of agriculture

and pottery began. In the immediate aftermath, or Classic (150 / 200–900 yap) period, inten-

sive agriculture was developed and an increase in the number of large population centers is
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detected. In the following period, known as Postclassic (900–1521 yap), numerous movements

of population occur accompanied by a wide diffusion of cultural elements. This period ends

with the arrival of the Europeans and the beginning of the colonial period (1951 yap-present)

[42,43].

Some of the most representative American cultures flourished in Mesoamerica, for example

the Aztecs and Mayas, in addition to numerous indigenous groups, some of whom are the

descendants of those ancient cultures. These populations emerged in a homogeneous pattern

of rituals, politics and architecture, and shared a similar lifestyle based upon agriculture, as well

as a similar social and commercial organization. This relative cultural homogeneity is also sup-

ported by the archaeological and anthropological data [32].

Studies based on the genetic variations in native Mexican populations demonstrate that

there is a high degree of differentiation between populations and a paternal heterogeneity cor-

related with geography [33,44]. However, the maternal lineages do not display significant pop-

ulation structure in relation to linguistic criteria, suggesting that genetic divergence predates

linguistic diversification in Mexico [45].

In recent years, great efforts have been made to reconstruct the history and genetic relation-

ships between human groups [46]. Among these advances stands out the development of soft-

ware that makes it possible to reconstruct human population history using mtDNA sequences

[17]. In the present work, we studied the genetic structure, diversity and genetic relationship of

some indigenous groups fromMesoamerica applying the Bayesian skyline methodology [47].

We aimed to reconstruct the genetic and demographic history of these groups in the context of

other indigenous peoples inhabiting the neighboring regions. For this purpose, the mitochon-

drial D-loop region of 520 samples from eight Mexican indigenous groups was sequenced (five

from the Maya region and three from the West of Mexico). For a deeper insight into Meso-

american history, the results have been compared with other populations fromMesoamerica

and Aridoamerica. The 28 native Mexican populations represent 19 indigenous groups and

five of the seven Mesoamerican cultural areas, including the Aridoamerican region.

Material and Methods

Population sampling

The mtDNA control region of 520 individuals representing eight Mexican indigenous groups

was sequenced. Five of the groups were of Maya filiation: Yucatan Maya (n = 40), Quintana

Roo Maya (n = 74), Campeche Maya (n = 37), as well as Tojolabal (n = 74) and Tzotzil (n = 87)

groups from Chiapas. The other three indigenous groups are Mazateco from Oaxaca (n = 41),

Purepecha fromMichoacán (n = 65), and Huichol from Nayarit (n = 102) (Table 1, Fig 1).

Throughout the text, different synonymous terms are used to refer to the populations stud-

ied. Native American refers to native populations but not necessarily fromMesoamerica. The

terms native and indigenous are used interchangeably to refer to the Amerindian populations.

Moreover, Native Mexican includes populations currently distributed in Mexican territory

which may belong to either Mesoamerica or Aridoamerica. Whenever we refer to mestizo-and

therefore non-indigenous- populations, this is specified in the text.

DNA was extracted from fresh-blood samples by means of the salting-out method. Prior to

their inclusion in our study, all volunteers signed an informed consent form according to the

ethical guidelines of the Helsinki Declaration. This work was approved by the Research Ethics

Committee of the CUCiénega, Universidad de Guadalajara, as part of the project “Comprehen-

sive approach of genetic anthropology of the Mexican populations based on mtDNA, STRs

and Y-chromosome” (CONACyT-Mexico, grant N° 129693).
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Mitochondrial DNA sequencing

The control region for all 520 samples was amplified [48] using the high-throughput strategy

[49]. For the PCR amplification of the full control region, we used a single primer pair

(F15971/R599), or three overlapping primer pairs (F15878/R16410; F16190/R285; and F15/

R649) when the full control region amplification was initially unsuccessful. Primer sequences

for each sequencing primer are available in the specialized bibliography [50,51]. Post-PCR

deactivation of unincorporated oligonucleotides and dNTPs were treated enzymatically with

ExoSAPIt (USB, Cleveland, OH, USA). Cycle sequencing of the PCR amplicons was per-

formed40 using Big Dye version 1.1 of ThermoFisher (previously Life Technologies/Applied

Biosystems, Foster City, CA, USA). Unincorporated fluorescent ddNTPs were removed with

the Performa V3 96-well short plate (Edge Biosystems, Gaithersburg, MD, USA). Sequence

data were generated on either the Applied Biosystems 3130xl using POP-6 polymer or the 3730

Genetic Analyzer using POP-7 polymer. Sequences were verified by two different analysts and

an additional quality control check was performed by EMPOP [52]

Table 1. Geographical and cultural information from the 28 Native American populations included in this study.

