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ABSTRACT

Momentum is a popular technique in deep learning for gradient-based optimizers.
We propose a decaying momentum (DEMON) rule, motivated by decaying the to-
tal contribution of a gradient to all future updates. Applying DEMON to Adam
leads to significantly improved training, notably competitive to momentum SGD
with learning rate decay, even in settings in which adaptive methods are typically
non-competitive. Similarly, applying DEMON to momentum SGD improves over
momentum SGD with learning rate decay in most cases. Notably, DEMON mo-
mentum SGD is observed to be less sensitive to parameter tuning than momentum
SGD with learning rate decay schedule, critical to training neural networks in
practice. Results are demonstrated across a variety of settings and architectures,
including image classification, generative models, and language models. DEMON

is easy to implement and tune, and incurs limited extra computational overhead,
compared to the vanilla counterparts. Code is readily available.

1 INTRODUCTION

Motivation. Deep Neural Networks (DNNs) have advanced the state-of-the-art in computer vision
(Krizhevsky et al., 2012; He et al., 2016; Ren et al., 2015), natural language processing (Mikolov
et al., 2013; Bahdanau et al., 2014; Gehring et al., 2017) and speech recognition (Sak et al., 2014;
Sercu et al., 2016), but have come with huge computation costs. A state-of-the-art language model
can cost several million USD to train (Brown et al., 2020; Sharir et al., 2020). For most practitioners
and researchers, even moderate tasks can be prohibitive in time and cost when the hyperparameter
tuning process is taken into account, where it is typical to retrain models many times to achieve
optimal performance.

In an effort to ease the cost of training DNNs, adaptive gradient-based methods (Duchi et al., 2011;
Zeiler, 2012; Hinton et al., 2012; Kingma & Ba, 2014; Ma & Yarats, 2018) were devised. How-
ever, there are cases where their use leads to a performance gap (Wilson et al., 2017; Shah et al.,
2018). Although this performance gap was shown to be a result of poor hyperparameter tuning
(Sivaprasad et al., 2019; Choi et al., 2019; Agarwal et al., 2020; Shah et al., 2018), stochastic gra-
dient descent (SGD) and SGD with momentum (SGDM) remain among the most popular methods
for training DNNs. In fact, SGDM remains the optimizer of choice and state-of-the-art performance
on many benchmarks—such as the image classification dataset ImageNet—is produced with SGDM
(Krizhevsky et al., 2012; He et al., 2016; Xie et al., 2017; Zagoruyko & Komodakis, 2016; Huang
et al., 2017; Ren et al., 2015; Howard et al., 2017).

For optimizers, including SGDM, to achieve good performance, their hyperparameters must be
tuned properly. Slight changes in learning rate, learning rate decay, momentum, and weight de-
cay (amongst others) can drastically alter performance. Hyperparameter tuning is extremely time
consuming, and researchers often resort to a costly grid search. Thus, the holy grail is achieving the
performance and efficiency of SGDM with decreased dependence on hyperparameter tuning.

Momentum tuning. The focus of this work is on how we can boost performance and practically
reduce dependency on hyperparameter tuning with a simple technique for the momentum parameter.
Momentum was designed to speed up learning in directions of low curvature, without becoming
unstable in directions of high curvature. To minimize the objective function L(·), the most common
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momentum method, SGDM, is given by the following recursion for variable vector θt ∈ R
p:

θt+1 = θt + ηvt, vt = βvt−1 − gt.

where β controls the rate of momentum decay, gt represents a stochastic gradient, usually E[gt] =
∇L(θt), and η > 0 is the step size.

Practitioners usually set β = 0.9. This setting is supported by recent works that prescribe it (Chen
et al., 2016; Kingma & Ba, 2014; Hinton et al., 2012; Reddi et al., 2019), and by the fact that most
common softwares, such as PyTorch (Paszke et al., 2017), use β = 0.9 as the default momentum
value. There is no indication that this choice is universally well-behaved.

There are papers that attempt to tune the momentum parameter. In the distributed setting, (Mitliagkas
et al., 2016) observe that running SGD asynchronously is similar to adding a momentum-like term
to SGD. They provide empirical evidence that setting β = 0.9 results in a momentum “overdose”,
yielding suboptimal performance. Additionally, YellowFin (Zhang & Mitliagkas, 2017) is a learning
rate and momentum adaptive method for both synchronous and asynchronous settings, motivated by
a quadratic model analysis and some robustness insights. Finally, in training generative adversarial
networks (GANs), optimal momentum values tend to decrease from β = 0.9 (Mirza & Osindero,
2014; Radford et al., 2015; Arjovsky et al., 2017), taking even negative values (Gidel et al., 2018).

