
Mediational analyses are used to assess the degree to 
which a variable is intermediate in the causal sequence 
between a predictor and a dependent variable. The rela-
tion between two variables may also depend on another 
variable, called a moderator variable (Baron & Kenny, 
1986). Moderator variables affect the strength of a relation 
between two variables and are typically tested with in-
teraction effects. In some situations, moderators and me-
diators operate simultaneously. Mediated moderation, for 
example, occurs when the interaction between two vari-
ables affects a mediator, which then affects a dependent 
variable (Baron & Kenny, 1986; Donaldson, 2001). The 
purposes of this article are to combine methods developed 
separately for mediation analysis and moderation analysis 
in a mediated moderation model, evaluate the model with 
a statistical simulation, and illustrate a practical example 
of this method with real data.

Mediation
Mediational analyses identify cognitive or behavioral 

processes that relate an independent variable to a depen-

dent variable. Mediational processes guide the devel-
opment and evaluation of preventive intervention trials 
(Lipsey, 1993; MacKinnon & Dwyer, 1993; MacKinnon, 
Taborga, & Morgan-Lopez, 2002; West & Aiken, 1997). 
In etiological studies, mediation analyses help identify 
links between risk factors and outcomes (see, e.g., MacK-
innon et al., 1991; Wolchik et al., 1993). 

In program evaluation, mediational analyses provide 
practical information about the success or failure of action 
theory and the conceptual theory used in the development 
of the program (Chen, 1990). Action theory refers to the 
relation between program components and the mediator(s) 
that the program is designed to change. The conceptual 
theory refers to the relation between the mediator(s) and 
the outcome variable. Through mediational analysis, 
researchers can evaluate whether or not a program was 
successful in changing the mediating variable that it was 
designed to change (action theory) and whether or not the 
mediating variable changed the outcome variable (con-
ceptual theory). More importantly, mediation analyses can 
identify which program components and mediators were 
or were not responsible for transmitting the program ef-
fects (Donaldson, 2001; MacKinnon, Taborga, & Morgan-
Lopez, 2002).

The advantages of the mediational model are numer-
ous and well documented in comparison with the anal-
ysis of the simple X → Y relationship (Baron & Kenny, 
1986; Donaldson, 2001; Lipsey, 1993; MacKinnon, 1994; 
MacKinnon, Taborga, & Morgan-Lopez, 2002). However, 
there are important questions that mediational analyses 
cannot answer. Whereas mediational analyses can provide 
information about mediational processes, they cannot pro-
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vide information about whether or not these processes dif-
fer across subpopulations.

Moderation
Moderator analyses evaluate whether or not a relation 

between two variables may differ in direction or magnitude 
across subpopulations or settings (Baron & Kenny, 1986). 
That is, moderator analyses test whether or not the relation 
between X and Y changes as a function of a third variable, 
Z (Aiken & West, 1991; Baron & Kenny, 1986; Donaldson, 
2001). Sharma, Durand, and Gur-Arie (1981) have described 
more specific conceptualizations of moderation, including 
whether or not Z serves as a predictor of Y that is indepen-
dent of X, as a pure moderator of the X → Y relationship that 
has no independent effect on Y, or in both functions.

Although moderational analyses are useful in explor-
ing conditional relationships between predictor(s) and 
outcome(s), they do not address mediational processes 
in the relation between a predictor and a dependent vari-
able (Donaldson, 2001; MacKinnon, 1994). Thus, media-
tional models in which moderators are also examined may 
provide more information than either statistical approach 
alone. These include cases in which the moderator vari-
able, Z, moderates the effect of the predictor on the media-
tor (e.g., X → M ) or that of the mediator on the outcome 
(e.g., M → Y; Baron & Kenny, 1986; Donaldson, 2001).

Mediation and Moderation
The combination of mediation and moderation ap-

proaches may be especially useful in studying the etiology 
and prevention of negative health outcomes (Tein, Sandler, 
& Zautra, 2000; Wolchik et al., 1993). Etiological research 
often focuses on factors that mediate the relationship be-
tween a risk condition and a health outcome. However, 
the mediational process by which risk influences outcome 
may be moderated by other risk factors or buffered by pro-
tective factors (Donaldson, 2001; Morgan-Lopez, Castro, 
Chassin, & MacKinnon, 2003).

In program evaluation, combining mediation and 
moderation analyses may identify variables that either 
compromise or improve the efficacy of an intervention 
(MacKinnon, Taborga, & Morgan-Lopez, 2002; Wolchik 
et al., 1993). Similarly, mediation and moderation analy-
ses help identify subpopulations that do not benefit from 
an intervention and inform cost–benefit decisions such 
as which groups to target with an intervention (Donald-
son, 2001; MacKinnon, Taborga, & Morgan-Lopez, 2002; 
West & Aiken, 1997). In short, mediated moderation (and 
moderated mediation) analysis assesses the generalizabil-
ity of the mediated effect.