Name Acronym n Indigenous group Language Cultural area/ Region Ref

Zuni Zuni 50 Zuni Azteca-Tanoan Aridoamerica 44

Hualapai Hualapai 76 Hualapai Cochimí-Yuman Aridoamerica 44

Pima* (Akimel O’odham) Pima_k 98 Pima Uto-Aztecan Aridoamerica 44

Papago* (Tohono O’odham) Papago 42 Papago Uto-Aztecan Aridoamerica 44

Pima* (Akimel O’odham) Pima_a 49 Pima Uto-Aztecan Aridoamerica 67

Tarahumara Tarahumara 73 Tarahumara Uto-Aztecan North/Mesoamerica 44

Mayo Mayo 55 Mayo Uto-Aztecan North/Mesoamerica 67

Cora Cora 72 Cora Uto-Aztecan West/Mesoamerica 44

Huichol Huichol_k 62 Huichol Yuto-Nahua West/Mesoamerica 44

Huichol Huichol_a 36 Huichol Yuto-Nahua West/Mesoamerica 67

Huichol Huichol_h 102 Huichol Yuto-Nahua West/Mesoamerica This study

Purepecha Purepecha 65 Purepecha Tarasco West/Mesoamerica This study

Otomí valle Otomi_v 81 Otomí Oto-Manguean Center/Mesoamerica 67

Otomí sierra Otomi_s 90 Otomí Oto-Manguean Center/Mesoamerica 67

Nahuas Huasteca Nahua_hu 189 Nahua Uto-Aztecan Center/Mesoamerica 67

Nahuas Cuetzalan Nahua_cu 46 Nahua Uto-Aztecan Center/Mesoamerica 44

Nahuas Actopan Nahua_at 50 Nahua Uto-Aztecan Center/Mesoamerica 44

Tepehua Tepehua 51 Tepehua Totonacan Center/Mesoamerica 67

Mazateco Mazateco 41 Mazateco Oto-Manguean Oaxaca/Mesoamerica This study

Mixe Mixe 52 Mixe Mixe-Zoquean Oaxaca/Mesoamerica 44

Mixteco Mixteco 67 Mixteco Oto-Manguean Oaxaca/Mesoamerica 44

Zapoteco Zapoteco 85 Zapoteco Oto-Manguean Oaxaca/Mesoamerica 44

Maya Yucatan Maya_y 40 Maya Mayan Maya/Mesoamerica This study

Maya Campeche Maya_c 37 Maya Mayan Maya/Mesoamerica This study

Maya Quintana Roo Maya_qr 74 Maya Mayan Maya/Mesoamerica This study

Maya Maya_a 44 Maya Mayan Maya/Mesoamerica 67

Tzotzile Tzotzil 87 Maya Mayan Maya/Mesoamerica This study

Tololabales Tojolabal 74 Maya Mayan Maya/Mesoamerica This study

doi:10.1371/journal.pone.0131791.t001
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Fig 1. Geographical location of the 28 populations included in the study.Quadrants represent the regions zoomed in the supplementary information
based on the cultural areas of Mesoamerica. Populations studied in this paper appear in bold. For abbreviations please check Table 1.

doi:10.1371/journal.pone.0131791.g001

Table 2. Hgs frequencies (%) for the eight Native Mexican populations according to the complete mtDNA control region.

Maya_qr Maya_y Maya_c Tzotzil Tojolabal Mazateco Purepecha Huichol_h Total
n = 74 n = 40 n = 37 n = 87 n = 74 n = 41 n = 65 n = 102 n = 520

A2 64.9 65.0 70.3 41.4 25.7 53.7 83.1 25.5 49.4

B2 16.2 12.5 5.4 24.1 58.1 34.1 1.5 27.5 24.2

B4b1 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.2

C1 14.9 12.5 18.9 25.3 0.0 2.4 10.8 47.1 19.4

D1 4.1 7.5 5.4 0.0 16.2 0.0 4.6 0.0 4.4

D4h3a 0.0 0.0 0.0 9.2 0.0 9.8 0.0 0.0 2.3

doi:10.1371/journal.pone.0131791.t002
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Data analysis

The mtDNA sequences were aligned with Sequencher version 4.8 (GeneCodes, Ann Arbor,

MI). For diagnostic purposes, hgs were identified based on polymorphic sites and using differ-

ent online resources (MitoTool, http://www.mitotool.org/index.html); absolute frequencies

were obtained by means of the gene counting method (Table 2). Statistical analyses were car-

ried out using DNAsp and Arlequin v3.1, including different diversity estimators [53,54]: hap-

lotype number (k), polymorphic sites (s), haplotype diversity (Ĥ), nucleotide diversity (π),

average pairwise differences (θ) and tests of neutral selection such as Tajima´D (D) and Fu´s

test (FS). The genetic relationships between the eight study populations were evaluated by

means of the pairwise differences (Table A in S1 File) and FST genetic distances Analyses of

Molecular Variance (AMOVAs) applying different population clustering criteria were also per-

formed, as indicated in the tables of the results section (Table B in S1 File).

The results were compared with 20 populations fromMesoamerica or nearby regions

(Table 1, Fig 1). The global study for the 28 populations was based on the FST calculation

(Table C in S1 File) and its subsequent performance in a multidimensional scaling plot (MDS)

(Fig 2). AMOVAs for different grouping criteria (Table D in S1 File) and a Mantel test were also

performed to determine the correlation between FST and geographic matrices. Finally, the num-

ber of shared haplotypes based on HVRI among the 28 stocks was calculated (Table E in S1 File).

Evolutionary and demographic analysis

To analyze potential population size changes over time, we calculated a Bayesian skyline plot

(BSP) using Bayesian Evolutionary Analysis Sampling Trees (BEAST 7.1) [55]. Estimations

were carried out assuming the HKY+G evolutionary model, a long-normal relaxed molecular

clock with a mean substitution rate of 3,02x10−7 mutation/site/year for the non-coding region

[56]. For a detailed review of the choice of mutation rate, we used the research of Saint Pierre

and colleagues [57].

