
HAL Id: hal-00096998
https://hal.archives-ouvertes.fr/hal-00096998

Submitted on 9 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Demonstration of a chaos generator with two time delays
Mw Lee, L. Larger, V.S Udalstov, E. Genin, Jp Goedgebuer

To cite this version:
Mw Lee, L. Larger, V.S Udalstov, E. Genin, Jp Goedgebuer. Demonstration of a chaos generator
with two time delays. Optics Letters, Optical Society of America - OSA Publishing, 2004, 29 (4),
pp.325-327. �10.1364/ol.29.000325�. �hal-00096998�

https://hal.archives-ouvertes.fr/hal-00096998
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Demonstration of a chaos generator with two time delays

Min Won Lee, Laurent Larger,* Vladimir Udaltsov,* Éric Genin, and Jean-Pierre Goedgebuer*

Laboratorie d’Optique P.M. Duffieux, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6603, Université de
Franche-Comté, Institut des Microtechniques, 25030 Besançon Cedex, France
We demonstrate a chaos generator involving two time delays and two nonlinear functions. Dynamic behav-
iors are numerically and experimentally observed. The complexity of the dynamics is discussed in terms 
of Lyapunov exponents and dimensions. The setup can provide a new architecture for enhancing message 
security in chaos encryption systems. 
Chaotic dynamics with a time delay have been studied
for many years. In the past decade these dynam-
ics have contributed to the development of optical
systems in chaos synchronization1 and chaos anticipa-
tion.2 Some of these systems have been developed for
chaotic message encryption and decryption3 –5 because
of their ability to mask a message inside high-com-
plexity noiselike chaotic signals, as well as to recover
the message at the receiver side with a synchronized
chaotic transmitter and receiver. The confidentiality
of such encryption systems typically depends on the
complexity of the chaotic behaviors, on the number
of possible parameters, producing such dynamics,
and on the complexity of the system’s architecture.
Although chaos encryption provides strong security,
it was recently reported that chaos encryption can be
broken through some conventional time series analysis
techniques in a cryptanalytic context.6,7 Thus it is
of interest to enhance chaos encryption through any
other technique. In this Letter we report and analyze
an optoelectronic chaos generator involving two time
delays and two nonlinear processes. This enhanced
architecture should prevent chaos encryption from
being broken or at least make it very diff icult. The
proposed setup is intended to strengthen chaos-based
secure systems through the use of two or more time
delays. Moreover, the study of such multiple delay
dynamic systems meets the currently growing interest
in various fields, such as the code-division multiple
access communication technique,8 neural networks,9

and optical feedback systems.10

Recently, a chaos generator based on coherence
modulation was reported,11 as was its application to
optical encryption.12 With a similar physical principle
based on optical coherence modulation we propose
a chaotic generator with two time delays and two
nonlinear functions. The results are shown in terms
of an experimental bifurcation diagram and a nu-
merical investigation of the Lyapunov exponents and
dimensions.

The experimental setup is depicted in Fig. 1. A
superluminescent diode is used as the light source,
emitting at l0 � 1.28 mm with an output power of
P0 � 650 mW and a short coherence length Lc � 47 mm.
An integrated unbalanced Mach–Zehnder (MZ) modu-
lator yields an optical path difference (OPD) of
D0 � 260 mm that is much greater than the coher-
1

ence length of the source. The MZ can be electro-
optically modulated through the driving voltage with
a half-wave voltage of Vp � 4.3 V, thus performing
the so-called coherence modulation [the MZ output
consists of two wave packets separated by an OPD of
D � D0 1 dD ..Lc, which cannot hence interfere].
The beam splitter divides the coherence-modulated
beam into two arms. Each arm consists of an
interferometer (INT1 and INT2, made by a bulk
birefringent plate between crossed polarizers) with a
static OPD (D1 and D2, respectively) close to D0 and
a photodetector (PD1 and PD2, with photosensitivity
of K1 � 1 V�mW and K2 � 1.5 V�mW, respectively).
The detected signals correspond to the respective
intensity f luctuations, which are nonlinearly related
to the electro-optic modulation of the MZ. The
modulation transfer function is determined by INT1
and INT2, which perform a coherence demodula-
tion: They both produce a half-contrast of two waves
interference through the OPDs �D1 2 D� and �D2 2 D�,
which are smaller than Lc. Delay lines DL1 and DL2
electronically produce time delays of T1 � 512 ms and
T2 � 465.5 ms, respectively. The delayed nonlinear
signals are then added and filtered by a low-pass
filter, which limits the dynamics according to its
response time t � 6.4 ms. The multiplier is used to
amplify with a gain G the resulting signal linearly
with respect to an external voltage. Finally, the sig-
nal is fed back to serve as the electro-optic voltage for
the coherence modulation, thus closing the oscillator
loop of the nonlinear delayed dynamics. For details