Mediation and moderation have been combined in sev-
eral areas of research. Wolchik et al. (1993) evaluated me-
diated effects of an intervention for divorced mothers on 
child behavior problems. Differences among the mediated 
effects of the program were tested as a function of base-
line child behavior problems. The mediated effects did not 
vary across children who had low versus high levels of 
child behavior problems at baseline (Wolchik et al., 1993). 

Tein et al. (2000) examined whether or not psychological 
distress mediated the effects of stressful events on par-
enting quality and the extent to which coping strategies 
moderated the influence of distress on parenting quality 
in a sample of divorced mothers. The model described in 
Tein et al. (2000) is a moderated mediation model (Baron 
& Kenny, 1986; Donaldson, 2001; James & Brett, 1984).

Mediated moderation and moderated mediation models 
are distinguished on the basis of which individual path in 
the mediational chain varies as a function of the moderator 
variable. In the mediated moderation model, the path from 
the intervention to the mediator (i.e., X → M ) depends on 
the level of a moderator variable, Z, whereas the effect of 
the mediator on the outcome (i.e., M → Y ) is constant. In 
moderated mediation models, the path from the interven-
tion to the mediator (i.e., X → M ) is constant, whereas 
the effect of the mediator on the outcome (i.e., M → Y ) 
depends on the level of Z.

Mediated moderation models, the subject of the present 
study, involve the interaction between two predictor vari-
ables on a mediator, which, in turn, affects an outcome. 
Unger et al. (2000) investigated mediators of the effect 
of acculturation status on cigarette use among Latino and 
Asian-American youth. They also tested for moderation in 
these mediational processes as a function of subgroup dif-
ferences among the Asian-American sample (e.g., country 
of origin). Morgan-Lopez et al. (2003) found that the pro-
tective influence of Mexican cultural norms on cigarette 
use was mediated by youths’ confidence in their ability 
to avoid tobacco. However, this mediated effect was di-
minished, albeit still significant, in the presence of peer 
smoking influences on youth confidence.

Estimation of Mediated Moderation
Equations 1 and 2 depict the mediation model described 

elsewhere (MacKinnon & Dwyer, 1993):
 M � ι1 � αX � ε1, (1)

 Y � ι2 � βM � τ′X � ε2, (2)

where X is the independent variable, M is the mediator, Y 
is the outcome variable, α codes the regression of M on X, 
β codes the regression of Y on M adjusted for X, τ′ codes 
the regression of Y on X adjusted for M, ι1 codes the pre-
dicted value of M when X � 0, ι2 codes the predicted value 
of Y when X � M � 0, ε1 codes the difference between ob-
served and model-predicted scores on M, and ε2 codes the 
difference between observed and model-predicted scores 
on Y. The model assumes that the expected value of the 
residual terms (ε1, ε2) equals 0, the covariance among the 
residual terms (ε1, ε2) equals 0, and model-based residuals 
are independent of all predictors. The product, αβ, is the 
mediated effect.

In the mediated moderation model (see Figure 1), Equa-
tions 3 and 4 expand on the mediation model to include an 
additional predictor, Z:

 M � ι1 � α1X � α2Z � α3XZ � ε1, (3)

 Y � ι2 � βM � τ1′X � τ2′Z � τ3′XZ � ε2, (4)
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where X is the independent variable; Z is an independent 
variable/moderator; XZ is the interaction of X and Z; M is 
the mediator; Y is the outcome variable; α1 codes the re-
gression of M on X adjusted for Z and XZ; α2 codes the 
regression of M on Z adjusted for X and XZ; α3 codes
the regression of M on the XZ interaction adjusted for X 
and Z, and tests the null hypothesis that the regression of 
M on X is consistent across levels of Z (Aiken & West, 
1991); β codes the regression of Y on M adjusted for X, Z, 
and XZ; τ1′ codes the regression of Y on X adjusted for M, 
Z, and XZ; τ2′ codes the regression of Y on Z adjusted for 
X, M, and XZ; τ3′ codes the regression of Y on XZ adjusted 
for X, M, and Z; ι1 codes the predicted value of M when 
X � Z � X Z � 0; ι2 codes the predicted value of Y 
when X � M � Z � XZ � 0; ε1 codes the difference be-
tween observed and model-predicted scores on M; and 
ε2 codes the difference between observed and model-
predicted scores on Y. This model also assumes that the 
expected value of the residual terms (ε1, ε2) equals 0, the 
covariance among the residual terms (ε1, ε2) equals 0, and 
model-based residuals are independent of all predictors.

The estimate of the mediated moderation effect is the 
product of the path from the interaction term XZ to the me-
diator M, a3, and the path from the mediator to the outcome 
variable Y, b. This product, a3b, reflects the extent to which 
the mediated effect (X → M → Y) is conditioned on a fourth 
variable, Z. In practice, a significant mediated moderation 
effect would indicate the need to examine the significance 
of the mediated effect at various levels of the fourth variable 
(Aiken & West, 1991; see also Morgan-Lopez et al., 2003; 
Tein, Sandler, MacKinnon, & Wolchik, 2004).