This paper. we perform the first large-scale empirical analysis of momentum decay methods and
introduce the DEMON momentum decay rule, a novel method which significantly surpasses the
performance of both Adam and SGDM in their current form (and other state-of-the-art methods),
while empirically increasing robustness to hyperparameters. Our findings can be summarized as
follows:

• We conduct the first large-scale empirical analysis of momentum decay methods for modern neu-
ral network optimization. We propose a new momentum decay rule DEMON, which performs well
empirically and is motivated by decaying the total contribution of a gradient to all future updates,
with limited overhead and additional computation.

• Adding the momentum decay rule to vanilla Adam, we observe large performance gains. The
network continues to learn for far longer after Adam begins to plateau.

• We observe improved performance for SGDM with momentum decay over learning rate decay;
an interesting result given the unparalleled effectiveness of learning rate decay.

Experiments are provided on various datasets—including MNIST, FMNIST, CIFAR-10, CIFAR-
100, STL-10, Tiny ImageNet, Penn Treebank (PTB); and networks—including Convolutional Net-
works (CNN) with Residual architecture (ResNet) (He et al., 2016) (Wide ResNet) (Zagoruyko &
Komodakis, 2016), Non-Residual architecture (VGG-16) (Simonyan & Zisserman, 2014), Recur-
rent Neural Networks (RNN) with Long Short-Term Memory architecture (LSTM) (Hochreiter &
Schmidhuber, 1997), Variational AutoEncoders (VAE) (Kingma & Welling, 2015), Capsule Net-
work (Sabour et al., 2017), Noise Conditional Score Network (NCSN) (Song & Ermon, 2019).

2 PRELIMINARIES

SGDM. Let θt ∈ R
p be the parameters of the network at time step t, where η ∈ R is the learning

rate, and gt is the stochastic gradient w.r.t. θt for empirical loss L(·), such that E[gt] = ∇L(θt).
SGDM is parameterized by β ∈ R, the momentum coefficient, and follows the recursion:

θt+1 = θt + ηvt, vt = βvt−1 − gt,

where vt ∈ R
p accumulates momentum. Observe that for β = 0, the above recursion is equivalent

to SGD. Common values for β are closer to one, with β = 0.9 the most used value (Ruder, 2016).

Adaptive gradient descent methods. These algorithms utilize current and past gradient informa-
tion to design preconditioning matrices that better approximate the local curvature of L(·) (Duchi
et al., 2011; Hinton et al., 2012). On top of SGDM, Adam (Kingma & Ba, 2014) uses an exponen-
tially decaying average of past gradients, as in Eg

t+1 = β1 · Eg
t + (1− β1) · gt, as well as a decaying

average of squared gradients, as in Eg◦g
t+1 = β2 · Eg◦g

t +(1−β2) · (gt ◦ gt), leading to the recursion:1

θt+1,i = θt,i − η√
E
g◦g

t+1,i
+ε

· Eg
t+1,i, ∀t,

where usually β1 = 0.9 and β2 = 0.999.
1For clarity, we will skip the bias correction step in this description of Adam; see Kingma & Ba (2014).
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3 DEMON: DECAYING MOMENTUM ALGORITHM

Algorithm 1 DEMON in SGDM

Parameters: T , η, initial
mom. βinit.
v0 = θ0 = 0 or random.
for t = 0, . . . , T do

βt = βinit ·
(

1−
t
T

)

(1−βinit)+βinit(1− t
T )

θt+1 = θt − ηgt + βtvt
vt+1 = βtvt − ηgt

end for

Algorithm 2 DEMON in Adam

Parameters: T , η, initial mom. βinit,
β2, ε = 10−8. v0 = θ0 = 0 or random.
for t = 0, . . . , T do

βt = βinit ·
(

1−
t
T

)

(1−βinit)+βinit(1− t
T )

Eg◦g
t+1 = β2 · Eg◦g

t + (1− β2) · (gt ◦ gt)
mt,i = gt,1 + βtmt−1,i

θt+1,i = θt,i − η√
E
g◦g

t+1,i
+ε

·mt,i

end for

Figure 1: This plot
illustrates the non-
linear DEMON
schedule, decaying
from βinit = 0.9 to
0.