Fig 2. MDS plot representing Fst distances between Native American groups based onmtDNAD-loop region. Bold letters denote the indigenous
groups studied herein. a) MDS plot for eight Native Mexican groups; b) MDS plot for 28 Native American groups. Colors indicate the cultural regions to which
the populations belong: green, Maya region; blue, North; red, West; yellow, Center; and purple, Oaxaca. Bold letters indicate Mexican indigenous groups
included in this study.

doi:10.1371/journal.pone.0131791.g002
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The scaled effective population size was converted to Nef, assuming a generation time of 25

years. Importantly, an assumption about the mutation rate and the generation time will only

affect the scale of the Bayesian skyline plot, but not its shape [58]. To assess the effect that sam-

ple size had on the construction of the skyline, different sequences were randomly selected to

reach the total maximum value for each population (Figure A in S2 File.). For all the analyses,

Markov Chain Monte Carlo (MCMC) samples were based on 60,000,000 iterations. Genealo-

gies and model parameters were sampled every 1,000 iterations thereafter.

The use of the mtDNA control region for reconstructing demographic history by means of

BSP is, in certain circumstances, very suitable. The BSP is fundamentally based on coalescence

theory, which includes most of the properties that the BSP must meet. One of the most impor-

tant is the selection and representativeness of the sample; the samples should ideally be obtained

from individuals that have been randomly sampled from a panmictic population. In fact, the

balanced sampling strategy whereby samples are distributed across several populations provides

the best scheme for inferring demographic change over a typical time scale [59]. Sample selec-

tion should be carefully considered in relation to the population structure before BSP analyses

are carried out. The samples presented here have been selected to fulfill this requirement.

Another essential aspect which is not usually taken into account when applying BSP is the

possible existence of population sub-structure [60–62], since this directly influences the con-

struction of the demographic model [63–66]. This work represents, in this sense, an advantage,

since the samples come from a geographical region which provides valuable information about

their genetic structure [33, 44, 45, 67].

Generally, however, increasing the amount of information in the alignment, either by

increasing sequence length or by focusing on variable regions, will improve the precision of

phylogenetic estimation of the genealogy.

In fact, like the mitogenomes, methodologically the control region is treated as if it were a

single locus [68], providing enough information to reconstruct the demographic history of

human populations [69]. In addition, the control region meets other important principles that

make it suitable for BSP studies; it presents intraindividual variation and is not subject to selec-

tive pressure. On this last point, it should be noted that the effect of selection is to shift the dis-

tribution of mutations in the genealogy. For example, purifying selection leads to an excess of

mutations near the tips of the genealogy [70,71].

One of the potential problems in using the control region is that certain drawbacks such as

having a greater quantity of hotspots can alter the phylogenies and overestimate divergence

times [72]. This problem can be resolved, however, especially when studying recent popula-

tions like the aboriginal Amerindians, by applying a mutation rate concordant with the evolu-

tionary process, in this case mutation rates closer to those of pedigrees than phylogenies [57].

In addition, some other independent papers validate the use of the control region as a tool

with which to reconstruct the demographic history of populations. One of these studies con-

ducted on South American native populations provides results that largely coincide with our

knowledge of the history of Amerindian populations [57]. In another study, the authors com-

pared the results using complete mitogenomes and their control regions and found no differences

between the BSPs [73]. Finally, a study comparing the BSPs generated from a few mitogenomes

[74] with those created from a larger number of control regions from the same geographical area

but from different populations [75], showed that both were practically the same.

A final point to note is that the control region has also been used to test correlations between

demographic and paleoclimatic events [65,76], examining the factors driving past population

dynamics [55,77,78], and tracing the transmission and spread of viruses [73,79].

The skyline results, represented by the median values, are shown in graphs for cultural

regions: North, West, Central, Oaxaca and Maya region (Fig 3). Different scales were used and
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Bayesian confidence intervals were omitted in order to compare population variations between

indigenous groups. The skyline plot including the confidence intervals for each group in all cul-

tural areas is represented in Figure B in S2 File.

Both maximum and minimum periods for Mesoamerica were represented in order to sim-

plify the demographic history comparison between different groups (Fig 4). Maximum and

minimum Nef values for each group can be found in Table F in S1 File. From the Nef genera-

tion estimation, demographic inter-generational growth rates (IGR) were calculated as follows:

IGR = ((Nef n—Nef n-1) / Nef n-1)
�100

Nefn and Nefn-1 being the effective number of breeding females for a particular period and

for the previous one, respectively. These calculations were performed for the 28 groups. The

time evolution of the IGR for each of the 28 indigenous populations grouped by cultural area is

shown in Figure C in S2 File.

The time distribution of the maximum and minimum IGR values (IGRmax and IGRmin)

by Mesoamerican periods is presented in Fig 5. Detailed information on these data is presented

in Table G in S1 File. From the point of view of the demographic development of the popula-

tion and its interaction with the environment, it is important to determine when the values are

reversed, i.e. at what point in the history of Mesoamerica the native groups gained or lost popu-

lation. These inversion periods are represented in Figure D in S2 File. Note that the IGR values

experiment intense fluctuations over time, especially in populations with small sizes. Therefore,

the period in which the inversion occurred has been considered to be the one in which the

rates have equal values, whether negative or positive.

Results

We obtained the polymorphic sites in the mtDNA hypervariable regions I and II (HVRI and

HVRII) detected in the 520 individuals from eight Native Mexican populations (Table A in S3

File). These complete mtDNA sequences will be available at EMPOP database (www.empop.

org). In addition, 20 Mesoamerican populations were included in the global analyses. The geo-

graphic, cultural and linguistic information of the total population sample is shown in Fig 1

and Table 1.

