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5600 MB· Eindhoven, 
The Netherlands. 
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Abstract 

This paper tackles the problem of constructing a compact, point· 
free proof of the associativity of demonic composition of binary rela
tions and its distributivity through demonic choice. In order to achieve 
this goal a definition of demoniC composition is proposed in which 
angelic composition is restricted by means of a so-called "monotype 
factor". Monotype factors are characterised by a Galois connection 
similar to the Galois connection between composition and factorisa
tion of binary relations. The identification of such a connection is 
argued to be highly conducive to· the desired compactness of calcula· 
tion. 



Nothing delights a mathematician more than to discover that 
two things, previously regarded as entirely distinct, are mathe
maticaly identical. W. W. Sawyer 

La mathematiqueest l'art qe donner Ie memenom it des choses 
differentes. [J.j H. Poincare 

The term "Galois connexion" was coined by Oystein Ore [20] almost fifty 
years ago in order to describe a particularly simple and elegant relationship 
between a pair of functions. Specifically, if A and B are two partially-ordered 
sets and f E A ---> Band 9 E B --;. A are functions mapping the two sets 
to each other then we say that f and 9 are Galois connected if and only if 
for all a E A and b E B 

(1) 

The importance of the notion was recognised at a very early stage in math
ematically-oriented computing science literature. As long ago as 1964 Hart
manis and Stearns [12] developed an alternative, but entirely equivalent, 
formulation of Galois connections called "pair algebras" which they applied 
to a data-refinement problem - the state assignment problem in sequential 
machines. 1 Seven years later, Conway [8] published a book on finite-state 
machines in which a very important element was the chapter on so-called 
"factor theory" and its subsequent application to the construction and anal
ysis of so-called "biregulators". Conway did not refer to the work of Hartma
nis and Stearns, nor to Galois connections, but there are clearly recognisable, 
formally establishable, parallels between his "L-R factorisa.tions" of a regular 
language and Hartmanis and Stearns~ "m-M decompositions" of a finite-state 
machine. 

Although both the textbook by Hartmanis and Stearns and Conway's 
little monograph offer beautiful exa!llples of the economy and elegance of 
abstract mathematics this aspect of their work seems not to have received 
the recognition that it deserves: in the case of Conway his theory of fac
tors seems to have been completely disregarded, the only reference to this 

1 Although they did not use the term in tpe original paper describing their theory Hart
manis and Stearns briefly acknowledge the' relevance of Galois connections in a footnote 
in their textbook [13J in which they said: "For related mathematical concepts see the dis
cussion of Galois connections between partially ordered sets in [7J." Simons [21J formally 
establishes the equivalence between Galois connections and pair algebras. 
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chapter of his book of which we are aware being a paper [3] drawing a connec
tion between factors and the failure-function method used in the well-known 
Knuth-Morris-Pratt string-searching algorithm [16]; in the case of Hartma
nis and Stearns, the fact that the state-assignment problem is an interesting 
non-trivial example of data refinement seems to have escaped the attention 
of all those working in this now blossoming area. 

In recent years there has been a reawakening of interest in Galois connec
tions in computing science journals and conference publications. Of particu
lar note are the textbook on Continuous Lattices [11] in which a substantial 
section is devoted to the topic, and floare and He's formulation of so-called 
"weakest pre- and post-specifications" via Galois connections with relational 
composition. (Their weakest pre- and post-specifications are the same as 
Conway's left and right "factors" and Dilworth's [10] left and right "residu
als".) Other recent references are [14, 18, 17]. 

In our work on developing a relational theory of datatypes [1, 2, 4] we 
have come to recognise the importance and ubiquity of Galois connections. 
They abound particularly in the calculus of relations and their simple form 
lends itself superbly to compact calculation. With some practice they are 
very easy to spot, and their mastery is an indispensable precursor to the 
mastery of the orders-of-magnitude more complex notion of an "adjunction" 
in category theory. 

