DEMOIVRE'S QUINTIC AND A THEOREM OF GALOIS

BLAIR K. SPEARMAN and KENNETH S. WILLIAMS

(Received September 19, 1998)

Submitted by K. K. Azad

Abstract

Explicit formulae for the five roots of DeMoivre's quintic polynomial are given in terms of any two of the roots.

If $f(x)$ is an irreducible polynomial of prime degree over the rational field Q, a classical theorem of Galois asserts that $f(x)$ is solvable by radicals if and only if all the roots of $f(x)$ can be expressed as rational functions of any two of them, see for example [2, p. 254]. It is known that DeMoivre's quintic polynomial

$$
\begin{equation*}
f(x)=x^{5}-5 a x^{3}+5 a^{2} x-b, \quad a, b \in Q \tag{1}
\end{equation*}
$$

is solvable by radicals, see for example Borger [1]. In this paper we give explicit formulae for the roots of $f(x)$ in terms of any two of them. We do not need to assume that $f(x)$ is irreducible only that it has nonzero discriminant, that is,

$$
\begin{equation*}
d=5^{5}\left(4 a^{5}-b^{2}\right)^{2} \neq 0 \tag{2}
\end{equation*}
$$

We remark that if $d=0$ then $4 a^{5}=b^{2}$ so that $a=u^{2}$ and $b=2 u^{5}$ for some $u \in Q$ and the roots of $f(x)$ are

[^0]Key words and phrases: roots of DeMoivre's quintic.

$$
2 u,\left(\omega+\omega^{4}\right) u,\left(\omega+\omega^{4}\right) u,\left(\omega^{2}+\omega^{3}\right) u,\left(\omega^{2}+\omega^{3}\right) u
$$

where

$$
\begin{equation*}
\omega=e^{2 \pi i / 5} \tag{3}
\end{equation*}
$$

We denote the roots of $f(x)$ by $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$ so that the splitting field of $f(x)$ is $F=Q\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)$. As

$$
\sqrt{d}= \pm \prod_{0 \leq i<j \leq 4}\left(x_{i}-x_{j}\right) \in F,
$$

we see from (2) that

$$
\begin{equation*}
\sqrt{5} \in F \tag{4}
\end{equation*}
$$

We denote the Galois group of $f(x)$ by G_{f}, the cyclic group of order m by Z_{m}, and the symmetric group of order $m!$ by S_{m}. The Frobenius group F_{20} (of order 20) is the group under composition of transformations of the form

$$
x \rightarrow m x+n, \quad m(\neq 0), \quad n \in G F(5)
$$

where $G F(5)$ is the finite field with 5 elements. If we write A for the transformation $x \rightarrow x+1, B$ for the transformation $x \rightarrow 2 x+1$, and I for the identity transformation $x \rightarrow x$, we find that

$$
F_{20}=\langle A, B\rangle, \quad A^{5}=B^{4}=I, \quad A B=B A^{3}
$$

The elements of F_{20} are $A^{i} B^{j}(i=0,1,2,3,4 ; j=0,1,2,3)$ and their orders are given as follows:

$$
\begin{array}{cl}
\begin{array}{cl}
\text { order } & \text { elements } \\
1 & I \\
2 & B^{2}, A B^{2}, A^{2} B^{2}, A^{3} B^{2}, A^{4} B^{2} \\
4 & B, A B, A^{2} B, A^{3} B, A^{4} B, B^{3}, A B^{3}, A^{2} B^{3}, A^{3} B^{3}, A^{4} B^{3} \\
5 & A, A^{2}, A^{3}, A^{4}
\end{array} .
\end{array}
$$

Thus F_{20} has five subgroups of order 2 (generated by $B^{2}, A B^{2}, A^{2} B^{2}$, $A^{3} B^{2}$ and $A^{4} B^{2}$), five subgroups of order 4 (generated by $B, A B, A^{2} B$, $A^{3} B, A^{4} B$), one subgroup of order 5 (generated by A), and one subgroup of order 10 (generated by A and B^{2}).

With $f(x)$ as in (1) and (2), we prove
Theorem. (a) $f(x)$ is solvable by radicals.
(b) $f(x)$ is either irreducible in $Q[x]$ or $f(x)$ is the product of a linear polynomial and an irreducible quartic polynomial in $Q[x]$.
(c) F contains the cyclic quartic field

$$
Q\left(\sqrt{\left(4 a^{5}-b^{2}\right)(5+2 \sqrt{5})}\right)
$$

(d) If $f(x)$ is irreducible, then $G_{f}=F_{20}$.
(e) F contains a unique quadratic field, namely $Q(\sqrt{5})$.
(f) If r_{1} and r_{2} are any two roots of $f(x)$ then the other three roots are

$$
\frac{\left(r_{1}+r_{2}\right)\left(3 a-\left(r_{1}^{2}+r_{2}^{2}\right)\right)}{r_{1} r_{2}+a}, \frac{r_{1}^{3}-3 a r_{1}-a r_{2}}{r_{1} r_{2}+a}, \frac{r_{2}^{3}-3 a r_{2}-a r_{1}}{r_{1} r_{2}+a}
$$