The most common hg in the eight Mesoamerican populations was A2 (n = 257, 49.4%), fol-

lowed by B2 (n = 126, 24.2%), C1 (n = 101, 19.4%) and D1 (n = 23, 4.4%), with significant

intergroup variations (Table 2). Tojolabales present an increased B2 hg frequency (58.1%) and

a total absence of hg C1. However, the most important deviation was observed in Huicholes,

with a high proportion of C1 (47.1%) and absence of hg D1 (Χ2 = 45.518; p = 0.000). Complete

sequencing of the control region allows us to determine the most important sub-haplogroups

(subhgs), for example D4h3a and B4b1. D4h3a was found in twelve individuals (2.3%), eight in

Tzotziles (9.2%) and four in Mazatecos (9.8%). Conversely, the subhg B4b1 was detected only

in Mayas from the Yucatan (Table 2). Four African hgs were detected (data not shown), indi-

cating small African maternal admixtures in Maya_y (2.44%), Tzotzil (1.14%) and Purepecha

(2.98%). Due to the focus of anthropological studies on haplogroups of Native American line-

age, the African hgs were omitted in all statistical analyses.

The highest genetic diversity rate (Ĥ) was detected in Mayan populations from the Yucatan

Peninsula (Ĥ = 0.9974 ± 0.006), and the lowest in Tojolobal (Ĥ = 0.8911 ± 0.017) and Hui-

chol_h (Ĥ = 0.7994 ± 0.026) (Table 3). However, using the nucleotide diversity index (π), this

pattern changes, with the Native Mexican groups Mazateco (π = 0.01056 ± 0.0005) and Tzotzil

(π = 0.01067 ± 0.0002) having the highest values. In contrast, Tojolabales present the lowest

values for all genetic diversity indices. On the other hand, negative values were observed in the

neutrality test (Tajima's D and Fu's FS) for the populations from the Yucatan Peninsula

History and Demography of Mesoamerica Based on mtDNA Sequence Data
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Fig 3. Skyline plot for the 28 populations grouped in the five cultural regions.North, West, Central, Oaxaca and Maya.

doi:10.1371/journal.pone.0131791.g003
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Fig 4. Time distribution (bottom) of the maximum (green points) andminimumNef values (red points) by Mesoamerican periods (top) for
populations clustered in cultural areas. The vertical red stripe indicates periods before 8,000 ybp.

doi:10.1371/journal.pone.0131791.g004
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Fig 5. Time distribution (bottom) of the maximum (green points) andminimum IGR values (red points) by Mesoamerican periods (top) for
populations clustered in cultural areas. The vertical red stripe indicates periods before 8,000 ybp.

doi:10.1371/journal.pone.0131791.g005
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(Maya_qr, Maya_y and Maya_c) and Purepecha, indicating a relatively recent population

growth. We must remember that for a population fall coming after a population expansion, the

sign of the Tajima’s D value depends on the timing and degree of these events although it is dif-

ficult to place in time.

The only populations with no significant differences, expressed by corrected average pair-

wise differences, are those from the Yucatan Peninsula (Table B in S1 File). Genetic distances

between the eight populations included in this study were represented in an MDS plot (Fig 2a).

Two results in particular should be noted: i) the existence of a cluster formed by the Mayan

populations from the Yucatan Peninsula (Maya_y, Maya_c and Maya_qr) and the other

slightly remote Mayan populations, especially Tojolobals; and ii) the nearest population to the

Mayan ones is the Mazatec, lending support to the idea of continuity between genetics and

geography. The lowland western populations (Purepecha and Huichol_h) are not grouped

together; in fact, Purepecha have more affinity with Mayans than with Huichol_h, who are far

from the cluster (Fig 2a).

We performed some AMOVA tests for the eight Mesoamerican populations according to

different clustering criteria (Table B in S1). The results were not significant when Mayan popu-

lations were compared with the rest (FCT = 0.0125, p = 0.1368). However, significant results

were found when the same cluster (Culture II) was divided into two Mayan population groups:

those from the Yucatan Peninsula and the rest (FCT = 0.0037, p = 0.0161). We also obtained

significant results in the clusters 'Culture Area' (FCT = 0.0062, p = 0.0148) and 'Language' (FCT
= 0.0480, p = 0.0098). A second set of analyses was then undertaken using these eight Mexican

indigenous populations and a further 20 Native American groups. The latter came from the

same geographical area and/or cultural background. The first step in this analysis was to calcu-

late FST genetic distances (Table C in S1 File) and an MDS representation (Fig 2b). Most of the

Nahua, Otomi, Maya and Oaxaca populations, the most representative Mesoamerican cultures,

are grouped into a central cluster, indicating a large genetic homogeneity. Some groups lie out-

side this distribution, and although most of them are of northern origin (Hualapai, Zuni,

Pimas_a, Huichol_h, Huichol_k, and Tarahumara), three belong to Mesoamerica (Tojolabal,

Mixe and Purepecha). If we compare the position of the populations in the MDS withĤ values,

the graph becomes particularly interesting. In fact, the Euclidean distance of each population

from the coordinates of the center is negatively correlated withĤ (r = −0.985, p<0.0001),

which is an indication that the populations at the periphery of the distribution are those with

less diversity. Thus, the MDS reflects not only inter-population genetic relationships, but also

the genetic diversity of the populations. This latter parameter is related to demographic history

and shows the effects of genetic drift. Moreover, the Mantel test, contrasting the FST distance

matrix and the geographical distances between the 28 Native American groups, showed a sig-

nificant correlation (r = 0.207, p = 0.0003).