This paper exploits a Galois connection that arises naturally in the study 
of demonic composition and choice in order to prove certain algebraic prop
erties of these operators. The proofs illustrate well, in our view, how early 
recognition of a Galois connection can significantly shorten and simplify oth
erwise complicated calculations. The main concern of the paper is not the 
theorems that are proved - none of our results is in any way new - but with 
the "ergonomics" of mathematical calculation - how to choose suitable no
tation, and how to formulate definitions and calculation rules in such a way 
that seemingly difficult calculations become straightforward. In this sense 
the paper is a small contribution to a broad debate of central importance to 
the further development of mathematical practice. 
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1 The Algebraic Framework 

In order that the reader be able to follow our calculations a limited knowledge 
of the axiomatic calculus of relations due to (among others) de Morgan, 
Schroder and Tarski is needed. Full accounts appear in several monographs; 
we will make do here with just a summary of precisely those properties we 
need in our calculations. 

We work within the context of an algebra (A, u, n, TT, .u,o, 1) consisting 
of a set A on which are defined three binary operators U, nand 0. Further 
the set A includes three (distinct) constants TT, .u and I. The set A is 
assumed to be a complete, completely-distributive lattice under the opera
tions U and n with top and bottom elements TT and .u, respectively. The 
ordering relation on the elements will be denoted by ~ and its converse by 
~. (Specifically, X ~ Y _ XUY = Y.) The set A also forms a monoid 
under the "composition" operator 0. That is, 0 is associative and has unit I. 
These two algebras are connected by the fact that composition distributes 
universally, from both the left and the right, over U. (Composition does not, 
however, distri bu te everywhere over n.) 

An interpretation is that in whi<;h A is the set of binary relations over 
some (anonymous) universe, U is set union, n is set intersection and 0 is 
(angelic) relational composition. The top element TT is the universal relation, 
the bottom element .u is the empty relation and the unit I is the identity 
relation. 

In order not to confuse meta-language with object-language we prefer to 
refer to the elements of A as specs r~ther than relations. 

The subset of A consisting of those elements below I are called the mono
types. (They can be interpreted as partial identities, i.e. identities on subsets 
of the universe.) Thus,by definition, 

(2) monotype.A I ~ A 

An important property of monotypes is that composition coincides with in
tersection. That is, for all monotypes A and E, 

(3) AoE AnE 

This property can be formally derived in the calculus of relations but depends 
on other axioms for which we have no further use in the paper. 
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We also assume additional properties that validate the introduction of 
two so-called "domain operators", the left domain operator < and the right 
domain operator >. Both are unary operators written as postfixes to their 
arguments. The specific properties that we assume are as follows. First, 
domains of specs are monotypes: For all specs R, 

(4) monotype.R< and monotype.R> 

(Note that the infix dot denotes function application and that unary opera
tors always take precedence in our formulae over binary operators. Thus one 
should parse "monotype.R<" as "monotype.(R<)".) 

Second, the domain operators are defined by Galois connections between 
the lattice of all specs and the sublattice of the monotypes: For all specs R 
and monotypes A, 

(5) A ::J R> TToA::J R 

and 

(6) A :;:;l R< AoTT:;:;lR 

(In words, R> is the least monotype A such that TT 0 A :;:;l R, and dually for 
R<.) 

From these definitions it is clear that properties of one domain operator 
can easily be dualised to properties of the other by reversing the order of 
the arguments in a composition. We shall therefore only state additional 
properties of the right domain operator and leave the reader to supply the 
dual property of the left domain operator. 

The first of these additional properties is that the closed elements of the 
domain operators are precisely the monotypes. 

(7) monotype.A A = A> 

Next, R> is the least monotype A such that R 0 A = R: For all specs R 
and all monotypes A, 

(8) A :;:;l R> RoA = R 

Finally, we have three properties for which we have no verbal summary: 
For all specs Rand S, 

(9) (R 0 S» (R> 0 S» 
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For all specs Sand monotypes A, 

(10) (S 0 A» S> 0 A 

For all specs Rand S, 

(11 ) :J(A: monotype.A: R = So A) R=SoR> 

The interpretation of the domain operators in the calculus of binary rela
tions is that R> is the set of pairs (y, y) such that there exists an x with xRy. 
Vice-versa, R< is the set of pairs (x, x) such that there exists a y with xRy. 
With these interpretations all the above properties can be readily verified. 
Compacter, axiomatic proofs can also be constructed but, with some excep
tions, we have provided insufficient information about our axiom system to 
permit the reader to complete this exercise. From now on, however, we pro
ceed entirely axiomatically and do not refer to the relational interpretation 
in any proofs. 