Proof. (a) Setting $x=y+(a / y)$ we obtain the roots of $f(x)$ as $x_{j}=\omega^{j} H+\omega^{-j} K(j=0,1,2,3,4)$, where ω is defined in (3),

$$
H=\left(\frac{1}{2}\left(b+\sqrt{b^{2}-4 a^{5}}\right)\right)^{1 / 5}, \quad K=\left(\frac{1}{2}\left(b-\sqrt{b^{2}-4 a^{5}}\right)\right)^{1 / 5}, \quad H K=a .
$$

Thus $f(x)$ is solvable by radicals and G_{f} is a solvable group.
(c) Let r be a root of $f(x)$. Now

$$
f(x) /(x-r)=x^{4}+r x^{3}+\left(r^{2}-5 a\right) x^{2}+\left(r^{3}-5 a r\right) x+\left(r^{4}-5 a r^{2}+5 a^{2}\right)
$$

which has the root

$$
\frac{1}{4}\left(-r+r \sqrt{5}+\sqrt{\left(4 a-r^{2}\right)(10+2 \sqrt{5})}\right) .
$$

Appealing to (4) we deduce that

$$
\sqrt{\left(4 a-r^{2}\right)(10+2 \sqrt{5})} \in F .
$$

Taking $r=x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$ (the roots of $f(x)$), we obtain

$$
\prod_{j=0}^{4} \sqrt{\left(4 a-x_{j}^{2}\right)(10+2 \sqrt{5})} \in F,
$$

that is

$$
(10+2 \sqrt{5})^{2} \sqrt{\prod_{j=0}^{4}\left(4 a-x_{j}^{2}\right)(10+2 \sqrt{5})} \in F .
$$

As $(10+2 \sqrt{5})^{2} \in Q(\sqrt{5}) \subseteq F$ we deduce that

$$
\sqrt{\prod_{j=0}^{4}\left(4 a-x_{j}^{2}\right)(10+2 \sqrt{5})} \in F .
$$

Now

$$
\prod_{j=0}^{4}\left(4 a-x_{j}^{2}\right)=g(4 a)
$$

where

$$
g(x)=\prod_{j=0}^{4}\left(x-x_{j}^{2}\right) .
$$

A standard calculation gives

$$
g(x)=x^{5}-10 a x^{4}+35 a^{2} x^{3}-50 a^{3} x^{2}+25 a^{4} x-b^{2}
$$

from which it follows that

$$
g(4 a)=4 a^{5}-b^{2}
$$

Hence

$$
Q\left(\sqrt{\left(4 a^{5}-b^{2}\right)(10+2 \sqrt{5})}\right) \subseteq F
$$

Since

$$
10+2 \sqrt{5}=(5+2 \sqrt{5})(1-\sqrt{5})^{2}
$$

we obtain

$$
Q\left(\sqrt{\left(4 a^{5}-b^{2}\right)(5+2 \sqrt{5})}\right) \subseteq F
$$

It is easily checked that $Q\left(\sqrt{\left(4 a^{5}-b^{2}\right)(5+2 \sqrt{5})}\right)$ is a cyclic quartic field, see for example [3, Theorem 3(ii)]. Thus, by Galois theory,

$$
\begin{equation*}
4 \text { divides }\left|G_{f}\right| \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { a quotient group of } G_{f} \text { is isomorphic to } Z_{4} \text {. } \tag{6}
\end{equation*}
$$

(b) If $f(x)$ is not irreducible in $Q[x]$ then $f(x)$ must have a factorization into distinct irreducible polynomials of $Q[x]$ whose degrees are

(i)	1,4
(ii)	$1,1,3$
(iii)	$1,1,1,2$
(iv)	$1,1,1,1,1$
(v)	$1,2,2$
or (vi)	$2,3$.

In cases (ii), (iii), (vi) $\left|G_{f}\right|=1,2,3$ or 6 contradicting (5). In case (v) $G_{f}=Z_{2}$ or $Z_{2} \times Z_{2}$ rontradicting (6). In case (vi) $G_{f}=Z_{2} \times Z_{3}$ or $Z_{2} \times S_{3}$ or S_{3} again contradicting (6). Hence case (i) must hold.
(d) If $f(x)$ is irreducible, then by (a) G_{f} is a solvable transitive subgroup of S_{5} and thus can be identified with a subgroup of F_{20} [2, pp. 253-254]. Hence $\left|G_{f}\right| \leq\left|F_{20}\right|=20$. But, by (5), 4 divides $\left|G_{f}\right|$ and, as $f(x)$ is of degree 5,5 divides $\left|G_{f}\right|$ so that $\left|G_{f}\right|=20$ and $G_{f}=F_{20}$.
(e) If $f(x)$ is irreducible, by (d), $G_{f}=F_{20}$. We have already noted that F_{20} has a unique subgroup of order 10 , that is, a unique subgroup of index 2. Hence, by Galois theory, \boldsymbol{F} has a unique quadratic subfield. By (4), $Q(\sqrt{5}) \subseteq F$ so $Q(\sqrt{5})$ must be the unique quadratic field in F.
(f) Let r_{1} and r_{2} be any two roots of $f(x)$, say, $r_{1}=x_{j}$ and $r_{2}=x_{k}$, where $j, k=0,1,2,3,4 ; j \neq k$. Set