Fig. 1. Schematic experimental setup: SLD, superlumi-
nescent diode; BS, beam splitter; PLs, polarizers; RP1, RP2,
retardation plates; LPF, low-pass f ilter; MUL, multiplier.



on the chaos in coherence modulation the reader is
referred to Ref. 11.

The feedback dynamics for this setup can be de-
scribed by a delay differential equation with two time
delays11:

dD�t� 1 td �D�t� � F �dD�t 2 T1�,b1,F1�

1 F �dD�t 2 T2�,b2,F2� , (1)

where the dynamic variable dD�t� represents the OPD
f luctuation; F �D, b, F� � b�1 1 �1�2�cos�2ps0D 1

F�� is the modulation transfer function result-
ing from the coherence demodulation; s0 � 1�l0
is the wave number, b1 � a0GK1P0�8s0Vp and
b2 � a0GK2P0�8s0Vp represent the weight of the
nonlinear function; a0 � 3.2 3 1023, which in-
dicates �24.9 dB optical loss of the system; and
F1 � 2ps0�D0 2 D1� and F2 � 2ps0�D0 2 D2� are
static phase shifts differentiating the two nonlinear
functions produced by INT1 and INT2.

Because of the complexity of the system, the dynamic
behavior can be explored with respect to many differ-
ent parameters. For simplicity and to allow relevant
comparison of the behaviors with respect to single de-
lay systems, two cases are investigated: case 1, F1 �
p�2 and F2 � 0, and case 2, F1 � p and F2 � 0. Since
the sensitivity ratio is K2�K1 � 1.5, the functions also
exhibit different weight.

From Eq. (1) numerical simulations were performed
with the fourth-order Runge–Kutta method with an
integration step of dt � 256 ns. The numerical bifur-
cation diagrams obtained when increasing the gain G
(x axis) from 0 to 13 are reported in Fig. 2. The y axis
corresponds to the dynamic variable amplitude �dD�,
and the gray scale represents the probability density
of dD. Dark indicates a strong probability density of
the dynamics.

Figure 2(a) shows the bifurcation diagram for case
1. As in the figure, the dynamics exhibit a global evo-
lution from the fixed point to chaotic behaviors, but
the route to chaos appears unconventional, without
any clear period-doubling scenario. The first two bi-
furcations are Hopf-like; they remain in a previously
observed situation called eye-bifurcation cascade (two
successive direct and reverse supercritical Hopf bifur-
cations between a fixed point and a periodic oscilla-
tion11 at G � 3.1 and G � 4.7). Then, from the last
fixed point, two close crises are observed between two
chaotic like attractors (G � 4.8 and G � 5.3). The sys-
tem is then rendered in a chaotic state without any
strong crisis from G � 5.3, with a continuously grow-
ing amplitude and mean value with respect to G; the
OPD wanders within a range of �15-mm amplitude at
G � 8.5.

Likewise, the bifurcation diagram for case 2 is
shown in Fig. 2(b). The scenario here is significantly
different from the previous one, thus showing the
strong inf luence of Fi. The f irst bifurcation here is a
crisis between a stable fixed point and a periodic os-
cillation with a large amplitude at G � 4.2. A kind of
period doubling is observed until G � 5.7, which
is interrupted by an unusual succession of periodic
2

regimes. The system then jumps back to a fixed-point
state at G � 6.2 and rapidly renders chaotic from
G � 6.3. The evolution is then smooth, with chaos
growing both in amplitude and mean value with
respect to G. At G � 8.5 the chaotic wandering
range is the same as that in case 1. Compared with
the conventional route to chaos of single time delay
systems, unusual bifurcation sequences are observed.