Motivation and interpretation. DEMON is motivated by learning rate decay models which reduce
the impact of a gradient to current and future updates. By decaying the momentum parameter, we
decay the total contribution of a gradient to all future updates. Our goal here is to present a concrete,
effective, and easy-to-use momentum decay procedure which we show in the experimental section.
The key component is the momentum decay schedule:

βt = βinit ·
(1− t

T )
(1−βinit)+βinit(1− t

T )
. (1)

Above, the fraction (1 − t/T ) refers to the proportion of iterations remaining. Fig. 1 presents
a visualization of the proposed momentum decay rule. Only the DEMON momentum schedule is
presented in the main text, but comparisons to other possible momentum schedules are presented
in Appendix G. We use the DEMON momentum schedule due to its superior empirical performance
in comparison to other options for momentum decay. The interpretation of this rule comes from
the following argument: Assume fixed momentum parameter βt ≡ β; e.g., β = 0.9, as literature
dictates. For our discussion, we will use the SGDM recursion. We know that v0 = 0, and vt =
βvt−1 − gt. Then, the main recursion can be unrolled into:

θt+1 = θt − ηgt − ηβgt−1 − ηβ2gt−2 + ηβ3vt−2 = · · · = θt − ηgt − η ·
t

∑

i=1

(

βi · gt−i

)

Interpreting the above recursion, a particular gradient term gt contributes a total of η
∑

i β
i of its

“energy” to all future gradient updates. Moreover, for an asymptotically large number of iterations,
we know that β contributes on up to t− 1 terms. Then,

∑∞

i=1 β
i = β

∑∞

i=0 β
i = β/(1− β). Thus,

in our quest for a decaying schedule and for a simple momentum decay, it is natural to consider a
scheme where the cumulative momentum is decayed to 0. Let βinit be the initial β; then at current
step t with total T steps, we design the decay routine such that: β/(1−β) = (1−t/T )βinit/(1−βinit).
This leads to equation 1. Although β changes in subsequent iterations, this is typically a very close
approximation since βiβi+1 . . . βt for a particular gi diminishes much faster than β changes. We
emphasize that directly decaying β linearly achieves significantly worse performance (see Appedix

Connection to previous algorithms. DEMON introduces an implicit discount factor. The main
recursions of the algorithm are the same with standard algorithms in machine learning. E.g., for
βt = β = 0.9 we obtain SGD with momentum, and for β = 0 we obtain plain SGD in Algorithm 1;
in Algorithm 2, for β1 = 0.9 with a slightly adjustment of learning rate we obtain Adam, while for
β1 = 0 we obtain a non-accumulative AdaGrad algorithm. We choose to apply DEMON to a slightly
adjusted Adam—instead of vanilla Adam—to isolate the effect of the momentum parameter, since
the momentum parameter adjusts the magnitude of the current gradient as well in vanilla Adam.

Efficiency. DEMON requires only limited extra overhead and computation in comparison to the
vanilla counterparts for the computation of βt. Implementation is simply 1-2 lines of code.

p t = (iters - t) / iters

beta t = beta1 ∗ (p t / (1− beta1+ beta1 ∗ p t))

Convergence analysis. We provide convergence proof for DEMON SGDM in the convex setting, by
bounding auxiliary function sequences as in (Ghadimi et al., 2014). Convergence results for DEMON

Adam in the non-convex setting can be easily extended from existing work Zou et al. (2018). See
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Appendix C for details. Convergence analysis on a toy convex problem on accelerated SGD as in
(Kidambi et al., 2018) is given in Appendix D.

Practical suggestions. For settings in which βinit is typically large, such as image classification,
we advocate for decaying momentum from βinit at t = 0, to 0 at t = T as a general rule. We also
observe and report improved performance by delaying momentum decay till later epochs.

4 RELATED WORK

Numerous techniques exist for automatic hyperparameter tuning. Adaptive methods, such as Ada-
Grad (Duchi et al., 2011), AdaDelta (Zeiler, 2012), RMSprop (Hinton et al., 2012), and Adam
(Kingma & Ba, 2014), are most widely used. Interest in closing the generalization difference be-
tween adaptive methods and SGDM led to AMSGrad (Reddi et al., 2019), which uses the maximum
of the exponential moving average of squared gradients, QHAdam (Ma & Yarats, 2018), a variant
of QHM that recovers a variety of optimization algorithms, AdamW (Loshchilov & Hutter, 2017),
which decouples weight decay in Adam, and Padam (Chen & Gu, 2018), which lowers the expo-
nent of the second moment. YellowFin (Zhang & Mitliagkas, 2017) is a learning rate and momentum
adaptive method motivated by a quadratic model analysis and robustness insights. In the non-convex
setting, STORM (Cutkosky & Orabona, 2019) uses a variant of momentum for variance reduction.