This completes our brief introduction to the algebraic framework. 

2 Defining Demonic Composition 

Weakest precondition semantics [9J gives an axiomatic description of nonde
terministic programs admitting several models. One of these is a relational 
model with "non-standard" relational composition and union: the so-called 
demonic composition and demonic choice (see e.g. [19, 6]). In this section 
we motivate and then define demonic composition. In section 6 we define 
demonic choice. 

To motivate the definition of dej110nic composition let us briefly sum
marise its operational interpretation in the relational model. We consider 
some set X.L consisting of "program states" X augmented with a distin
guished element .1 representing non-termination. A (non-deterministic) pro
gram is a relation between elements of X.L and X that is total on X. (Note 
that we use the functional-programming convention of having input on the 
right and output on the left rather than the opposite way around as is con
ventional in imperative programming.) The demonic composition R; S of 
two relations Rand S is then the normal relational composition R 0 S of R 
and S but excluding computations of S that can lead to non-termination. 
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This definition, with its implicit case analysis on .l, leads to ugly calcula
tions. A slight abstraction leads to a nicer definition. Specifically, we forget 
about the detailed structure of Xl. and define the demonic composition of R 
and S to be the normal relational composition R 0 S but excluding compu
tations of S beginning in states x such that states in Sx may lie outside the 
right domain of R. 

Interpreting this specification literally we are required to specify R; 5 
formally via two clauses: The first clause states that it is "the usual compo
sition" but with a restricted right domain. I.e. 

(12) R; 5 = R 0 5 0 R&5 

where 

(13) monotype.(R&S) 

Thus R&S is the "restriction" on the right domain. 
The second clause states that the said restriction should include only those 

states x such that R is defined on all the 5-results 5x. Replacing "states x" 
by "monotypes B", we formulate this second clause as the requirement that 
R&5 satisfy the specification: 

(14) V(B: monotype.B: R&5 ;;;J B - R>;;;J (50 B)<) 

In words, R&5 is the largest monotype B such that R> ;;;J (8 0 B)< . 
The initial challenge we set ourselves in this paper is to construct an 

axiomatic proof of the associativity qf demonic composition. (Later we con
sider the additional challenge of showing that it distributes through demonic 
choice.) In particular, we deny ourselves any appeal to extensionality proper
ties based on the existence of "points" in the domains of specs. (An example 
of an extensionality axiom that is independent of the axioms on which our 
calculations are based is that the spec I is the union of all pairs (x, x) where 
x ranges over the set of all "points".) This makes our task more difficult but 
more rewarding in that the validity of the theorem we prove extends to more 
models. 
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3 Preliminary Analysis 

Before embarking on the task of proving that demonic composition is indeed 
associative let us examine the more elementary consequences of its specifica
tion. 

The immediate question is whether there is a solution to the conjunction 
of (13) and (14) viewed as equations in R&S. To see that this is indeed 
the case - at a glance - we observe that both the functions < and So are 
universally U-junctive, hence so is their composition and thus 

(15) U (B: monotype.B A R> ;;;J (S 0 B)<: B) 

solves (14). It also solves (13) since it is clearly a monotype. We may thus 
conclude that the binary operator & does indeed exist. 

Knowing this formula is however of little help in any calculations involving 
R&S since the inevitable first step in any such calculation will be to return 
to (14). More progress can be made if one is aware that being universally 
U-junctive is equivalent to having a certain sort of adjoint. Note that the 
requirement on R&S - for all monotypes B and all specs Rand S, 

(16) R&S ;;;J B R> ;;;J (S 0 B)< 

- is almost a Galois connection between the function (R ...... R&S) and the 
function (B ...... (S 0 B)<). That it is not so can be solely attributed to the 
occurrence of the right domain operator on the right side of (16). 