To investigate the complex increase of the dynam-
ics with respect to the single time delay case, we cal-
culated and compared the Lyapunov exponents and
dimensions for the double time delay case. The ref-
erence single delay case corresponds to the setup in
Fig. 1, for which T1 and T2 were adjusted to the same
value �T1 � T2 � 512 ms�. The calculations were per-
formed from the dynamics numerically obtained with
F1 � p�2, F2 � 0, and G � 13 for both cases. The
method used for the Lyapunov exponents calculation
was similar to that proposed by Farmer.13 In Fig. 3(a)
the Lyapunov spectra are shown for both cases. The
solid curve represents the spectra for the single time
delay case and the dashed curve represents that for
the dual time delay case. As seen in the figure, the
number of positive Lyapunov exponents for the dou-
ble time delay case is 54, which is greater than the
value corresponding to the single delay setup, 44. Fig-
ure 3(b) represents the accumulated Lyapunov expo-
nents deduced from Fig. 3(a). The solid curve refers
to the single time delay case, and the dashed curve
refers to the double time delay case. From this f igure
the Kaplan–Yorke dimension14 can be deduced through
the maximum number of Lyapunov exponents leading
to a positive value of the accumulated exponent curve.
Dimensions of D � 109.3 and D � 93.6 were obtained
for the double time delay case and for the single time
delay case, respectively, thus confirming the increase
of complexity in the dynamic behavior of the multiple
delay situation. We also noted from Fig. 3(a) that the
number of positive Lyapunov exponents is increased in

Fig. 2. Numerical bifurcation diagrams. (a) Case of
F1 � p�2 and F2 � 0. (b) Case of F1 � p and F2 � 0.

Fig. 3. Dynamic complexity for the double and single time
delay. (a) Spectra of Lyapunov exponents. (b) Accumu-
lated Lyapunov exponents.



Fig. 4. Experimental bifurcation diagrams for the double
time delay. (a) Case of F1 � p�2 and F2 � 0. (b) Case
of F1 � p and F2 � 0.

Table 1. Comparison Between Experimental and
Numerical Bifurcation Pointsa

Bifurcationa

Gain G FP-P P-FP FP-C C-C

Numerical [Fig. 2(a)] 3.1 4.7 4.8 5.3
Experimental [Fig. 4(a)] 2.3 4.7 4.9 5.4

aFP, fixed point; P, periodic; C, chaos.

the dual delay case, and their magnitude is increased
as well. This property is different from that observed
in the single delay systems while increasing the time
delay: The number of positive Lyapunov exponents is
increased, but their magnitude is decreased. Hence,
using two different time delays, T1 and T2, enhances
complexity more than using the same delay. The pro-
posed architecture appears to exhibit significant com-
plexity improvement of its dynamic behavior.

Finally, the qualitative experimental behavior was
explored and compared with the previous numerical
investigations in terms of bifurcation diagrams. The
experimental bifurcation diagrams were obtained by
increasing the external voltage multiplier from 1 to
5 V, which should correspond linearly to the numerical
situation of 0.7 # G # 10.0. Figure 4 shows the ex-
perimental bifurcation diagrams corresponding to the
parameter values F considered in Fig. 2. Although
the parameter values of the bifurcation points are re-
covered with only a relative precision, the successive
bifurcations in both cases are observed in a similar
way compared with the numerical diagrams [see com-
parison between Figs. 2(a) and 4(a) in Table 1]. The
shape of the bifurcation diagrams is clearly recognized
between Figs. 4 and 2, and we note that the chaotic
regime amplitudes also correspond with good agree-
ment to those obtained numerically: When the exter-
nal voltage is 5 V, the experimental chaotic output in
both cases wanders within a range of �9-V amplitude,
which corresponds to 1.34-mm OPD amplitude.

In conclusion, we have demonstrated a chaos gener-
ator based on coherence modulation techniques and its
dynamics has been modeled by a nonlinear delay equa-
3

tion with two time delays and two nonlinear functions.
The numerical results conducted from that model show
good qualitative agreement with the experimentally
observed bifurcation situation under two different
parameter settings. This agreement validates the
established theoretical model. The numerical inves-
tigations from the dynamic model also show that the
number of positive Lyapunov exponents and the values
of Lyapunov exponents for the double time delay are
greater than that for the single time delay. From the
results it can be seen that the proposed system offers
a higher complexity than with the conventional single
delay system. The high complexity of such chaotic
dynamics indicate that they could be advantageously
used in chaos encryption techniques with enhanced
message security.
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