The convergence of momentum methods has been heavily explored both empirically and theoreti-
cally (Wibisono & Wilson, 2015; Wibisono et al., 2016; Wilson et al., 2016; Kidambi et al., 2018;
Defazio & Gower, 2020). Sutskever et al. (2013) explored momentum schedules, even increasing
momentum during training, inspired by Nesterov’s routines for convex optimization. Smith et al.
(2017) scales the batch size to create associated changes in learning rate and momentum. Smith
(2018) introduces cycles of simultaneously increasing learning rate and decreasing momentum fol-
lowed by simultaneously decreasing learning rate and increasing momentum. Some work adapts
the momentum to reduce oscillations during training (Odonoghue & Candes, 2015) and explores
integration of momentum into well-conditioned convex problems (Srinivasan et al., 2018). Another
approach is to combine several momentum vectors with different β values (Lucas et al., 2018). In
another work, gradient staleness in variance reduction methods is addressed with gradient transport
Arnold et al. (2019). We are aware of the theoretical work of Yuan et al. (2016) that proves, under
certain conditions, SGDM is equivalent to SGD with a rescaled learning rate, but our experiments
in the deep learning setting show slightly different behavior. Understanding this discrepancy is an
exciting direction of research.

Smaller values of β have been employed for Generative Adversarial Networks (GANs), and recent
developments in game dynamics (Gidel et al., 2018) show a negative momentum is helpful.

5 EXPERIMENTS

We separate experiments into those with adaptive learning rate and those with adaptive momentum,
following Ma & Yarats (2018). Well-known experiments in the literature are selected for compar-
ison (e.g., ResNets and LSTMs). We avoided training pre-trained models as it is less informative
(for optimization purposes) than training models from scratch. Training models like GPT-2/3 from
scratch is not feasible, and we instead focus on providing a wide number of experiments and base-
lines. For each setting, we use varying numbers of epochs to demonstrate effectiveness regardless
of training budget. Experiments with different numbers of epochs are standalone experiments with
independently-tuned hyperparameters. All settings are briefly summarized in Table 1 and compre-
hensively detailed, including exact hyperparameters, in Appendix A. Plots are in Appendix F.

Table 2 presents hyperparameter tuning details for SGDM, Adam, and DEMON variants (see Table 6
for exact details). The exploration setting (CIFAR10/100/STL10, and following general guidelines
in literature) informed our settings for other experiments. The overall tuning budget for SGDM
in exploration was 2-3x that of DEMON SGDM, and is the same for mainline experiments.

5.1 DECREASING THE NEED FOR HYPERPARAMETER TUNING

In this section, we demonstrate the robustness of DEMON SGDM and DEMON Adam relative to
SGDM with learning rate decay and Adam. In Fig. 2, validation accuracy is displayed for a
grid search over learning rate and momentum. For SGDM, results are obtained with the highest-
performing learning rate schedule. The heatmaps display optimal performance of each optimizer
over the full range of possible hyperparameters.

4



Under review as a conference paper at ICLR 2021

WRN-STL10-DEMONSGDM yields a significantly larger band of lighter color, indicating better per-
formance for a wide range of hyperparameters. For every learning rate-momentum pair, we observe
a lighter color for DEMON SGDM relative to SGDM. Concretely, SGDM has roughly one configu-
ration per column with < 22% generalization error, while DEMON SGDM has five.

On VGG16-CIFAR100-DEMONSGDM, a larger band of low generalization error exists compared
to SGDM. There also appears to be a slight shift in optimal parameters. Concretely, DEMON SGDM
has almost three times the number of configurations with generalization error < 31%.

On RN20-CIFAR10-DEMONAdam, DEMON Adam demonstrates its improved hyperparameter ro-
bustness relative to Adam. The generalization errors achieved with Adam fluctuate significantly,
yielding optimal performance with only a few hyperparameter settings. In contrast, DEMON Adam
yields a wide band of high performance across hyperparameters.

Table 1: Summary of experimental settings.

