
 Open access Proceedings Article DOI:10.1109/INFCOMW.2014.6849191

Demonstrating Resilient Quality of Service in Software Defined Networking
— Source link

Sachin Sharma, Dimitri Staessens, Didier Colle, David Palma ...+4 more authors

Institutions: Ghent University

Published on: 08 Jul 2014 - International Conference on Computer Communications

Topics: Software-defined networking, OpenFlow and Quality of service

Related papers:

 Software defined networking for video: Overview & multicast study

 Design of intelligent capabilities in SDN

 Performance study of dynamic QoS management for OpenFlow-enabled SDN switches

 APIs for QoS configuration in Software Defined Networks

 A network control application enabling Software-Defined Quality of Service

Share this paper:

View more about this paper here: https://typeset.io/papers/demonstrating-resilient-quality-of-service-in-software-
unskxhwvfv

https://typeset.io/
https://www.doi.org/10.1109/INFCOMW.2014.6849191
https://typeset.io/papers/demonstrating-resilient-quality-of-service-in-software-unskxhwvfv
https://typeset.io/authors/sachin-sharma-3wowf7pvhc
https://typeset.io/authors/dimitri-staessens-2i0uvbdtzv
https://typeset.io/authors/didier-colle-24zm8tqria
https://typeset.io/authors/david-palma-2i82ala11r
https://typeset.io/institutions/ghent-university-14limu0t
https://typeset.io/conferences/international-conference-on-computer-communications-145lolxb
https://typeset.io/topics/software-defined-networking-39cfrgsh
https://typeset.io/topics/openflow-pvxry64h
https://typeset.io/topics/quality-of-service-b7bgifmo
https://typeset.io/papers/software-defined-networking-for-video-overview-multicast-4qvtctco2g
https://typeset.io/papers/design-of-intelligent-capabilities-in-sdn-4225sbk64o
https://typeset.io/papers/performance-study-of-dynamic-qos-management-for-openflow-50lx9x1lq8
https://typeset.io/papers/apis-for-qos-configuration-in-software-defined-networks-3lzhanvqnp
https://typeset.io/papers/a-network-control-application-enabling-software-defined-2f2ugru4bx
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/demonstrating-resilient-quality-of-service-in-software-unskxhwvfv
https://twitter.com/intent/tweet?text=Demonstrating%20Resilient%20Quality%20of%20Service%20in%20Software%20Defined%20Networking&url=https://typeset.io/papers/demonstrating-resilient-quality-of-service-in-software-unskxhwvfv
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/demonstrating-resilient-quality-of-service-in-software-unskxhwvfv
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/demonstrating-resilient-quality-of-service-in-software-unskxhwvfv
https://typeset.io/papers/demonstrating-resilient-quality-of-service-in-software-unskxhwvfv

Demonstrating Resilient Quality of Service in
Software Defined Networking

Sachin Sharma1, Dimitri Staessens1, Didier Colle1, David Palma2, Joao Goncalves2,

Mario Pickavet1, Luis Cordeiro2, and Piet Demeester1

1Department of Information Technology (INTEC), Ghent University - iMinds,
1Email: {firstName.LastName}@intec.ugent.be

2OneSource, Consultoria Informatica, Lda, Coimbra, Portugal,
2E-mail: {palma, joagonca, cordeiro}@onesource.pt

Abstract—Software defined Networking (SDN) such as Open-
Flow decouples the control plane from forwarding devices and
embeds it into one or more external entities called controllers. We
implemented a framework in OpenFlow through which business
customers receive higher Quality of Service (QoS) than best-
effort customers in all conditions (e.g. failure conditions). In the
demonstration, we stream video clips (business and best-effort
customer’s traffic) through an emulated OpenFlow topology.
During the demonstration, we trigger a failure in the paths
of video clips and show an effectively higher QoS for business
customers when compared against best-effort customers. This is
demonstrated by simply watching the video clips at the receiver.

I. INTRODUCTION

Nowadays, providing users with a guaranteed Quality of
Service (QoS), meeting the service level agreements, is of
paramount importance. However, implementing such a QoS
system is challenging in the current Internet. This is because
in the current Internet, each forwarding device runs its own
control plane software to make the forwarding decisions,
lacking a broader picture of network resources, and there is no
standard protocol available to configure QoS parameters in the
forwarding devices. In this environment, a QoS provider (e.g.
bandwidth broker in a single autonomous system) uses vendor-
specific protocols to configure QoS parameters. However, not
all forwarding devices support all of these protocols.