The first illustration of mediated moderation was de-
scribed by Baron and Kenny (1986) and is based on a differ-
ent point estimator of the mediated moderation effect. The 
approach uses Equation 4 above and Equation 5 below.

 Y � ι1 � τ1 X � τ2 Z � τ3 XZ � ε3. (5)

The mediated moderation effect is obtained by taking the 
difference between τ3 and τ3′ from the two equations. The 
τ3 � τ3′ estimator (c3 � c3′) and the α3β estimator (a3b) 
of the mediated moderation effect are equivalent in ordi-
nary least squares regression (see MacKinnon, Warsi, & 
Dwyer, 1995).

Sampling Distribution of the Product
The mediated effect is equal to the product of the pa-

rameter estimates a and b for α and β from Equations 1 
and 2. The variance of the product of a and b was de-
rived by Sobel (1982) using the multivariate delta method 
(Bishop, Fienberg, & Holland, 1975), a general method 
for deriving the variance of functions of random variables. 
The multivariate delta method estimator for the variance of 
ab is (a2s2

b � b2s2
a)1/2 (Baron & Kenny, 1986; MacKinnon 

et al., 1995; Sobel, 1982), where a is the estimate linking 
the predictor to the mediator, b is the estimate linking the 
mediator to the outcome, and s2

a and s2
b are the SEs for the 

respective effects. For the mediated moderation model, 
the estimate a is substituted by the estimate a3, the sample 
value for the α3 parameter in Equation 4.

One of the more appealing features of the ab method is 
that the estimates used for the analysis, a and b, represent 
direct estimates of the success or failure of both the action 
theory and the conceptual theory links, respectively, in the 
evaluation of a program (MacKinnon, Taborga, & Morgan-
Lopez, 2002) or an etiological process. The present study 
will focus on this multivariate delta method SE estimator 
(Sobel, 1982), available in several covariance structure 
analysis software packages (e.g., LISREL [Jöreskog & 
Sörbom, 1996]; EQS [Bentler, 1995]). 

Simulation studies on the multivariate delta SE esti-
mator of ab have found that it has reasonable statistical 
properties, including negligible bias in point estimation 
at sample sizes of 50 or greater and negligible bias in SE 
estimation at sample sizes above 100 (MacKinnon, Lock-
wood, Hoffman, West, & Sheets, 2002). However, the per-
formance of this and other methods of testing for mediated 
effects may not be generalizable to mediated moderation 
because of several unique aspects of the model. Specifi-
cally, covariances among the predictors, additional direct 
effects (e.g., τ′2, τ′3), an additional indirect effect (e.g., Z → 
M → Y), and variances of X and XZ all have an influence 
on point estimation and confidence interval estimation 
for mediated moderation effects that are not present in the 
mediation model.

No previous studies have been conducted on the sta-
tistical properties of the mediated moderation effect. The 
purpose of this study is to examine the effect of sample 
size, effect size, and nonzero versus zero direct effects 
(i.e., partial vs. complete mediated moderation) on Type I 
error rates, statistical power to detect the mediated mod-
eration, and relative bias (RB) in the mediated moderation 
effect and its SE.

Assumptions of Mediated Moderation
In the simulation context, model and parameter speci-

fications are defined by the investigator. However, in the 
context of real data, statistical and conceptual assumptions 
must be either made or tested relative to the specification 
of any model that may not be unique to the mediated mod-
eration model. Key statistical and conceptual assumptions 
are critical to the estimation of the mediated moderation Figure 1. Mediated moderation model.
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model, particularly in nonexperimental and cross-sectional 
contexts (Simon, 1954). First, this model assumes that if 
C(X, Z) � 0, then the nonzero covariance is neither the 
result of a causal relationship between X and Z nor the 
result of a spurious relationship between X and Z that can 
be accounted for by another variable. If C(X, Z) � 0, then 
theoretical considerations in the substantive area of inter-
est may make the preceding assumption tenable. Next, it 
is assumed that the residual terms in this model are uncor-
related with each other, suggesting that the unmeasured 
influences on M are unrelated to unmeasured influences 
on Y. Finally, it is assumed that the residual variance(s) are 
constant throughout the range of each predictor.

This model also makes conceptual assumptions about 
causal ordering. It assumes that the causal ordering of the 
variables is correct such that M does not cause X, M does 
not cause Z, Y does not cause M, Y does not cause X, and 
Y does not cause Z. In the absence of experimental control, 
logical reasoning or previous research in a particular area 
may provide insight into the viability of the temporal pre-
cedence assumptions made in this model. The simulation 
was constructed in such a way that each of these statistical 
and conceptual assumptions was true for the population.