Experiment short name Model Dataset Optimizer

RN20-CIFAR10-DEMONSGDM ResNet20 CIFAR10 DEMON SGDM
RN20-CIFAR10-DEMONAdam ResNet20 CIFAR10 DEMON Adam
RN56-TINYIMAGENET-DEMONSGDM ResNet56 Tiny ImageNet DEMON SGDM
RN56-TINYIMAGENET-DEMONAdam ResNet56 Tiny ImageNet DEMON Adam
VGG16-CIFAR100-DEMONSGDM VGG-16 CIFAR100 DEMON SGDM
VGG16-CIFAR100-DEMONAdam VGG-16 CIFAR100 DEMON Adam
WRN-STL10-DEMONSGDM Wide ResNet 16-8 STL10 DEMON SGDM
WRN-STL10-DEMONAdam Wide ResNet 16-8 STL10 DEMON Adam
LSTM-PTB-DEMONSGDM LSTM RNN Penn TreeBank DEMON SGDM
LSTM-PTB-DEMONAdam LSTM RNN Penn TreeBank DEMON Adam
VAE-MNIST-DEMONSGDM VAE MNIST DEMON SGDM
VAE-MNIST-DEMONAdam VAE MNIST DEMON Adam
NCSN-CIFAR10-DEMONAdam NCSN CIFAR10 DEMON Adam
CAPS-FMNIST-DEMONAdam Capsnet FMNIST DEMON Adam

Table 2: Hyperparameter tuning details for main optimizers. DEMON schedule tuning refers to beginning at
0%, 50%, or 75% of epochs.

Mainline settings Exploration settings

Optimizer Tuned Fixed Tuned Fixed

SGDM η β, η Schedule η, β, η Schedule
Adam η β, β2 η, β β2

DEMONSGDM η βinit, Demon schedule η, βinit, Demon schedule
DEMONAdam η βinit, β2, Demon schedule η, βinit β2, Demon schedule

These results indicate that both DEMON Adam and SGDM are less sensitive to hyperparameter tun-
ing than their vanilla counterparts, whilst attaining same or better error. This is critical to the use of
DEMON in practice, as DEMON can yield high performance with minimal tuning. The performance
of DEMON is high and stable across a wide range of hyperparameters near the default.

5.2 COMPARISON OF ADAPTIVE METHODS

DEMON Adam (Algorithm 2) is applied to a variety of models and tasks. We select Adam (Kingma
& Ba, 2014) as the baseline algorithm and include comparisons with state-of-the-art methods
Quasi-Hyperbolic Adam (QHAdam) (Ma & Yarats, 2018), AMSGrad (Reddi et al., 2019), AdamW
(Loshchilov & Hutter, 2017), YellowFin (Zhang & Mitliagkas, 2017) (descriptions in Appendix
A.2.1). We emphasize that Quasi-Hyperbolic methods are capable of recovering Accelerated SGD
(Jain et al., 2017), Nesterov Accelerated Gradient (Nesterov, 1983), Synthesized Nesterov Variants
(Lessard et al., 2016), and others, thus covering more algorithms than those present. We tune all
learning rates in rough multiples of 3 and keep all other parameters close to those recommended in
the original literature. For DEMON Adam, we set βinit = 0.9, β2 = 0.999 and decay from βinit to 0
starting from 75% of epochs.
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To simplify the results presentation, further comparison with Padam (Chen & Gu, 2018) and OneCy-
cle (Smith, 2018) are in Appendix H. DEMON outperforms both approaches in various settings.

Residual Network (RN20-CIFAR10-DEMONAdam). We train a ResNet20 (He et al., 2016) model
on the CIFAR-10 dataset. With DEMON Adam, we achieve the generalization error reported in the
literature (He et al., 2016), attained using SGDM and a curated learning rate decay schedule, while
all other adaptive methods are not competitive (see Table 3). DEMON Adam continues learning after
other methods have plateaued, outperforming other adaptive methods by a 2%-5% generalization
error across all experiments (see Appendix F Figure 5).

Figure 2: In order from left to right: Error rate for WRN-STL10-DEMONSGDM (top) and
WRN-STL10-SGDM (bottom) for 50 epochs, error rate for VGG16-CIFAR100-DEMONSGDM (top) and
VGG16-CIFAR100-SGDM (bottom) for 100 epochs, and error rate for RN20-CIFAR10-DEMONAdam and
RN20-CIFAR10-Adam for 100 epochs. Light-colored patches indicate better performance.

Table 3: RN20-CIFAR10-DEMONSGDM/Adam and VGG16-CIFAR100-DEMONSGDM/Adam generaliza-
tion error. The number of epochs was predefined before the execution of the algorithms.