We can dismiss this obstacle by noting that, for all monotypes A we have 
A> = A and, in particular, (R»> = R>. Consequently, 

(17) R&S = R>&S 

where, for all monotypes A and B, 

(18) A&S;;;J B A ;;;J (S 0 B)< 

Property (17) tells us that the left operand of & may always, without loss of 
generality, be assumed to be a monotype. Property (18) says that - with the 
said assumption - the function &S is adjoint to the function (B ...... (S 0 B)<). 
I.e. in the lattice of monotypes there is a Galois connection between &S and 
the composition of the two functions < and So. 
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4 Monotype Factors 

The recognition of a Galois connection is a very crucial observation and 
unleashes a welcome gush of properties. In this case the gush becomes a 
minor flood if one is already familiar with the Galois connection between 
composition and "factors" in the calculus of relations. (The term "factor" 
is that coined by Conway [8] in his study of regular languages. Elsewhere 
the terms "residual" [7] and "weakest pre-/post-specification" [15] are used 
for the same concept.) Specifically, right factors are defined by the Galois 
connection 

(19) S\R ;;;J T R;;;J SoT 

Comparing the right sides of (18) and (19) we see that they are almost 
identical but for the additional application of the right domain operator. To 
facilitate exploitation of the similarity it pays to rewrite the left side of (18) 
so that the arguments A and S appear in the same order as Rand S in (19). 
Let us therefore introduce the binary operator \ defined by 

(20) S\A = A&S 

for all monotypes A and specs S. Then, substituting in (18), S\A is com
pletely characterised by the Galois connection 

(21) S\A ;;;J B A;;;J (SoB)< 

We call S\ A a monotype factor. 
Using the well-documented properties of spec factors as a guide one 

quickly establishes a number of properties of monotype factors. Some of 
these are listed in the table overleaf alongside the corresponding properties 
of spec factors. (Several of these properties are predicted purely from the 
fact that one has a Galois connection, in particular all the cancellation prop
erties. The second junctivity property, both for monotype and spec factors, 
combines properties of composition with the defining Galois connections, and , 
the two properties labelled "miscellaneous" are peculiar to composition and 
monotypes. ) 

Note that, in order to keep our formulae compact, a shorthand for quan
tified expressions has been exploited in the table. Specifically, if V is some 
bag of values all of the same type a;,d f is a function on elements of that 
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type then f. V denotes the bag obtained by applying f to each element of 
that bag. Moreover, if V is some bag and EEl is some idempotent, associative, 
and commutative operator we write EElV for EEl(v : v E V : v). An example of 
this shorthand is the first junctivity property. Spelt out in full the property 
reads: 

n(A: AEA: S\A) S\ n (A: A E A: A) 

This convention will be used in several places in the text. 
At this point we are faced with a predicament. Equation (12) introduced 

the notation R&S but now we have another notation for the same quan
tity, namely S\ R>. Should we continue our calculations using the original 
notation or should we switch to the new form? 

For us there is no doubt that the latter is the better choice. The notation 
R&S was purely ad hoc, invented on the spur of the moment in order to fulfill 
an initial goal. The notation S\ A, however, is deliberately chosen in order 
to suggest an analogy with division in ordinary arithmetic. In particular, the 
order of the arguments in S\ A is designed to facilitate the use of the can
cellation properties in table 1 (specificallY, the arguments that are cancelled 
should be adjacent to each other), which from experience with calculations 
with Galois connections are very useful. 

Fortunately, very little rewriting is required. It suffices to rewrite the 
definition of demonic composition: 

(22) R;S = RoSoS\R> 

where 

(23) monotype.(S\R» 

Several of the properties in table 4 can be reformulated in ways that prove 
to be particularly valuable to our specific aims. The first is the cancellation 
property 

(24) A::::J (S 0 S\A)< 

which, in view of (8), has the equivalent formulation: 

(25) A 0 S 0 S\A S 0 S\A 
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Monotype Factors Spec Factors 

Definition 
{ S \ E monotype <-- monotype S\ E spec <-- spec 

S \A;;) B == A;;) (SoB)< S\R ;;) T == R;;) SoT 

Junctivity Properties { n(S \A) = S \(nA) n(S \R) = S \(nR) 
n(s \A) = (US)\A n(S \R) = (US)\R 

{I=S\I TT=S\TT 
Constants I=l.l\A TT=l.l\R 

1\ A = A I\R=R 

1 A ~ (8
0 SIAI< R ;;) So S\R 

Cancellation Properties 
S\(SoB)<;;)B S\(S 0 T);;) T 
S\A = S\(SoS\A)< S\R = S\(S 0 S\R) 
(SoS\(SoB)<)< = (SoB)< SoS\(SoR) = SoR 

Miscellaneous { T\(S\A) = (S 0 T)\A T\(S\R) = (S 0 T)\R 
AoA\B = AoB AoA\R = AoR 

Note: R, Sand T denote arbitrary specs, A and B denote monotypes, S 
and R denote arbitrary sets of specs, and A denotes an arbitrary set of 
monotypes. 