METHOD

Study of Type I Error
The purpose of the first simulation study was to examine the vari-

ability in Type I error rates for this method of assessing mediated 
moderation effects across several conditions. SAS Version 8e (SAS 
Institute, 2000) was used to conduct the simulations. For each simu-
lation, X, Z, and the residual variances for M and Y (see Equations 3 
and 4) were generated from a standard normal distribution using the 
SAS RANNOR function.

Simulation conditions. The factors that varied in the study of 
Type I error were direct effect condition (zero or nonzero), param-
eter value for α1 (0, .14, .36, or .51), parameter value for α2 (0, .14, 
.36, or .51), sample size (50, 100, 200, 500, 1,000, or 5,000), the 
correlation between X and Z (0 or .4), parameter values for α3 (0, 
.14, or .36), and parameter values for β (0, .14, .36, or .51). For the 
simulation on Type I error, only the six combinations of α3 and β 
that produced an α3β product of 0 were generated and analyzed. 
This resulted in 2,304 combinations of parameter values and sample 
sizes. Five hundred replications were generated for each combina-
tion, producing a total of 1,152,000 simulated data sets. Information 
from each data set, such as population parameter values, sample 
sizes, and inferences from the analysis of each simulated data set, 
was saved for analysis. The key outcome was false rejection of the 
null hypothesis that α3β � 0 (Type I error). The Type I error rate (for 
each combination) was the proportion of false rejections of the null 
hypothesis out of the 500 simulated data sets.

Effect sizes for α3 and β. In the present study, we used popu-
lation parameter values for regression coefficients in Equations 3 
and 4 that were derived using covariance algebra (see Appendixes 
A and B). Effect sizes (squared partial correlations) were calculated 
for each combination of population parameters used in the simula-
tion using a matrix procedure for the calculation of (squared) partial 
correlations outlined in Johnson and Wichern (2002, p. 407). This 
allows for the comparison of simulation parameters and practical 
effect sizes as interpreted in applied research. For each value of α3, 
a range of effect sizes is described, because the effect sizes of α3 
changed as the sizes of other parameters (i.e., β) changed. For α3, the 
parameter value .14 corresponded to ρ2 values ranging from .006 to 
.018, whereas a parameter value of .36 corresponded to ρ2 values 

ranging from .074 to .112. The .14, .36, and .51 parameter values for 
β corresponded to ρ2 values of .019, .114, and .206, respectively.

Study of Empirical Power
Simulation conditions. The purpose of the second simulation 

study was to study the factors that account for variability in empiri-
cal power. The factors that varied in the study of Type I error were 
direct effect condition (zero or nonzero), parameter value for α1 (0, 
.14, .36, or .51), parameter value for α2 (0, .14, .36, or .51), sample 
size (50, 100, 200, 500, 1,000, or 5,000), the correlation between X 
and Z (0 or .4), parameter values for α3 (0, .14, or .36), and param-
eter values for β (0, .14, .36, or .51). For the simulation on empirical 
power, only the six combinations of α3 and β that produced an α3β 
product greater than 0 were generated and analyzed. This resulted in 
2,304 combinations of parameter values and sample sizes. Five hun-
dred replications were generated for each combination, producing a 
total of 1,152,000 simulated data sets. Information from each data 
set, such as population parameter values, sample sizes, and infer-
ences from analysis of each simulated data set, was saved for analy-
sis. The key outcome in the second study was correct rejection of the 
null hypothesis that α3β � 0 (power). Power for each combination 
was the proportion of correct rejections of the null hypothesis out of 
the 500 simulated data sets.

The influence of parameter values, sample size, direct effect con-
dition, and predictor intercorrelation on RB in α3β point estimate 
and RB in α3β SE was also examined (using multiple regression). 
RB was defined as (estimated � true value)/true value. These values 
(RB α3β and RB σα3β) were calculated in each simulated data set. 
The key in these analyses was to identify combinations of conditions 
that would produce RB values above �10%. For all analyses, sample 
size was converted to log10 in order to alleviate concerns about using 
a continuous predictor with a wide range of values (i.e., 50–5,000).

RESULTS

Accuracy of the Mediated Moderation Effect 
(α3β) Point Estimator

Two factors influenced variability in the RB of the me-
diated moderation point estimator. The size of β (with SE 
expressed in parentheses) was related to RB in point esti-
mation [�.088 (.032), t � 2.68, p � .007]; RB decreased 
as the size of β increased. Also, direct effect condition was 
related to RB in point estimation [.037 (.010), t � 3.49, 
p � .0005]; RB was greater when direct effects were non-
zero. Each of these factors interacted with sample size, 
and the direct effect � N effect [�.008 (.003), t � �2.73, 
p � .006] and the β � N effect [.018 (.009), t � 2.01, p � 
.044] interactions were significant. Examination of the 
predicted means suggested that as sample size increased, 
the difference in RB across β and direct effect condition 
was reduced. Overall, no combination of parameter value 
and sample size produced an average RB value that ex-
ceeded �10%, suggesting that point estimation is accu-
rate for all conditions examined in this study.