ResNet 20 VGG-16

30 epochs 75 epochs 150 epochs 300 epochs 75 epochs 150 epochs 300 epochs

SGDM 11.80 ± .11 8.82 ± .25 8.43 ± .07 7.32 ± .14 35.04 ± .24 30.09 ± .32 27.83 ± .30

AggMo 11.14 ± .34 8.71 ± .24 7.93 ± .15 7.62 ± .03 34.40 ± .60 30.75 ± .55 28.64 ± .45

QHM 10.66 ± .17 8.72 ± .14 7.95 ± .17 7.67 ± .10 33.27 ± .56 29.93 ± .13 29.01 ± .54

Adam 16.58 ± .18 13.63 ± .22 11.90 ± .06 11.94 ± .06 37.98 ± .20 33.62 ± .11 31.09 ± .09

AMSGrad 16.98 ± .36 13.43 ± .14 11.83 ± .12 10.48 ± .12 40.67 ± .65 34.46 ± .21 31.62 ± .12

AdamW 15.39 ± .46 12.46 ± .52 11.38 ± .21 10.50 ± .17 36.96 ± 1.21 33.48 ± .68 32.22 ± .13

QHAdam 16.41 ± .38 15.55 ± .25 13.78 ± .08 13.36 ± .11 36.53 ± .20 32.96 ± .11 30.97 ± .10

YellowFin 17.25 ± .15 13.66 ± .34 12.13 ± .41 11.39 ± .16 86.24 ± 3.54 68.87 ± 5.82 50.18 ± 4.02

DEMON SGDM 10.78 ± .08 8.49 ± .19 7.63 ± .17 7.32 ± .19 31.62 ± .29 28.19 ± .11 27.68 ± .24

DEMON Adam 11.75 ± .15 9.69 ± .10 8.83 ± .08 8.44 ± .05 32.40 ± .19 28.84 ± .18 27.11 ± .19

(RN56-TINYIMAGENET-DEMONAdam). We train a ResNet56 (He et al., 2016) model on the
Tiny ImageNet dataset. Using DEMON Adam, we achieve superior generalization performance over
Adam, which was found to be quite sensitive to hyperparameter settings. DEMON Adam outper-
formed Adam on Tiny ImageNet by a 5%-8% margin in generalization error (see Table 5).

Non-Residual Network (VGG16-CIFAR100- DEMONAdam). We train an adjusted VGG-16
model (Simonyan & Zisserman, 2014) on the CIFAR-100 dataset. Again, DEMON Adam contin-
ues to improve after other methods begin to plateau, resulting in a 1-3% decrease in generalization
error compared to reported results with the same model and task (Sankaranarayanan et al., 2018),
attained with SGDM and a curated learning rate decay schedule. DEMON Adam achieves a 3%-6%
generalization error improvement over all other methods (see Appendix F Figure 5 and Table 3).
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Wide Residual Network (WRN-STL10-DEMONAdam). We train a Wide Residual 16-8 model
(Zagoruyko & Komodakis, 2016) on the STL-10 dataset, which has significantly fewer, higher res-
olution images in comparison to CIFAR. In this setting, DEMON Adam significantly outperforms
other methods in the later stages of training. DEMON Adam achieves a 0.5%-2% generalization
error margin over other methods with varying epochs (see Appendix F Figure 5 and Table 4).

Capsule Network (CAPS-FMNIST-DEMONAdam). Capsule Networks (Sabour et al., 2017) rep-
resent Neural Networks as a set of capsules that each encode a specific entity or meaning. Capsules
exploit the observation that viewpoint changes significantly alter pixels but are linear with respect
to the pose matrix. The activation of capsules differs from standard neural network activation func-
tions because it depends on comparing incoming pose predictions. We train Capsule Networks on
the FMNIST dataset and show that DEMON Adam outperforms other methods (see Table 4).

LSTM (PTB-LSTM-DEMONAdam). We apply an LSTM (Hochreiter & Schmidhuber, 1997) to
the language modeling task, which can have sharp gradient distributions (e.g., rare words). While
all other adaptive methods overfit to this task, DEMON Adam achieves a margin of 6-14 in general-
ization perplexity (see Appendix F Figure 5 and Table 4).