The Software Defined Networking (SDN) approach, such
as OpenFlow [1], is one of the emerging Future Internet
technologies in which control plane software is removed from
all forwarding devices (switches or routers) of a network and is
embedded into one or more external entities called controllers.
In OpenFlow, the available network resources can be known
by simply requesting the controller and in addition, there are
standard protocols (OpenFlow configuration protocols [1], [2])
available to configure QoS parameters.

We implemented a QoS framework in OpenFlow, which di-
vides different types of traffic (business and best-effort traffic)
into different flows (services), configures priority queues, and
redirects different flows to a suitable priority queue. Upon a
failure, our framework reconfigures the network and provides
high QoS to the business customers. In future versions of
OpenFlow, namely since version 1.3, flow-related meters can
also be used in this framework.

In the demonstration, we stream video clips (business and
best-effort traffic) in an emulated OpenFlow pan-European

978-1-4799-3360-0/14/$31.00 2014 IEEE

topology, and show that business customers achieve high qual-
ity of service than best-effort customers using our framework.
In addition, during the demonstration, we trigger a failure in
the paths of video clips and show an effectively higher QoS
for business customers as compared to best-effort customers.

II. RESILIENT QOS FRAMEWORK FOR OPENFLOW

In our framework, we use the OpenFlow protocol together
with the OVSDB (Open vSwitch Database Management Pro-
tocol) configuration protocol [2] to provide high QoS. The
OpenFlow protocol is used to divide different types of traffic
into different flows and to redirect these flows through a
suitable priority queue. The configuration protocol is used to
configure suitable priority queues in the OpenFlow routers (or
switches). Both of these protocols are used between the con-
troller and the OpenFlow switches. As the current controllers
such as Floodlight do not support the OVSDB protocol, the
Floodlight controller is extended to support this feature. In
addition, for communication with a QoS provider, we use
the Northbound API (Application Program Interface) of the
controller and for routing, we use a standard routing protocol
(OSPF, Open Shortest Path First). Furthermore, for running
OSPF in OpenFlow, we rely on our previously presented
framework [3] for RouteFlow [4].

Starting on an OpenFlow router, three queues are config-
ured on each port of the OpenFlow router. The first queue has
the highest priority and therefore, traffic from this queue is
forwarded first, then from the second queue, and so on. The
first queue is configured to traverse control traffic, the second
queue is configured to traverse business traffic, and the third
queue is configured to traverse best-effort traffic. The traffic is
called business traffic, if the TOS (Type of Service) field of the
traffic is enabled. The traffic is called best-effort traffic, if the
TOS field is not enabled. The edge OpenFlow router enables
the TOS field of business traffic.

When the controller, running the RouteFlow framework,
discovers a new routing entry for an OpenFlow Router, the
controller establishes two corresponding forwarding entries
(flow entries) on the router. With the first flow entry, business
traffic (TOS field enabled) is traversed through the second
queue (configured above), and with the second flow entry, best-
effort traffic (TOS field disabled) is traversed through the third
queue (configured above).

When a QoS provider receives a request to reserve a
bandwidth from a business customer, a confirmation regarding

the availability of network resources is performed through the
NorthBound API of the controller. If the resources are available
on the path retrieved by OSPF, a rate limiter queue (Q) having
the same priority as the second queue is configured on the edge
router. Moreover, in order to enable the TOS field of business
traffic and to redirect this traffic to the rate limiter queue, a
forwarding entry is established on the edge router.

Upon a failure, the flow entries on the affected paths are
re-established and the edge router reconfigures its rate limiter
queues appropriately, along the available alternative path.

A. Results and Discussions

In order to assess the described framework, experiments
were performed on the OFELIA testbed facility provided by
iMinds [5]. Fig. 1A represents an emulated pan-European

London
Paris

Lyon

Amsterdam

Brussels

Frankfurt

Hamburg

Strasbourg

Zurich

First

Ethernet

cable

OpenFlow

Switch

Client or Server

(A) (B)