Accuracy of the Standard Error of the Mediated 
Moderation Effect (σα3β)

Several factors accounted for variability in the RB of 
the SE of the mediated moderation effect, including the 
size of α3 [�.059 (.013), t � �4.26, p 	 .0001], the size 
of β [�.142 (.010), t � �14.19, p 	 .0001], sample size 
[�.014 (.001), t � �8.28, p 	 .0001], and the direct ef-
fect condition [.019 (.003), t � 5.21, p 	 .0001]. RB in 
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σα3β decreased as α3, β, and sample size increased, respec-
tively. RB was also higher when direct effects were non-
zero. Two key interaction effects were also observed. The 
impact of α3 on RB depended on the direct effect condition 
[�.024 (.006), t � �3.48, p � .0005]. Examination of the 
predicted means of RB for this effect suggests that as α3 
increased in size, the difference in RB across direct effect 
conditions became smaller. The impact of β on RB also 
depended on the direct effect condition [�.026 (.005), t � 
�5.32, p 	 .0001]. Examination of predicted means of RB 
for this effect suggests that as β increased in size, the differ-
ence in RB across direct effect conditions became smaller. 
No combination of parameters, sample sizes, direct effect 
condition, and correlation between X and Z produced RB 
in the mediated moderation SE that exceeded �10%.

Variation in Type I Errors
Several factors accounted for the variability in Type I 

errors, including the size of α3 [16.10 (1.18), Wald χ2 � 
184.19, p 	 .0001], the size of β [20.64 (2.72), Wald 
χ2 � 57.47, p 	 .0001], the correlation between X and 
Z [C(X, Z), 2.71 (1.11), Wald χ2 � 5.94, p � .014], and 
sample size [2.43 (.138), Wald χ2 � 311.87, p 	 .0001]. 
Type I error rates increase as α3, β, sample size, or C(X, Z) 
increased. Of particular note was a significant four-way 
interaction between the size of α3, sample size, direct ef-
fect condition, and C(X, Z) on Type I error rates. In lieu 
of interaction contrasts and simple effect tests, qualita-
tive trends based on the visual inspection of the observed 
Type I error rates are discussed on the basis of Figures 2 
and 3. Visual inspection of the four-way interaction effect 
suggests that (1) the difference between Type I error rate 
trends for α3 � .14 and α3 � .36 (across sample size) is 
larger when the correlation between X and Z is nonzero, 
(2) differences in Type I error rates become smaller as 
sample size increases across all other conditions, and (3) the 
direct effect condition has the largest impact on Type I error 

when α3 � .14 and C(X, Z) � 0. In the third case, Type I 
error rates may be impacted most in the context of partial 
mediated moderation, particularly when small interaction 
effects are expected in experimental research. Overall, this 
appears to be a conservative method of estimating mediated 
moderation effects, as is evidenced by Type I error rates 
that are consistently below the nominal rate of .05. Type I 
error rates came closest to .05 as sample size approached 
500 and, in many cases (i.e., with smaller values of α3), 
required samples of 1,000 or more to approach a Type I 
error rate of .05. This is generally consistent with findings 
on the use of the Sobel (1982) sampling distribution esti-
mator in the three-variable mediation model (MacKinnon, 
Lockwood, et al., 2002). However, the interactive impact 
of direct effects and correlations between additional pre-
dictors in this study (which, to our knowledge, have not 
been examined elsewhere) make a comprehensive com-
parison with findings from other simulation studies on 
mediation difficult.

Variation in Empirical Power
Several factors influenced power to detect mediated 

moderation effects, including the size of α3 [38.52 (1.05), 
Wald χ2 � 1,324.13, p 	 .0001], the size of β [33.65 
(.795), Wald χ2 � 1,791.76, p 	 .0001], and sample 
size [9.35 (.124), Wald χ2 � 5,671.52, p 	 .0001]. There 
were two key interaction effects. The three-way interac-
tion between direct effect condition, C(X, Z) and sample 
size was significant [1.71 (.319), Wald χ2 � 28.98, p 	 
.0001]. When simulation data are collapsed across all pa-
rameter combinations, power is similar across the direct 
effect condition and the C(X, Z) condition, except in one 
instance: when the correlation between X and Z is nonzero 
under partial mediated moderation (i.e., nonzero direct 
main and interaction effects; see Figure 4).

The four-way interaction effect between α3, β, sample 
size, and C(X, Z) was significant [22.51 (6.69), Wald 

Figure 2. Empirical Type I error rate: α3 � direct effect � sample size interaction 
[C(X, Z) � 0].