Variational AutoEncoder(VAE-MNIST-DEMONAdam). Generative modeling is a branch of un-
supervised learning that focuses on learning the underlying data distribution. VAEs (Kingma &
Welling, 2015) are generative models that pair a generator network with a recognition model that
performs approximate inference and can be trained with backprop. We train VAEs on MNIST. DE-
MON Adam outperforms all other methods (see Table 5, Appendix F Figure 5).

Table 4: WRN-STL10-DEMONSGDM/Adam generalization error, PTB-LSTM-DEMONSGDM/Adam general-
ization perplexity, and CAPS-FMNIST-DEMONSGDM/Adam generalization error. The number of epochs was
predefined before the execution of the algorithms.

Wide Residual 16-8 LSTM Capsule Network

50 epochs 100 epochs 200 epochs 25 epochs 39 epochs 50 epochs 100 epochs

SGDM 22.42 ± .56 17.20 ± .35 14.51 ± .26 89.59 ± .07 87.57 ± .11 - -

AggMo 21.37 ± .32 17.15 ± .35 14.49 ± .26 89.09 ± .16 89.07 ± .15 - -

QHM 21.75 ± .31 18.21 ± .48 14.44 ± .23 94.47 ± .19 94.44 ± .13 - -

Adam 23.35 ± .20 19.63 ± .26 18.65 ± .07 115.54 ± .64 115.02 ± .52 9.27 ± .08 9.25 ± .11

AMSGrad 21.73 ± .25 19.35 ± .20 18.21 ± .18 108.07 ± .19 107.87 ± .25 9.39 ± .18 9.28 ± .19

AdamW 20.39 ± .62 18.55 ± .23 17.00 ± .41 116.27 ± 2.57 116.21 ± 2.14 9.78 ± 0.62 9.92 ± .74

QHAdam 21.25 ± .22 19.81 ± .18 18.52 ± .25 112.52 ± .23 112.45 ± .39 9.30 ± .23 9.24 ± .15

YellowFin 22.55 ± .14 20.68 ± .04 18.56 ± .33 123.52 ± .52 115.55 ± .23 10.96 ± .65 10.55 ± .84

DEMON SGDM 19.40 ± .08 16.07 ± .28 13.59 ± .67 88.33 ± .16 88.32 ± .12 - -

DEMON Adam 19.42 ± .10 17.82 ± .34 16.87 ± .36 101.57 ± .32 101.44 ± .47 8.82 ± .12 8.76 ± .13

Table 5: RN56-TINYIMAGENET-DEMONSGDM/Adam generalization error, VAE-MNIST-DEMONSGDM/
Adam generalization loss, and NCSN-CIFAR10-DEMONAdam inception score. The number of epochs was
predefined before the execution of the algorithms.

Resnet 56 VAE NCSN

20 epochs 40 epochs 50 epochs 100 epochs 200 epochs 512 epochs

SGDM 45.98 ± .21 41.66 ± .10 140.28 ± .51 137.70 ± .93 136.34 ± .31 -

AggMo - - 139.49 ± .99 136.56 ± .28 134.93 ± .40 -

QHM - - 142.47 ± .50 137.97 ± .54 135.97 ± .29 -

Adam 57.56 ± 1.50 50.89 ± .59 136.28 ± .18 134.64 ± .14 134.66 ± .17 8.15 ± .20

AMSGrad - - 137.89 ± .12 135.69 ± .03 134.75 ± .18 -

QHAdam - - 136.69 ± .17 134.84 ± .08 134.12 ± .12 -

YellowFin - - 414.74 ± 5.00 351.80 ± 6.68 286.69 ± 6.68 -

DEMON SGDM 44.87 ± .15 40.85 ± .01 138.29 ± .08 136.55 ± .64 134.68 ± .30 -

DEMON Adam 48.92 ± .03 45.72 ± .31 134.46 ± .17 134.12 ± .08 133.87 ± .21 8.07 ± .08

Noise Conditional Score Network(NCSN-CIFAR10- DEMONAdam). NCSN (Song & Ermon,
2019) is a recent generative model that estimates gradients of the data distribution with score match-
ing and produces samples via Langevin dynamics. We train a NCSN on CIFAR10, for which NCSN
achieves a strong inception score. Although Adam achieves a superior inception score (see Table 5),
the results in Figure 3 are unnaturally green compared to those produced by DEMON Adam.
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5.3 NON-ADAPTIVE MOMENTUM METHODS