Table 1: Monotype Factors versus Spec Factors 



The second is that the monotype transformer S\ is universally n-junctive. 
Since, however, for monotypes the n operator coincides with composition 
the monotype transformer S\ is universally composition-junctive and, more 
particularly, for all monotypes A and B, 

(26) S\(A 0 B) S\A 0 S\B 

Finally, the two properties labelled "miscellaneous" can be usefully combined 
into one giving: 

(27) A 0 (S 0 A)\B A 0 S\B 

for all monotypes A and B, and all specs S. 
We conclude this section with one obvious consequence of (22) - at least 

obvious to the experienced "speculist" - which crops up so frequently in our 
calculations that we presume to anticipate its usefulness. Specifically: 

(28) R;S = RoSo(R;S» 

The property is just an instance of (11). 

5 The Proof of Associativity 

Now let us turn to the task in hand - proving that demonic composition is 
associative. We consider the two terms R; (S; T) and (R; S); T, and expand 
each using (22) very cautiously in order not to allow the formulae to grow 
too big. First, we obtain 

R; (S; T) 
{ definition: (22) } 

R 0 (S; T) 0 (S; T)\R> 
{ definition: (22) } 

R 0 SoT 0 T\S> 0 (S;T)\R> 

(Note that the outermost occurrence of ";" has been expanded first. Ex
panding the innermost occurrence leads to a larger formula.) 

This is a pleasing result becauses it expresses R; (S; T) in terms of a 
restriction on the right domain of R 0 SoT. Now for the other term: 
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(R; S); T 
{ definition: (22) } 

(R; S) 0 T 0 T\(R; S» 
{ Applying (22) for a second time would introduce an 

undesirable restriction on the left domain of T, not on 
the right. We search around for something more suitable. 
Aiming for (25) we apply (28) } 

R 0 S 0 (R; S» 0 T 0 T\(R; S» 
= { cancellation: (25), A, S := (R; S», T } 

R 0 SoT 0 T\(R; S» 

Thus (R; S) ; T has also been expressed in terms of a restriction on the right 
domain of R 0 SoT and we can infer that 

(29) R· (S· T) - (R· S) . T " - , , 
T\S> 0 (S; T)\R> = T\(R; S» 

The antecedent of (29) is established in two steps. First, we calculate that 

T\S> 0 (S; T)\R> 
{ definition: (22) } 

T\S> 0 (SoToT\S»\R> 
{ cancellation: (27) 

with A := T\S> , S:= SoT, B:= R>} 
T\S> 0 (SoT)\R> 

= { (SoT)\A = T\(S\A), junctivity: (26) } 
T\(S>oS\R» 

Now comparing the above with (29) we see that it suffices to prove 

(30) (R; S» = S> 0 S\R> 

This task is completed as follows: 

= 
(R; S» 

{ definition: (22) } 
(R 0 S 0 S\R»> 

{ domains: (9) } 
(R> 0 S 0 S\R»> 
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{ cancellation: (25) } 
(S 0 S\R»> 

= { domains: (10), S\R> is a monotype } 
S> 0 S\R> 

6 Demonic Choice 

The benefit of the little theory we have developed begins to pay dividends 
when we extend our problem further to the investigation of whether demonic 
composition distributes through demonic choice (to be defined shortly). 

In this section we prove that demonic composition distributes both from 
the left and from the right over an arbitrary choice of specs. This is more 
general than the results of Berghammer [5] and van der Woude [22] both 
of whom only proved distributivity through a finite, non-empty choice of 
specs. Unlike in the previous section we are very brief in our discussion of 
the calculations. Hopefully by now the calculations speak for themselves! 

For an arbitrary set S of specs define the demonic choice oS by 

(31 ) oS uSo n(s» 

The motivation for this definition is that, in the relational model of weakest
precondition semantics discussed earlier, oS excludes all computations that 
may lead to non-termination. 

Observe that 

(32) oS U (S 0 n (S») 

and, for non-empty S, 

(33) (OS» n (S» 

Property (32) is just universal distributivity of composition over cup. Prop
erty (33) has a simple proof. 