0

1

2

3

4

5

6

 50 100 200 500 1,000 5,000
Sample Size

T
yp

e 
I E

rr
o

r 
R

at
e 

(%
)

No direct, α3 = .14

No direct, α3 = .36

Direct, α3 = .14

Direct, α3 = .36

Direct Effect, α3 value



82    MORGAN-LOPEZ AND MACKINNON

χ2 � 11.32, p � .0008]. A comparison of Figures 5 and 
6 reveals that the greatest difference in empirical power 
across the C(X, Z) conditions occurs at N � 200 for two 
parameter combinations (α3 � .14, β � .36 and α3 � .14, 
β � .51). These two parameter combinations (at N � 200) 
are combinations that produce more than a 10% difference 
in empirical power across the two C(X, Z) conditions. The 
correlation between X and Z may have an impact on power 
only at moderate sample sizes for moderately sized medi-
ated moderation effects.

An Example of Mediated Moderation Analysis
To illustrate mediated moderation model estimation, 

we use an example from Morgan-Lopez et al. (2003). This 
example offers an examination of the extent to which the 
level of investment in one’s indigenous culture (i.e., en-
culturation status) decreases risk for cigarette use among 

Mexican-American youth. The study focused on mediated 
effects of enculturation on cigarette use as well as contex-
tual risk factors that were hypothesized to moderate these 
mediated effects. The goal of Morgan-Lopez et al.’s study 
was to conduct a simultaneous test of two complementary 
theories that account for the influence of enculturation 
on substance use (Castro, Coe, Gutierres, & Saenz, 1996; 
Oetting, Donnermeyer, Trimble, & Beauvais, 1998).

The theory of communal health consequences (Castro 
et al., 1996) suggests that youth who are invested in more 
collectivistic cultures should be more concerned about 
how their health decisions affect others, which theoreti-
cally should reduce tobacco use. This theory may be con-
sidered a “main effect” theory of protection from tobacco 
use, since it does not speak to differential effects of col-
lectivism across smoking contexts. Oetting et al. (1998) 
suggested that levels of investment in multiple contexts 

Figure 4. Direct effect condition � C(X, Z) � sample size interaction effect on power.
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(i.e., peer group, family, community, culture) may inter-
act to impact the health behaviors of youth. This might 
suggest that youth in collectivistic cultures (which would 
be protective) may see lower rates of protection in high 
smoking contexts (which would convey risk), suggesting 
a moderating effect of smoking context on the relation 
between cultural orientation and tobacco use.

Data were from preintervention reports of 921 Mexican-
American students in a culturally oriented tobacco preven-
tion program (Castro, De Anda, Abeita, & Morgan-Lopez, 
1999). Forty-four percent had at least one friend who 
smoked, and 50.7% had at least one household mem-
ber who smoked. Thirty-six percent had tried at least 
one cigarette in their lifetime, and 7.7% smoked at least 
one cigarette per day. The measures for this model are 
the following: number of friends who smoke (PS, single 
item), ethnic cultural norms (ECN; 4 items, Cronbach’s 

alpha � .70), tobacco avoidance self-efficacy (TASE; 9 
items, Cronbach’s alpha � .86), and youth cigarette use 
(YCU; four items, Cronbach’s alpha � .89). (The original 
analyses for these data included separate models for main 
mediation effects and mediated moderation effects. The 
present reanalysis of these data estimates main mediated 
effects and mediated moderation effects simultaneously. 
As a result, some estimates may differ from those of the 
original article.)

The estimate for the mediated moderation model for 
Equation 3 is TASEpredicted � ECN [2.392 (SE � 0.024) � 
.239 (SE � 0.029)] � PS [.100 (SE � 0.012)] � (ECN � 
PS) [.034 (SE � 0.016)]. The estimate for the mediated 
moderation model of Equation 4 is YCUpredicted � TASE 
[.264 (SE � 0.074) � .276 (SE � 0.041)] � ECN [.007 
(SE � 0.041)] � PS [.267 (SE � 0.014)] � (ECN � PS) 
[.026 (SE � 0.018)].

Figure 5. a3 � b � N interaction effect on power; C(X, Z) � 0.
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Figure 6. a3 � b � N interaction effect on power; C(X, Z) � .4.
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In testing the main mediation effect (ECN → self-
efficacy → YCU), the point estimate (�.065) is the prod-
uct of the estimates for the regression of TASE on ECN 
(.239) and the regression of YCU on TASE (�.276). The 
SE of the main mediation effect in this example is .012, 
or [(.2392)(.0412) � (�.2762) (.0292)]1/2. The results sug-
gested that self-efficacy fully mediated the protective 
influence of ECN on YCU at the average level of peer 
smoking [a1b � �.065 (.012), Z � �5.21, p 	 .01], indi-
cating that youth with high investment in Mexican culture 
had higher levels of TASE—that is, those with higher self-
efficacy were less likely to smoke.