In order to estimate the relationship between populations, shared haplotypes from hyper-

variable region I (HVR I) were calculated (Table E in S1 File). The largest number of shared

variants was detected between Otomí_v and Otomí_s (14); and between Nahua_hu and Otomí

groups (14 and 13), as well as between Nahua_hu and Nahua_cu (10), Zapotec (9), and Mayan

groups from the Yucatan Peninsula: Maya_qr (9), Maya_y (8), and Maya_c (8). The detected

value between Pima_k and Papago (10), and between Nahua_at and Otomí groups (8 for both)

is interesting. High values were also observed between the Yucatan Peninsula groups: Maya_c

with Maya_y (9), and Maya_c with Maya_qr (8).

It is worth noting that different research teams have observed quite different values for the

same indigenous group. For example, in the literature there is a pronounced range of observed

values for the Huichol (represented by Huichol_k, Huichol_h and Huichol_a) and Pima

groups (Pima_k and Pima_a) from western and northern regions, respectively. Conversely,
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population samples closer to the Mesoamerican core (from Center to Southeast, Mexico) such

as Nahua (Nahua_cu, Nahua_at and Nahua_hu), Otomí (Otomi_v and Otomi_s) and Maya

groups (Maya_a, Maya_qr, Maya_c, Maya_y, Tzozil) show more homogeneous results; Tojola-

bales were the only exception.

Two of the new set of AMOVA tests performed on the 28 Native American populations

indicated significant differentiation between groups (Table D in S1 File): 'Pre-Hispanic area'

(FCT = 0.0858, p = 0.0000) and 'Cultural area' (FCT = 0.0640, p = 0.0000), while 'Linguistic

groups' displayed no-significant p-value (FCT = 0.0088, p = 0.0840).

To get a more realistic picture of the complex demographic history of the indigenous popu-

lations, the BSP approach was applied (Fig 3). For this purpose, different random numbers of

samples were selected in order to verify the effects on the skyline profile (S1 File). In this way,

we verified that sample size does not influence the BSPs, validating that the studied samples are

representative.

The observed demographic growth pattern over time agrees with that estimated by other

authors and can be described in three stages [58,80,81]. A first stable phase is common to all

the Native American populations. The second period is characterized by an increase in popula-

tion, which is more or less pronounced depending on the indigenous group. This increase

begins around 13,000 ybp with the fastest growth rate observed from 3,000 to 7,000 ybp. In the

last phase, a demographic decline begins around 3,000 to 2,000 ybp depending on the cultural

area and the indigenous group. However, this demographic growth model varies for the differ-

ent study populations, in accordance with their different histories and subsistence strategies. It

should be noted that each population has a different demographic history and cultural group-

ings have been made to address the results in a systematic manner. In fact, the boundaries and

cultural parameters that define them have fluctuated depending on the conceptual evolution of

disciplines and knowledge about Mesoamerica [19, 23]. The analysis of these results by cultural

area showed the following findings:

North. This area includes seven indigenous groups (Fig 1, Table 1) showing a relatively low

number of breeding females (Nef), in some cases with a minimum of 5,000 individuals (Fig 4,

Table G in S1 File). The demographic model is similar in all locations: a peak is reached during

the Preclassic and Classic periods (Fig 4), and the Nef minimum coincides with the Colonial

period or the early Lithic one. IGRmax values of population increase present a logical time

Table 3. Diversity parameters based onmtDNA control region sequences for the eight Native Mexican populations included in this study.

Population n k S H^ ± sd π ± sd θ D FS

Mayan groups

Quintana Roo 74 40 68 0.9811±0.005 0.00913±0.0092 10.435 -0.8386 -7.10203

Yucatan 40 38 86 0.9974±0.006 0.00978±0.0084 11.326 -1.4943 -22.54797

Campeche 37 28 57 0.9819±0.001 0.00843±0.0006 9.674 -1.0887 -7.90736

Tojolabales 74 16 35 0.8911±0.017 0.00777±0.0004 8.954 0.8977 5.07651

Tzotziles 87 28 60 0.9513±0.008 0.01067±0.0002 12.171 0.0718 1.67121

Other Mexican groups

Mazatecos 41 20 53 0.9585±0.013 0.01056±0.0005 12.412 0.0071 0.6201

Purépechas 65 23 52 0.9307±0.015 0.00661±0.0006 8.244 -0.7179 -0.70342

Huicholes 102 14 36 0.7994±0.026 0.00898±0.0002 11.213 2.0406 13.9224

n, sample size; k, number of different haplotypes; S, polymorphic sites; H, haplotype diversity; π, nucleotide diversity;

θ, mean number of pairwise differences between sequences. D, Tajima’s D; FS, Fu’s FS test (sd, standard deviation).

doi:10.1371/journal.pone.0131791.t003
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lapse with respect to the maximum Nef, and are detected in the Lithic and Preclassic periods

(Fig 5). Despite some uniformity, Hualapai, Tarahumara and Zuni are rather different to the

general demographic growth model. This uniqueness can be seen in the periods in which the

inversion of the IGR trend occurs (Figure C and Figure D in S2 File, Table G in S1 File), in the

Preclassic period for these populations and in the Classic one for the rest.

West. The demographic behavior of the five populations is very heterogeneous, particularly

that of the Huichol_a and Cora. The former maintain positive IGRs until the present and reach

relatively high population sizes (Nef = 125,000; 100 years ago) (Figs 4 and 5). This difference in

the IGR values, compared with those of other populations of the same filiation (Huichol_h and

Huichol_k), reflects the historical differences among Huichol communities. Furthermore, the

Cora group maintains a constant IGR value, implying that it has had a higher population than

the rest of the western indigenous groups.