= 

(OS» 
{ (31), (10) } 

(US» 0 n (S» 
{ For monotype A, Ao is positively n-distributive } 
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n((US» 0 S» 
{ > is monotonic, A 0 B 

n(s» 
AnB } 

Theorem 34 R ; oS = O(R; S) 

Proof If S is empty the theorem is trivially true (since both left and right 
sides evaluate to .il). In the case of non-empty S we begin by expanding 
both sides using the definitions of demonic composition and choice. 

and 

R; oS 
= { definition: (22) } 

R 0 oS 0 (OS)\R> 
{ definition: (31), and (33) } 

R 0 uS 0 (OS» 0 (OS)\R> 

O(R ; S) 
{ (32) } 

U((R ; S) 0 n ((R ; S»») 
= { (28) } 

U(S: SES: R 0 S 0 (R; S» 0 n((R; S»)) 
{ > is monotonic, A 0 B = An B,. S is non-empty} 

U(S: S E S: R 0 Son ((R ; S»») 
{ composition is universally U-junctive } 

R 0 uS 0 n ((R ; S») 

In this way both R ; oS and O(R ; S) have been expressed as restrictions 
on the right domain of R 0 U S and it suffices to prove that these domain 
restrictions are equal. Now, 

n((R ; S») 
{ notational convention } 

n(S: S E S: (R ; S») 
{ (30), (3) } 

n(S: SES: S>nS\R» 
{ calculus } 

n(s» n n (S\R» 
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= 

o 

{ junctivity of \ R>, see table } 
n(s» n (US)\R> 

{ (33). S is non-empty, (3) } 
(OS» 0 (US)\R> 

{ (27) } 
(OS» 0 (US 0 (DS»)\R> 

{ (33), (31) • S is non-empty } 
(OS» 0 (DS)\R> 

Theorem 35 oS ; R = D(S; R) 

Proof Again we note that the theorem is trivially true for empty set S. 
For non-empty S the same strategy is repeated. First, 

and 

OS; R 
{ definition: (22) } 

oS 0 R 0 R\(DS» 
{ (33), (31) • S is non-empty } 

uS 0 (OS» 0 R 0 R\(DS» 
{ cancellation: (25) } 

uS 0 R 0 R\(DS» 

D(S ; R) 
{ (32) } 

U((S;R)o n((S;R»)) 
{ (28) } 

U(5: 5 E S: 5 0 R 0 (5 ; R» 0 n ((S ; R»)) 
{ > is monotonic, (3) } 

U(5:5ES:5o R 0 n((S; R»») 
{ universal distributivity of composition over cup } 

uS 0 Ron ((S ; R») 

Now we compare the two domain restrictions: 
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= 

Since 

n((s ; R») 
{ (30) } 

n(R> 0 R\(S») 
{ monotypes distribute through non-empty cap } 

R> 0 n (R\(S») 
{ junctivity of \, see table } 

R> 0 R\ n (S» 
{ (33) • S is non-empty } 

R> 0 R\(DS» 

R 0 R\(DS» 
{ R 

R 0 R> 0 

the theorem follows. 

R 0 R> } 
R\(DS» 

o 

7 Discussion 

Our concern here has not been to establish a mathematical theorem ~ that 
demonic composition is associative and distributes through demonic choice 
has been known for a long time2 ~ but with economy and elegance of calcu
lation. The exercise was prompted by discontent with our own and others' 
proofs using the axiomatic relational calculus. A useful by-product (and pos
sibly the main contribution) of the exercise has been to identify the notion 
of monotype factor. 

Performing this exercise has taught us some valuable lessons in efficient 
and economical calculation and we feel it is worthwhile to pass on some of 
those lessons to the reader. In order to make the discussion more concrete 
we briefly summarise aspects of the proofs given earlier by van der Woude 
[22] and Berghammer [5]. 

