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Abstract. We report successful demonstration of 2kV, SiC super-junction (SJ) PiN diodes formed by 
deep implantation of Al and N. In our devices, alternating 12µm deep n-type and p-type SJ pillars 
fabricated on a 10µm pitch and result in a SJ diode with a measured blocking voltage 500V higher 
than comparable non-SJ diodes. Four activation anneals ranging from 1700 °C to 2000 °C were 
compared for effectiveness in eliminating post-implant lattice damage, and the optimum anneal 
condition was identified. 

Introduction 
Wide bandgap Silicon Carbide (SiC) power switches and diodes offer the promise of lower 

conduction and switching losses leading to efficient power conversion. However, for Medium 
Voltage (MV) class (>3.3 kV) applications, the advantage of SiC technology is diminished compared 
to the incumbent Si IGBT technology.  MV SiC unipolar devices suffer from high conduction losses 
at elevated temperatures [1]–[3], and SiC bipolar devices such as IGBTs require a prohibitive 3V 
junction drop during conduction [4], [5]. SiC super-junctions (SJ) can break the unipolar limit and 
offer an improved trade-off between specific on-resistance and blocking voltage for MV-class 
applications.  To date, multi-epitaxial growth [6] and trench-refill [7] approaches have been 
demonstrated for 1.2kV and 6.5kV SiC SJ devices. For typical dopant implant energies of several 
hundred keV, the multi-epitaxial solution for SiC SJs is limited to switches rated to block <2kV.  
Above this rating, the number of epitaxial regrowth steps becomes too large. The trench-refill 
approach is also challenging, since the refill process tends to produce crystallographic damage, and 
it is difficult to refill the trenches with the required dopant uniformity. Recently, SiC charge-balanced 
(CB) diodes and MOSFETs were reported as an alternative solution to SJ devices with a simpler 
fabrication process [8], [9]. However, the stacked nature of CB devices and the charge carrier 
redistribution required during switching, results in a device with switching delays that increase with 
each additional layer, becoming prohibitive when scaling SiC CB devices beyond 4.5kV. 

For scaling beyond 4.5kV, a new class of SJ devices is being developed that relies on Megavolt-
level implantation to form deep p-type and n-type pillars. This multi-epitaxial SJ approach can be 
implemented in high voltage SiC devices with a smaller number of regrowth steps. However, high-
energy implantation of dopants in SiC may introduce lattice damage that will significantly limit the 
performance of such devices. Therefore, to evaluate the feasibility of high-energy implantation, single 
layer 2kV SiC SJ PiN diodes were fabricated and characterized as a first building block of deep-
implanted SJ technology. We employed several activation anneal splits and studied the leakage of 
PiN diodes to evaluate the presence of lattice damage following high-energy implantation and anneal. 
We also extracted the Al activation rate of the implanted p-pillars for each anneal split.     

Experimental 
SiC SJ-PiN diodes were fabricated on 100-mm SiC wafers.  A 12µm thick n-type epitaxial layer 
doped to 1×1015 cm-3 was grown on the starting N+ substrates, and n-type and p-type pillars were 
formed in the epitaxial layer by multi-energy implantations of Al and N through a patterned, thick, 
high-density hard mask. The mask was designed to provide enough stopping power to mask 
implantation energies up to 50MeV. Implantation was accomplished using a 15MV Van de Graaff 
accelerator based tool [10]. To validate the effectiveness of our process in both masking the high 
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energy implants and aligning the n-type and p-type pillars, a preliminary SiC test wafer was processed 
and characterized by SEM imaging.  In order to improve SEM contrast, implant doses for the test 
wafer were targeted to achieve dopings of 4×1016cm-3 in both the Al and N pillars (four times the 
device design target of 1×1016cm-3).  Fig.1 shows a SEM cross section of the fabricated structure. 
Clearly the masking and alignment process was successful and a 10µm pitch SJ structure with 12µm 
deep Al and N doped pillars formed by high-energy implantation is feasible. For subsequent devices 
wafers, following high energy implantation of the 1×1016 cm-3 doped SJ pillars, P+ anode and edge 
termination regions of the diodes were formed using additional low energy Al implantations.  Then, 
the front sides of the wafers were protected with graphitized photoresist in preparation for the dopant 
activation anneal.  To evaluate the effect of temperature in annealing out high-energy implantation 
lattice damage, four splits were chosen for the anneal (Table1). SJ diode wafers were annealed at 
temperatures ranging from 1700 °C to 2000 °C in an Ar ambient. 