Center. In this region, the majority of the groups have high population sizes, with the excep-

tion of the Tepehua who show a maximum Nef of 31,302 individuals, compared with the

255,025 individuals for Nahuas_hu (Table F in S1 File). Most of these populations have maxi-

mum IGR values during the lithic period (Fig 5). It is important to highlight the similar sky-

lines of the Otomí_s and Nahua_hu, both with different linguistic affiliations but sharing the

same geographical space (Fig 3).

Oaxaca. In this cultural region the demographic model is similar for all four populations,

with maximum IGR values for the Lithic period and maximum population sizes in the Preclas-

sic period during which the change is also detected (Figs 4 and 5). The exception to this model

is the Mixe group, which shows minimum Nef values in the Classic period and maximum val-

ues in the Colonial one.

Mayan. A very different skyline is found for this region, with Tojolabales and Maya_y (Figs

4 and 5) showing the most divergent demographic history. The former have maintained dis-

crete population sizes (maximum Nef of 16,406 in the late-Classic period), while the latter

show constant growth rates over time, with a peak at the end of the Postclassic period

(Nef = 522,057).

Discussion

Despite the numerous studies that have been carried out regarding Mesoamerican indigenous

groups, there are still doubts about their origins, genetic relationships and, above all, their

demographic history. This paper analyses the phylogeographic and demographic history of

eight Mesoamerican indigenous groups, five of Mayan descent and three from western Mexico.

The complete mitochondrial D-loop region of 520 Native Mexican individuals was

sequenced, and different population indices were calculated, comparing them to 20 indigenous

populations from neighboring regions. To our knowledge, this is the first time the Bayesian sta-

tistical method has been successfully applied to the D-loop region in order to reconstruct the

demographic history of each of the Mexican indigenous groups (other authors have generally

focused on macro-regions). In some cases the results were pooled by cultural region in order to

facilitate a comparative analysis.

The 520 samples analyzed herein belong to one of the six Pan American hgs, confirming the

common origin and close relationship between Native Mexican groups. This contrasts with the

hypothesis formulated in other studies supporting the idea of a dual origin for Mesoamerican

populations [17].

The small African admixture found in three Mexican indigenous groups (< 3%) is in agree-

ment with previous results based on both mtDNA [67] and autosomal markers [82,83]. These

results suggest that Post Columbian maternal gene flow toward Mexican indigenous
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communities preferentially has involved women of African and Native American origins due

to social constraints.

Some authors have described a pattern in the mtDNA frequency distribution in North

America that consists of a north-south gradient for hgA2, a south-north gradient for hgC1 and

hgD1, and a lack of distribution for hgB2 [84, 85]. According to this proposal, the expected fre-

quencies in Mesoamerica should be a high proportion of A2 and B2 and a lower presence of C1

and D1 [86]. In general our results agree with this model. However, when an analysis is made

on a smaller geographical scale, this model is not observed. This result can be directly related to

a phenomenon described in many human populations, that is, female mobility is mainly lim-

ited to small or medium distances [87].

Six hgs have been described in this paper (A2, B2, B4b1, C1, D1 and D4h3a) and, as

expected, haplogroup X2a has not been detected. This result is not surprising, however, since

its distribution is typically restricted to northeastern North America [88]. It is important to

remember that the presence of this variant marks a possible continental route of expansion in

the North American sub-continent.

D4h3 is a founder haplotype with an early presence in Native Americans [10, 12], and it is

also considered a distinctive variant marking the Pacific human expansion into the new conti-

nent [7]. Although five of the eight populations studied herein are located on the Pacific coast,

this variant has only been detected in two inland groups, Mazateco and Tzotzil (Fig 1, Table 2).

The absence of D4h3 in other Native American populations could be explained by genetic drift

effects, given the low frequency (2.3%) of this haplotype in Mesoamerican indigenous groups.

Another possibility implies that after crossing the narrowest region of Mesoamerica, the Isth-

mus of Tehuantepec, the route of human expansion changed direction diagonally into the con-

tinent in order to avoid the coastal foothills of the current state of Chiapas. This hypothesis,

supported by some researchers [89], seems to be the most plausible explanation since the oldest

Mayan settlements were located in the southeast of the state of Chiapas [90]. This model of

expansion would therefore imply an initial inward movement into the Mayan region, explain-

ing the presence of D4h3 in Mazatec and Tzotzil populations, followed by a second expansion

to the coast and the subsequent disappearance of the haplotype due to genetic drift effects.

Although the B4b1 subhg is a clade initially defined exclusively for southeast Asian popula-

tions [91], it has recently been detected in America in one Quechua sample (Chile). The most

plausible hypothesis for its presence in the Yucatan Peninsula is that this clade traveled along

Pacific trade routes established by the Europeans. Although in a previous study, Eurasian hgs

were not observed in Mexican Mestizos from the Center to the Southeast [92], 1.4% of Asian

and non-Amerindian genomic ancestry has been described in the Yucatan region [93].

Our results show a colonization model characterized by a certain basal homogeneity com-

mon to all populations, but with differences in terms of cultural sub-regions [89]. The process

that explains this model would begin with the arrival to Mesoamerica of populations composed

of a single genetic pool and distributed to new colonized regions. The significant correlation

between geography and FST shows the importance that geography had in population differenti-

ation. In this context, indigenous populations started differentiating within and between cul-

tural areas, which favored the important linguistic and cultural diversity nowadays found in

the region. The fixation indices calculated for the eight populations support this approach,

yielding significant values mainly between populations of different cultural areas. Although no

studies analyze this phenomenon in earlier periods, the studies carried out for the Classic and

Postclassic period support the idea that population movements took place primarily within

these cultural areas and were influenced by geography, trade and politics [39,40,94]. Trade,

which stimulated migration and contact between human groups within and between cultural
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areas, is a factor that can largely explain the genetic structure of Mesoamerica expressed in the

genetic homogeneity for the central area, Oaxaca and the Maya region.