In testing the mediated moderation effect (ECN � 
PS → TASE → YCU), the point estimate (.009) is the 
product of the estimates for the regression of TASE on the 
ECN � PS interaction term (�.034) and the regression of 
YCU on TASE (�.276). The SE of the mediated modera-
tion effect in this example is .004, or [(�.0342)(.0412) � 
(�.2762) (.0162)]1/2. The mediated moderation effect was 
significant [a3b � .009 (.004), Z � 2.05, p 	 .05]. The 
mediated effect—ECN (predictor) on YCU (outcome) 
through TASE (mediator)—differed as a function of the 
level of peer smoking (moderator).

Simple mediation effects (Tein et al., 2004) are then 
conducted to assess the significance of mediated effects 
across selected levels of peer smoking (i.e., different num-
bers of friends who smoke). First, simple slope analyses 
(see, e.g., Aiken & West, 1991) showed that higher lev-
els of identification with ECN led to increased TASE 
for youth with no friends who smoked [a0 friends � .260 
(.035), t � 7.48], for youth with one friend who smoked 
[a1 friend � .227 (.029), t � 7.93], and for youth with three 
friends who smoked [a3 friends � .160 (.039), t � 4.14]. 
These estimates and SEs were then used to test for media-
tion (ECN → TASE → YCU) at selected levels of peer 
smoking status. Significant mediation was found for the 
ECN → TASE → YCU process for youth who had no 
friends who smoked [ab for 0 friends � �.071 (.014), Z � 
�5.01], for youth who had one friend who smoked [ab for 
1 friend � �.062 (.012), Z � �5.12], and for youth with 
three friends who smoked [ab for 3 friends � �.04 (.01), 
Z � �3.53]. As the number of friends who smoked in-
creased, the mediated influence of ECN on cigarette use 
remained significant, although it decreased.

DISCUSSION

In this study, we have extended mediation methods to 
include moderational effects, evaluated the multivariate 
delta variance estimator (Sobel, 1982) for the evaluation 
of the mediated moderation effect, and demonstrated me-
diated moderation modeling using a practical example 
from the adolescent tobacco literature. An example illus-
trated mediated moderation model estimation and tests for 
simple mediation effects.

The simulation results suggest that adapting this method 
to test mediated moderation effects is reasonable under the 
circumstances examined in this study, as evidenced by the 

lack of bias in point estimation and SE estimation. Although 
several factors accounted for variation in RB in the point 
estimator and SE estimator of the mediated moderation ef-
fect, RB did not reach the problematic range (i.e., �10%) 
for any combination of parameters and sample sizes.

Overall, Type I error rates for this method of estimating 
mediated moderation effects were lower than the nominal 
rate of .05, particularly for sample sizes that were below 
1,000. This is consistent with other simulation work with 
the use of this estimator in three-variable mediation mod-
els (MacKinnon, Lockwood, et al., 2002). Since condi-
tions such as correlations between variables that make 
up the interaction term [i.e., C(X, Z)] and nonzero direct 
effects (i.e., partial mediation) accounted for variability 
in Type I errors, there may be conditions that make this 
approach less conservative across conditions that have not 
been examined in previous studies.

Power generally reached 80% for larger effect size com-
binations (i.e., α3 � .36/β 
 .36) at N � 100, whereas for 
most effects power did not reach .8 until at least N � 500 
or greater. There were also several influences on variation 
in power to detect mediated moderation effects, including, 
not surprisingly, sample size and effect size. Of particu-
lar note in this study was the identification of conditions 
that compromised power (when aggregated across effect 
sizes). Power was severely compromised when direct ef-
fects were nonzero and when the correlation between X 
and Z was nonzero. This suggests that the research con-
texts in which detection of mediated moderation effects 
may be most difficult would be nonexperimental contexts 
(in which component variables of interaction terms are 
more likely to be correlated) where partial mediated mod-
eration (i.e., remaining direct interaction effects) occurs.

This simulation study has several limitations, includ-
ing the use of nonnegative population parameter values 
and the use of continuous outcomes. Models such as those 
used to examine the interaction of risk and protective fac-
tors (e.g., positive and negative covariances) may differ 
in power to detect effects within mediated moderation 
models, because the impact of combinations of covari-
ances that vary in magnitude and sign on parameter es-
timates may be less predictable. Mediation simulations 
have shown discrepancies between results for categorical 
and continuous predictors for some mediated effect es-
timators (MacKinnon et al., 1995), and point estimation 
accuracy using unstandardized mediated effect estimates 
with categorical outcomes can be problematic (MacKin-
non & Dwyer, 1993).