Video Clips

First

Laptop

Second

Berlin

Vienna

Prague

Zagreb

Rome

Milan

Munich

Controller
cable

Second

Laptop

Ethernet

cable
Working path of

Video clips

Fig. 1. (A) Emulated Pan-European Topology (B) Portable Testbed

topology. Each switch in the topology makes an out-of-band
connection with a single controller. For emulation purposes,
Open vSwitch was used as OpenFlow software and RouteFlow
with our QoS framework was used as controller software.
The bandwidth capacity of each link in the topology was
limited to 50 Mb/s. In the experiments, each server sent
both business traffic (30%) and best-effort traffic (70%) to all
other servers in the topology using DITG (Distributed Internet
Traffic Generator) [6]. In order to assess the framework, the
rate of both traffic sources, following a Poisson distribution,
was varied and one of the links was torn down. Afterwards, the
effects on QoS of these operations on business and best-effort
traffic were thoroughly analyzed. Regarding failure recovery,
we do not focus on providing fast-failure recovery [7] but
instead, we focus on the scenarios in which high-priority traffic
always gets a higher precedence than best-effort traffic.

Three distinct scenarios of business traffic were analyzed:
low data-rate (less than 2.4 Mb/s of business traffic from each
server to other server); medium data-rate (between 2.4 and 7
Mb/s); and high data-rate (more than 7 Mb/s). For the low
data-rate scenarios, neither business nor best-effort customer
traffic received the degraded service. This was because the
failure-free path (before and after the link down) had enough
bandwidth to accommodate both business customer and best-
effort traffic. In the medium rate scenarios, only best-effort
traffic received the degraded service. This was because the

failure-free path (before and after the link down) had only
enough bandwidth for business traffic. As a result, some of the
best-effort traffic had to drop in order to meet the requirements
of the business traffic. Finally, for the high data rate scenarios,
business traffic had also received the degraded service after the
link down. This was because in this scenario, some of links
in the failure-free path after the link down had not the enough
bandwidth to accommodate all the business customer’s traffic.
Therefore, some of business traffic was also dropped. In these
links, we observed about 0 Mb/s best-effort traffic.

III. DEMONSTRATION ON PORTABLE TESTBED

With the portable testbed (two laptops, Fig. 1), we show
the working of our QoS framework using an emulated pan-
European topology. With the Mininet software [8], the half
of the topology is emulated on the first laptop and the other
half is emulated on the second laptop. The connection between
the emulated topologies on different laptops is done using two
Ethernet cables, shown in the figure. The controller, which
runs our framework, is located on the second laptop. The
controller controls all the switches of the topologies including
the switches on the first laptop by the second Ethernet cable.

The link and traffic characteristics in the demonstration
is replicated from the scenarios presented in the previous
subsection. Hence, DITG is used to send business and best-
effort traffic from each server. In addition, the server connected
to Paris (which is present on the first laptop) streams two
video clips – one as business traffic and the other as best-effort
traffic – to the server connected to Rome (which is present on
the second laptop). These video clips follow the path through
the first Ethernet cable of the laptops.

In the demonstration, we show all the three scenarios
presented in the previous subsection by simply watching the
video clips of business and best-effort traffic on the second
laptop. These three scenarios are shown by varying business
and best-effort traffic (DITG traffic) from each server of the
topology. For a failure condition of these scenarios, during
the demonstration, we remove the first Ethernet cable of the
laptops (the working path of video clips) and show switching
of the video clips from the first Ethernet cable to the second
Ethernet cable. After the failure, we show that business traffic
always gets better QoS than best-effort traffic.

ACKNOWLEDGMENT

This research has received funding from the EU FP7 under
agreement no 317576 (CityFlow), and n

o 258365 (OFELIA).

REFERENCES

[1] OpenFlow and OF-ConFig: https://www.opennetworking.org/

[2] B. Pfaff et al., The Open vSwitch Database Management Protocol, IETF,
2013 (http://tools.ietf.org/html/draft-pfaff-ovsdb-proto-04)

[3] S. Sharma et al., Automatic configuration of routing control platforms in
OpenFlow networks, ACM SIGCOMM, Vol. 43(4), pp. 491-492, 2013

[4] RouteFlow code: https://sites.google.com/site/routeflow/

[5] OFELIA testbed: http://www.fp7-ofelia.eu/

[6] A. Botta et al., A tool for the generation of realistic network workload
for emerging networking scenarios, Computer Networks, 2012

[7] S. Sharma et al., OpenFlow: Meeting carrier-grade recovery require-
ments, Computer Communications, Vol. 36(6), pp. 656-665, 2013

[8] Mininet Software: http://mininet.org/