The study of the influence of language also supports this idea; initially, at a micro-geo-

graphic level, language had an important role as a genetic barrier as suggested by the significant

AMOVA results of the eight populations. However, the importance of this cultural component

is diluted when the study region is expanded. These results are consistent with the hypothesis

claiming that genetic differentiation in Native American groups occurred before the linguistic

differentiation [45].

A second crucial event, which had important consequences in the population, was the adop-

tion of agriculture. The development of maize domestication (Zea mays), and courgette

(Cucurbita pepo), bean (Phaseolus vulgaris) and pepper (Capsicum annuum) crops led to a

more sedentary lifestyle, an increase in social and urban complexity and the development of

trade and migration routes. These trade-associated migrations were mainly performed within

the same cultural areas and, on a second level, between areas [34,94]. This process is reflected

in the AMOVA results, in which cultural areas significantly explain population stratification.

This sub-structure can be seen in the MDS plots (Fig 2b), with a central cluster formed largely

by the Oaxaca and Maya populations of the Center region.

Populations in the North andWest regions, as well as exceptions from the Mayan region

and Oaxaca, are distributed on the outskirts of this central cluster. The distribution of northern

populations is consistent with the existence of a genetic barrier between the North region and

Mesoamerica [67]. Differentiation between these two regions is justified by different survival

strategies practiced by indigenous groups on both sides of this hypothetical barrier. The north-

ern populations, hunter-gatherers until a few generations ago, remained small in size and

underwent intense genetic drift effects. These characteristics, together with limited contact

with other populations [95] as a consequence of geographical barriers, such as the mountains

and canyons of the Sierra Madre, facilitated their low diversity and a high genetic differentia-

tion relative to other Mesoamerican groups. In this sense, it is interesting to note the intermedi-

ate position of Mayo, Cora and Tarahumara between both regions (Fig 2b).

Populations that are not from the North but are located on the periphery of the main group,

probably have low genetic diversity due to other circumstances. Northern populations have

almost no hgs shared with other groups, suggesting a process of differentiation and past isola-

tion. The Huichol_h, Huichol_k, Mixe and Tojolabales show low diversity but share hgs with

other groups from their area and from other cultural regions. The behavior of these groups sug-

gests that the isolation process occurred in more recent times. Another possible explanation for

the shared hgs of these populations could be recent gene flow, as suggested by some studies

based on GWAS [33]. Other studies corroborate the idea of the importance of trade and poli-

tics, especially in the Postclassic period, in shaping the current genetic structure of Mesoamer-

ica [34]. These studies mostly suggest contact between Mayan populations and the central-

eastern region of Mesoamerica, as well as a migration route between the Center and the West.

These migrations probably of little importance quantitatively, however, since otherwise, as well

as having shared hgs indicating a common ancestry, increased levels of diversity should also be

detected.

Within the context of population genetics, demographic history studies are essential in

order to obtain a specific reconstruction of the history of indigenous groups. In addition to esti-

mating Nef per generation, IGRs were calculated to reconstruct population fluctuations in

detail. Population reconstruction using Bayesian methods interprets demographic growth as

the adaptive reflection of the populations; colonization of new ecosystems with resources and

without competition and/or improvements in how they are exploited [58,81,82].
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In general, most of the indigenous cultural groups from south and southeast areas, such as

Oaxaca and the Mayas, show high values of Nef in the Preclassical period, with some excep-

tions such as Maya_y, Tojolobales, and Tepehuas. During that time, Mesoamerican societies

adopted an agriculture lifestyle as a survival strategy and thereby no longer required a nomadic

existence to search for food and other resources, resulting in an increase in the social complex-

ity and population density. The latter is interesting because the population growth detected in

the present work has been corroborated by independent studies [96]. These peaks tend to

move towards the Classic period in western groups and especially in those from the North

region. The maximum population in the West coincides with the development of the Teuchi-

tlán or Tumbas de Tiro tradition (2,400–1,800 ybp), whereas results for the North are related

to population expansion fromMesoamerica toward the north [97]. In all cases, the maximum

demographic values do not coincide with the period of greatest splendor of Mesoamerican cul-

tures, but rather are found in preceding periods.

On the other hand, Nef minimum values are distributed in either the Lithic period, possibly

representing the founder effect, or in recent periods, reflecting the population decline suffered

in many Mexican indigenous groups that has continued until today. In order to measure in

real time the adaptive level of populations, the IGR has to be estimated, with Nef the conse-

quence of the accumulation of positive or negative values of these rates over a specific period.

Although it is virtually impossible to conduct a systematic analysis of the behavior of IGRs by

indigenous group, the detailed IGR evolution is shown (Figure C in S2 File). The interpretation

is focused on IGRmax and IGRmin as well as periods in which there was a change in trend.

IGRmax values are found in general during the Lithic period, and the positive trend contin-

ues until the Preclassic. After this period, the values decrease and are negative, reaching the

current IGRmin. This model is valid for groups from cultural regions of central, southern and

southeastern Mesoamerica, whereas in the West and North regions maximum Nef values and

fluctuations over time are detected. In the West region, IGRmax is reached at the beginning of

the Preclassic and the inversion occurs at the end of this period and the early Classic. In the

North, IGRmax values show a wide range of temporal variation from the Lithic to the Preclas-

sic, with the inversion at the end of the Preclassic or early Classic (Figure D in S2 File and

Table G in S1 File).