We apply DEMON SGDM (Algorithm 1) to a variety of models and tasks. SGDM with learning rate
decay is the baseline because it often achieves state-of-the-art results for such tasks. Experiments
with recent adaptive momentum methods Aggregated Momentum (AggMo) (Lucas et al., 2018) and
Quasi-Hyperbolic Momentum (QHM) (Ma & Yarats, 2018) are included (descriptions in Appendix
A.2.2). We exclude accelerated SGD (Jain et al., 2017) due to tuning difficulties. We tune all
learning rates in rough multiples of 3 and keep other parameters close to values recommended in
the literature. For SGDM, AggMo, and QHM, we decay the learning rate at 50% and 75% of total
epochs by a factor of 0.1, except for the PTB-LSTM-DEMONSGDM setting. For DEMON SGDM,
we apply no learning rate decay, start decay at 75% of epochs, βinit = 0.95 for all experiments and
decay to 0. Unlike the other methods, for a particular model-dataset DEMON SGDM did not require
any retuning for different number of total epochs.

Figure 3: Randomly selected CIFAR10 images generated with NCSN. Left: Real CIFAR10 images. Middle:
Adam. Right: DEMON Adam.

We emphasize that DEMON can be combined with any momentum method. We present DEMON

SGDM since SGDM is the most widely used optimizer.

Residual Network (RN20-CIFAR10-DEMONSGDM). We train a ResNet20 model on the CIFAR-
10 dataset. With DEMON SGDM, we achieve better generalization error than SGDM. Additionally,
DEMON SGDM outperforms other adaptive momentum methods with learning rate decay schedules
(see Table 3), demonstrating the strong performance of DEMON relative to learning rate decay.

(RN56-TINYIMAGENET-DEMONSGDM). We train a ResNet56 model on the Tiny ImageNet
dataset. DEMON SGDM outperforms SGDM with learning rate decay (see Table 5). The perfor-
mance achieved with SGDM was found to be sensitive to hyperparameter settings, while DEMON

SGDM performed comparably for a wide range of hyperparameters.

Non-Residual Network (VGG16-CIFAR100-DEMONSGDM). We train an adjusted VGG-16
model on the CIFAR-100 dataset. DEMON SGDM learns slowly in initial epochs but continues to
learn after the performance of other methods plateaus, yielding superior final performance. DEMON

SGDM improves on all other methods in generalization error margin (see Table 3).

Wide Residual Network (WRN-STL10-DEMONSGDM). We train a Wide Residual 16-8 model on
the STL-10 dataset. DEMON SGDM outperforms all other methods by a 1%-2% generalization error
margin with a small and large number of epochs (see Table 4).

LSTM (PTB-LSTM-DEMONSGDM). We train an LSTM architecture for the PTB language modeling
task. DEMON SGDM slightly outperforms other adaptive momentum methods in generalization
perplexity and is competitive with SGDM (see Table 4).

Variational AutoEncoder(VAE-MNIST-DEMONSGDM). We train a generative VAE model on the
MNIST dataset. DEMON SGDM outperforms all other methods in terms of generalization loss for
fewer epochs and is competitive when more epochs are used (see Table 5).

6 ADDITIONAL EXPERIMENTAL RESULTS

Additional experimental results are given in the Appendix and we provide summaries in this
section. In Appendix H, we demonstrate superior performance of DEMON SGDM over
Padam Chen & Gu (2018) and OneCycle Smith (2018) on RN20-CIFAR10-DEMONSGDM,
VGG16-CIFAR100-DEMONSGDM and VAE-MNIST-DEMONSGDM settings. In Appendix E,
we demonstrate the superior performance DEMON SGDM over an effective learning rate ad-
justed SGD. In Appendix I, we run all experiments from Section 5.3 without learning rate de-
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cay. On RN20-CIFAR10-DEMONSGDM, DEMON SGDM outperforms all other adaptive momen-
tum methods by a 3%-8% validation error margin with a small and large number of epochs. On
VGG16-CIFAR100-DEMONSGDM, DEMON SGDM achieves a 1%-8% improvement in general-
ization error over all other methods.

7 CONCLUSION

We show the effectiveness of DEMON across a number of datasets and architectures. The adaptive
optimizer Adam combined with DEMON is empirically far superior to the popular Adam, in addition
to other state-of-the-art algorithms, suggesting a drop-in replacement. It is also demonstrated that
DEMON SGDM improves upon SGDM with learning rate decay schedule. Furthermore, DEMON
is empirically robust to hyperparameter tuning. DEMON is computationally cheap, understandable,
and easy to implement. We hope it is useful in practice and a subject of future research.
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