Also, use of the standard deviation of the empirical 
distribution of the mediated moderation effect as the true 
value (against which the performance of Sobel’s, 1982, 
variance estimator is compared) presumes that the vari-
ance of the empirical sampling distribution is a sufficient 
statistic to describe this distribution. Recent work has 
suggested that the use of the mediated moderation effect 
variance estimator, as derived via the multivariate delta 
method, may be problematic in terms of the assumption 
of normality that has been imposed on the sampling dis-
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tribution of the mediated effect (MacKinnon, Lockwood, 
& Williams, 2004). Several authors have shown that the 
product of two random variables is not normally dis-
tributed (Aiken & West, 1991; MacKinnon et al., 2004; 
Meeker, Cornwell, & Aroian, 1981). Simulation work has 
shown that the sampling distribution of the mediated ef-
fect is normal only in special cases in which the ratios of 
the estimate to the SE for both paths that constitute the 
mediated effect are very large (MacKinnon et al., 2004). 
In this case, the confidence interval is too large, and the 
likelihood of rejecting a true null hypothesis that αβ � 0 
in the population is less than the nominal Type I error rate 
(e.g., ≈.01) in most cases for this method (MacKinnon, 
Lockwood, et al., 2002). In this case, this simulation proj-
ect represents an evaluation of a method that appears to 
be conservative.

The adaptation of the mediated effect variance estimator 
(Sobel, 1982) for the mediation of interaction effects ap-
pears to be a useful tool that combines the strengths of both 
mediation and moderation frameworks. In the program 
evaluation context, this method may allow for the exami-
nation of differential effects of a program as a function of 
preexisting risk or protective factors as well as subgroup 
differences. This method may also help identify factors that 
buffer or exacerbate mediational processes in etiological re-
search. Subsequently, researchers can identify the levels of 
the moderator at which a given mediational process does or 
does not occur (see, e.g., Morgan-Lopez et al., 2003; Tein 
et al., 2004). However, given some of the noted limitations, 
further evaluation of this approach is necessary in order to 
assess its utility across a wider range of research contexts.
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APPENDIX A
Population Parameter Derivations

To illustrate the procedure used to derive population parameters, consider the following correlation matrix:

  X  Z  XZ  M  Y

X 1
Z 0 1
XZ 0 0 1
M .14 .14 .14 1
Y  .14  .14  .14  .14  1

This matrix has uncorrelated exogenous terms, all small effects (unpartialed r2 � .02) between all combinations of 
exogenous and endogenous variables, and a small effect between the two endogenous variables. The model from Equa-
tions 3 and 4 is fit to these data. In this case, the number of unique elements in the data matrix being analyzed is the 
same as the number of parameters being estimated. As such, estimates of the model in Equations 3 and 4 will allow the 
model-implied correlation matrix and the input matrix to match perfectly. In the above case, the parameters that allow 
for perfect recovery of the input matrix are α1 � .14, α2 � .14, α3 � .14, β � .09, τ ′1 � .13, τ ′2 � .13, and τ ′3 � .13. The 
model in Equations 3 and 4 is simulated with the population parameters above or “true values.” In this example, our 
interest would be in the behavior of the product estimates of a3 and b, which equals .0126, under different conditions 
(e.g., sample size, direct effects, and correlations between X and Z). However, as was noted above, the small correla-
tions that correspond to C(XZ, M) and C(M, Y), even if they were held constant at .14, will produce different parameter 
estimates for a3 and b contingent on changes in the surrounding effect sizes (e.g., direct effects). As an illustration, the 
model-implied covariance structure for C(XZ, M ) is
 α1C(XZ, X ) � α2C(XZ, Z ) � α3Var(XZ). (A1)

In cases of bivariate symmetry and large samples, this expression reduces to α3Var(XZ) because the expected values of 
C(XZ, Z ) and C(XZ, X ) are zero when predictors are centered (Aiken & West, 1991).

In order to verify the accuracy of the derived covariance structure equations, population parameters were specified 
for all structural paths, predictor variances, predictor covariances, and error variances for the mediator M and the de-
pendent variable Y (e.g., α1 � .14, α2 � .14, α3 � .14, β � .09, τ ′1 � .13, τ ′2 � .13, τ ′3 � .13). These parameters were 
then used to reproduce each element of the variance/covariance matrix using a matrix program written in SAS IML on 
the basis of the following matrix formula for the model-implied covariance matrix in observed path models (Bollen, 
1989, p. 104).
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−( ) ′ +( ) −( )

′ −
∑

− − ′ΙΙ ΒΒ ΓΓΦΦΓΓ ΨΨ ΙΙ ΒΒ
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1 1
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−( )⎡

⎣

⎢
⎢

⎤

⎦

⎥
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−
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1ΙΙ ΒΒ ΓΓΦΦ

ΦΦ
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where I � Y � Y identity matrix; B � Y � Y matrix of path coefficients among the Ys; Γ � a Y � X matrix of path 
coefficients from the Xs to the Ys; Φ � an X � X matrix of covariances among the Xs; and Ψ � a Y � Y matrix of 
residual covariances among the Ys.
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APPENDIX B
Normal Equations for Ordinary Least Squares Loss Functions With Respect to α3 and β

In this appendix, the ordinary least squares (OLS) loss functions are included in order to demonstrate the influences of param-
eters and variances/covariances in the estimation of the elements that compose the mediated moderation effect. Partial derivatives 
for each model with respect to each of the relevant parameters follow.
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