 

 
Fig. 1: SEM characteristics of implanted P/N pillars formed on a SiC test wafer. 

 
Table 1: Activation anneal splits for SiC SJ PiN diodes 

Split Activation Anneal Temperature (°C) Duration (hours) 

1 1700 °C 30 min 
2 1800 °C 120 min 
3 1900 °C 60 min 
4 2000 °C 40 min 

 
The graphite layer was removed following the high temperature activation anneal and the SiC surface 
roughness was measured using an optical profilometer in special test areas distributed across the 
wafers. Fig. 2(right) shows the average surface roughness for each of the implanted regions. Surface 
roughness seems to be relatively independent of implantation type, but varies with activation 
temperature, with a maximum roughness for the highest activation anneal at 2000 °C. The graphite 
layer appears to be capable of protecting the front surface during high temperature anneal. However, 
the wafer back surface was not protected and was significantly altered following activation. As shown 
in Fig. 2(left), the topography of the SiC back surface shows a marked difference between split 1 and 
the higher temperature splits.  This suggests fundamentally different surface kinetics at temperatures 
above 1700 °C. 
Forward IV characteristics of 0.6mm2 SJ PiN diodes and extracted differential specific resistances at 
25 °C are plotted in Fig. 3(right). From this plot, higher activation anneal temperatures increase 
specific on-resistance from 2.5mΩ.cm2 for activation anneal split 1 to 4.3mΩ.cm2 and 5mΩ.cm2 for 
activation anneal splits 3 and 4 respectively. We believe altered surface topography for anneal 
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temperatures above 1700 °C has adversely affected the cathode contact resistance, and protecting the 
wafer backside with graphite during activation can avoid this cathode contact damage. 

    
 

Fig. 2 Left: SiC front-side surface roughness over different implanted regions versus activation 
anneal splits. Right: SEM images of wafer backsides following high temperature activation anneal. 

 

Fig. 3 Left: Forward IV characteristics of SiC SJ PiN diodes and extracted differential Ron (inset) 
for different activation anneal splits. Right: Reverse IV characteristics of SiC SJ-PiN diodes for 

different activation anneal splits. 
Reverse IV characteristics of SJ PiN diodes and simulated blocking plots for ideal SJ diodes and non-
SJ diodes with similar initial drift layer doping profiles (12µm thick and doped to 1×1016cm-3) are 
plotted in Fig. 3(left). From this plot, diodes with activation anneal splits 3 and 4 (1900 °C and  
2000 °C) result in breakdown voltages of >2100V. This blocking level is 500V higher than the 
simulated breakdown voltage of SiC non-SJ diodes and is similar to the simulated plot for an ideal 
SiC SJ PiN diode. Therefore, we conclude that our implanted n-type and p-type SJ pillars achieve 
active doping levels close to charge-balance, providing higher blocking voltage for SiC PiN diodes 
that cannot be achieved with non-SJ structures. However, activation anneal splits 1 and 2 (1700 °C 
and 1800 °C) suffer from high leakage current prior to the breakdown and suggests that to fully anneal 
lattice damage generated during high-energy implantation an activation anneal at >1900 °C is 
required. 

The activation rate of the implanted Al p-pillars was extracted from capacitance-voltage (CV) 
structures fabricated in test areas of the device wafers. In Fig. 4, a capacitance-voltage plot and 
extracted profile of electrically active Al over a 2µm depth of the p-pillar implanted region is plotted 
for the activation anneal splits. No significant difference is observed in capacitance values and 
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extracted active Al concentrations between different anneal temperatures. Extracted Al concentration 
for p-pillar implants for all activation splits was close to the implant target of 1×1016 cm-3. This 
suggests that unlike high dose Al implantation in SiC, activation anneal at >1700 °C can fully activate 
low dose Al implantations in SiC. This is in agreement with Al activation models previously reported 
[11]. 

 
Fig. 4 C-V characteristics (left) and extracted active Al doping (right) in p-pillar implanted PiN 

diodes for different activation anneal splits. 

Conclusion 
2kV SiC SJ PiN diodes were fabricated using high-energy implantation of Al and N. SJ diodes 

showed measured blocking voltage 500V higher than comparable non-SJ diodes. Four different 
activation anneal splits were employed to remove lattice damage following high-energy implantation. 
The data shows that SiC SJ PiN diodes annealed at 1800 °C and below, suffer from high blocking 
leakage and anneals at >1900 °C are required for maximum damage recovery. However, activation 
anneal temperatures as low as 1700 °C can fully activate low dose implanted Al in SiC. 
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