The information provided by the IGRs generates some interesting conclusions. The first is

that Mesoamerican populations quickly adapted to their environment in the early stages of col-

onization. Moreover, this growth was more or less stable throughout their history until periods

prior to the splendor of the Mesoamerican cultures; after that, they began a slow and steady

decline in population. This early population growth coincides with the beginning of agriculture

and a sedentary lifestyle [24]. In fact, the timing difference detected between the West and the

rest of Mesoamerica could be related to the onset of agriculture dated between 3,650–3,250 ybp

[98] (Capacha culture) in the West [99] and 8,240 ybp, 6,208 ybp and 5,090 ybp for Oaxaca,

the Center and the Maya region, respectively [100].

Another interesting question is the growth model for the northern groups, which clearly

reflects their hunter-gatherer strategy: old IGRmax, dating back to the lithic period, and rela-

tively low values of IGR that maintain discrete population increases.

One of the advantages of having different populations representing the same native group is

that one can approach the study of intragroup internal structure. The analysis of shared hgs

reveals that populations of the same group tend to share hgs, an indication of consistency.

However, their distribution in the MDS and demographic behavior suggests two models. The

first is a fairly homogeneous model, which is represented by the inherited stocks of large cul-

tures of central Mesoamerica: Mayan, Aztec and the Otomi, including the western Purepecha

group. The genetic and demographic similarities detected among Otomi and Nahua from the
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Sierra Madre Oriental are an interesting result. This coincidence, even for culturally different

groups, reflects a constant gene flow between both groups favored by geographical proximity

and corroborated by the high number of shared haplogroups.

A second model is represented by northern groups, such as Huicholes and Pimas, who have

a heterogeneous demographic behavior. That is, the development of large cultures involves

genetic homogeneity; conversely, less cohesive cultures show variations in their demographic

patterns pointing to periods of isolation and independence among communities presumably

from the same indigenous group. Huichol are a particularly interesting group. Ethnographic

and ethnohistorical studies indicate the possibility that Huichols derive from various groups

who settled in the Sierra Madre Occidental [101,102]. The detected heterogeneity for this

group could be a reflection of this story, in fact, mtDNA [67] and Y chromosome studies [103]

confirm the dual origin of this group.

A final point to note is that, although the arrival of Europeans had a major impact on the

demography of indigenous population (the negative IGRmax values are detected after the con-

tact), the demographic decline began in Mesoamerica a few hundred years before. This result

can be contrasted with paleo-climatic studies conducted in both Mesoamerica and the Mayan

region. In Mesoamerica it has been suggested that during the middle Holocene weather condi-

tions were relatively stable, but that a dry period began about 5,800 ybp [104]. These dates

coincide with the periods estimated using Bayesian statistics in which the IGRs begin to decline

and eventually turn negative. Regarding the Mayas region, it is estimated that the collapse of

this culture occurred in the years 1,110 to 1,200 [96], which practically coincides with the val-

ues detected for the demographic decline of the Yucatan Mayas (625 ybp).

In summary, our study–applying for the first time Bayesian skyline methodology to mito-

chondrial D-loop sequences–highlights the demographic changes that took place over time

and in different geographical areas of Mesoamerica. These were the result of the complex inter-

relationship between geography, subsistence strategies, social structure and culture.
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S1 File. Table A. Genetic differentiation among the Mesoamerican populations studied

herein. Corrected pairwise differences average (below diagonal) and p-values (above diagonal),

among the eight Mexican Native populations based on the control region of mtDNA

sequences.

Table B. Population structure among the eight Mesoamerican populations studied herein.

AMOVA based on historic, geographic, cultural and linguistic criteria for the eight indigenous

populations studied herein.

Table C. Genetic differentiation among 28 Native American populations. FST values

between the 28 Native American populations based on the control region of mtDNA

sequences.

Table D. Population structure among Native American populations based on different cri-

teria. AMOVA based on historic, geographic, cultural and linguistic and criteria among 28

Native American populations included in this study.

Table E. Genetic relationships based on shared haplotypes between Native American popu-

lations. Number of shared haplotypes between the 28 Native American populations based on

HVRI data

Table F. Estimates of Nef values for each of the Native American groups studied herein.

Female effective population size (Nef) and corresponding maximum and minimum estimated

for the studied Native American populations based on mitochondrial control region data.

Table G. Demographic and temporary parameters estimated in the Native American
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groups studied herein. Temporary distribution of female effective population size (Nef), inter-

generational growth rates (IGR) with maximum and minimum values, and period in which the

IGR trend inversion occurred (major demographic changes) estimated in the Native American

groups studied herein based on mitochondrial control region data.</SI_Caption>

(PDF)

S2 File. Figure A. Bayesian skyline plot based on random samples from the 28 studied

indigenous populations. A different number of samples were randomly selected to determine

that sample size has no effect on the demographic profile.

Figure B. The 28 studied indigenous populations grouped by cultural areas. The Nef

median value is represented in the Bayesian skyline plot including confidence intervals.

Figure C. IGR values temporary evolution for each indigenous group grouped by cultural

areas. The Y-axis represents IGR percentage value and X-axis time in ybp.

Figure D. Temporary distribution (bottom) according to Mesoamerican periods (top) in

which the trend inversion occurred. The vertical red stripe indicates periods previous to 8,000

ybp.</SI_Caption>

(PDF)

S3 File. Table A. Polymorphic sites in mtDNA hypervariable regions I and II (HVRI y

HVRII) defining Native American haplogroups detected in eight Mexican indigenous pop-

ulations. Absolute frequencies observed in each Mexican population studied herein are pre-

sented.

(XLSX)
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