$$
u=\omega^{j} H, \quad v=\omega^{-j} K, \quad z=\omega^{k-j},
$$

so that u, v are complex numbers and z is a fifth root of unity $\neq 1$ such that

$$
\begin{equation*}
r_{1}=u+v, \quad r_{2}=z u+z^{-1} v, \quad u v=a . \tag{7}
\end{equation*}
$$

The other three roots of $f(x)$ are

$$
r_{3}=z^{2} u+z^{-2} v, \quad r_{4}=z^{3} u+z^{-3} v, \quad r_{5}=z^{4} u+z^{-4} v .
$$

As $1+z+z^{2}+z^{3}+z^{4}=0$, we have

$$
\begin{aligned}
r_{3} & =\left(-1-z-z^{3}-z^{4}\right) u+\left(-1-z-z^{2}-z^{4}\right) v \\
& =-(u+v)-\left(1+z^{2}+z^{3}\right)\left(z u+z^{-1} v\right)
\end{aligned}
$$

that is

$$
\begin{equation*}
r_{3}=-r_{1}+\left(z+z^{4}\right) r_{2} \tag{8}
\end{equation*}
$$

A similar calculation shows that

$$
\begin{equation*}
r_{5}=-r_{2}+\left(z+z^{4}\right) r_{1} . \tag{9}
\end{equation*}
$$

Then, from $r_{1}+r_{2}+r_{3}+r_{4}+r_{5}=0$, we obtain

$$
\begin{equation*}
r_{4}=-\left(z+z^{4}\right)\left(r_{1}+r_{2}\right) \tag{10}
\end{equation*}
$$

It remains to determine $z+z^{4}$ in terms of r_{1} and r_{2}. From (7) we obtain

$$
\begin{equation*}
u=\frac{r_{2}-z^{4} r_{1}}{z-z^{4}}, \quad v=\frac{z r_{1}-r_{2}}{z-z^{4}} . \tag{11}
\end{equation*}
$$

As $u v=a$, we deduce as $\left(z-z^{4}\right)^{2}=-3-z-z^{4}$ that

$$
\begin{equation*}
\left(r_{1} r_{2}+a\right)\left(z+z^{4}\right)=r_{1}^{2}+r_{2}^{2}-3 a . \tag{12}
\end{equation*}
$$

If $r_{1} r_{2}+a=0$, then (12) gives $r_{1}^{2}+r_{2}^{2}-3 a=0$ so that

$$
\begin{equation*}
r_{1}+r_{2}=\varepsilon \sqrt{a}, \quad r_{1} r_{2}=-a \tag{13}
\end{equation*}
$$

where $\varepsilon= \pm 1$. From the first equation in (13) we see that $Q(\sqrt{a}) \subseteq F$. But the only quadratic subfield of F is $Q(\sqrt{5})$ so that $a=t^{2}$ or $5 t^{2}$ for some positive rational number t. From (13) we deduce that

$$
r_{1}=\sqrt{a}(\varepsilon+\delta \sqrt{5}) / 2, \quad r_{2}=\sqrt{a}(\varepsilon-\delta \sqrt{5}) / 2
$$

for some $\delta= \pm 1$. This shqus that $r_{1} \in Q(\sqrt{5})$ and $r_{2} \in Q(\sqrt{5})$. Thus $f(x)$ is divisible by a quadratic polynomial in $Q[x]$, contradicting (b). Hence we have shown that $r_{1} r_{2}+a \neq 0$ so that

$$
\begin{equation*}
z+z^{4}=\frac{r_{1}^{2}+r_{2}^{2}-3 a}{r_{1} r_{2}+a} . \tag{14}
\end{equation*}
$$

Using (14) in (8), (9) and (10), we obtain the asserted formulae for r_{3}, r_{4} and r_{5}.

References

[1] R. L. Borger, On DeMoivre's quintic, Amer. Math. Monthly 15 (1908), 171-174.
[2] N. Jacobson, Basic Algebra I, W. H. Freedman and Company, San Francisco, 1974.
[3] L.-C. Kappe and B. Warren, An elementary test for the Galois group of a quartic polynomial, Amer. Math. Monthly 96 (1989), 133-137.

Department of Mathematics and Statistics
Okanagan University College
Kelowna, B. C. V1V 1V7
Canada
School of Mathematics and Statistics
Carleton University
Ottawa, Ontario K1S 5B6
Canada

[^0]: 1991 Mathematics Subject Classification: Primary 11R09, 11R16.