2Although we don't know for how long. Moreover, as remarked earlier, the theorems 
presented here are more general than the standard theorems in computing science texts 
since we do not exploit extensionality. It is thus not clear to us whether the specific 
theorems are indeed well-known. 
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Both van der Woude and Berghammer based their calulations on explicit, 
closed formulae for R; S. Specifically, van der Woude defined 

(36) R;S (RoS) n (TIoR)/Su 

(Su being the converse of S) whilst Berghammer worked with the formula 

(37) R; S 

(This latter formula was published earlier by Berghammer and Zierer [6].) 
It is well-known that U/V - .(.U 0 Vu) so it is clear that these two 
formula are equivalent. The equivalence of (36) to our own definition of 
R; S is left as an exercise. (It should become clear after our discussion of 
monotypes versus vectors below.) 

There are two main differences between the calculations given here and 
those of van der Woude and Berghammer. The first is that they both failed 
to spot and exploit the Galois connection underlying the definition of de
monic composition. Its identification and the use of the factor notation to 
encourage the application of the cancellation rules streamlines the calcula
tions considerably. The second is that the device used by van der Woude 
and Berghammer to restrict the domain of a spec is not composition with a 
monotype but, instead, intersection with a so-called (right) "vector". Let us 
explain this latter difference because it is also of fundamental importance. 

Suppose 1[J is a set and X is some subset of 1[J. Then there are two 
possibilities for representing X as a binary relation over 1[J. The choice 
made in this paper is to represent X as the monotype Xm where, for all 
x, y E 1[J, x Xm Y _ X = Y 1\ x E X. The choice made by Bergham
mer is to represent X by the so-called "vector" Xv where for all x, Y E 1[J, 

x Xv Y - Y EX. Recall that the defining characteristic of a monotype A 
is that I ;:;:l A. The defining characteristic of a vector V is that V = TI 0 V. 

It is clear from the above that there is a (1-1) correspondence between 
monotypes and vectors. Specifically, we have, for all monotypes A and all 
vectors V, 

(38) (TI 0 A» A and TI 0 V> V 

In addition we recall that the right domain operator was defined via a Galois 
connection between monotypes and vectors - see (5). 
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This close correspondence between monotypes and vectors makes the 
choice of which to use as representation of sets a particularly difficult one. 
Alternatively, one might argue that it doesn't make any difference which 
one chooses since calculations with monotypes can easily be converted into 
calculations with vectors and vice-versa! There is, however, one overriding 
argument why one should prefer monotypes to vectors and that is the dom
inant role of composition in programming applications. Let us explain. 

A pattern of reasoning that appears repeatedly above can be summarised 
by the following schema: 

P o Q 
{ reason why P - R 0 A for monotype A } 

R o A 0 Q 
= { reason why A o Q = s } 

R 0 S 

Note that this calculation involves a silent use of the associativity of compo
sition in the middle step. (Typically in our calculations the first step involved 
the expansion of the definition of demonic composition.) 

The same calculation can be performed using vectors. Specifically, let V 
denote TT 0 A. Then the restriction R 0 A on the right domain of R can 
equally be expressed as R n V and the restriction A 0 Q on the left 
domain of Q can be expressed by Q n V u • The proof fragment becomes 

poQ 
{ reason why P - RnV for vector V } 

(RnV) 0 Q 
{ For all X, Y, Z, 

(X n TT 0 Y) 0 Z = X 0 (Y u 0 TT n Z) 
X,Y,Z := R,V,Q } 

R 0 (Q n Vu) 
- { reason why Q n Vu = S } 

R o S 

The invisible middle step - associativity of composition - has now been 
replaced by the application of a complicated and far-from-obvious calculation 
rule. Taking the step in a practical calculation (i.e. one in which R, V and/or 
Q are non-trivial expressions) becomes a non-trivial intellectual feat. (The 
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rule can be made less complicated by splitting it into two simpler rules -
see [6, theorem 2.1] - but that only makes the applicability of the step less 
obvious.) 

The conclusion we would draw is that there is a substantial design el
ement, having far-reaching consequences on ease of calculation, involved in 
the construction of a calculus. The choice of representation of basic concepts 
- here illustrated by the dichotomy between monotypes and vectors - is 
one such factor. The choice of notation that encourages instant recognition 
of calculational rules - here illustrated by the choice of the notation R\ S 
to encourage recognition of the applicability of the cancellation rules - is a 
second factor. Last but not least, recognition of fundamental mathematical 
concepts and their formulation in the form of elegant calculational rules -
here illustrated par excellence by the notion of a Galois connection - is a 
third factor in that design process. 
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