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Abstract 
In this paper we address the process of 

incremental certification/qualification of Integrated 
Modular Avionic (IMA) systems. The work aims to 
show that given a scalable avionics architecture we 
can apply a component-based development process 
and save some safety analysis effort by reusing 
design models for components. This creates a 
formal framework for IMA system safety 
assessment.  

Introduction 
Developing a formal framework for 

compositional safety analysis requires a formal 
representation of the system and its components. 
We use the notion of a safety interface that is part 
of an earlier developed formal component model 
for analysis of fault tolerance. The safety interface 
describes how the component behaves with respect 
to violation of a given system level property in 
presence of faults in its environment. This approach 
is supported by proof-of-concept tools, and 
provides a link between formal analysis of 
components in safety-critical systems and modern 
engineering processes supported by model-based 
development. In this paper we demonstrate the 
overall approach by showing how an upgrade of an 
existing system can be carried out and reuse some 
of the analyses of the earlier generation by focusing 
on the safety interfaces and compositional 
reasoning. 

The approach is demonstrated in a test 
environment at Saab Avitronics. The functionality 
used in the test environment is an Altitude 
component and a Voter component. These software 
components come with a safety interface capturing 
the faults that the components are resilient to. The 
safety interfaces are geared towards the context of 
the “correctness of altitude data” which is a safety-
critical property at system level. The voter 

component exists in two different versions, a simple 
one and a more fault-tolerant one. Components and 
faults are modelled in the toolset of Scade. The 
impact of faults on system safety is computed using 
the Design Verifier in Scade that automatically 
propagates effects of a faulty Altitude Subsystem 
on aircraft safety (erroneous control).  

Once the design has been analysed, the 
software components are integrated with a Flap 
Control function running on an IMA computer in 
the test environment. The IMA computer 
(incorporating a partitioning operating system) is 
connected to an IMA test rig which is used for 
demonstration control, fault emulation and data 
presentation. To validate the design level safety 
analysis in this test environment, those faults that 
the components were shown to be resilient to at the 
analysis stage are now injected at the code level. 
The result is verified against the flap control 
software in the rig 

In a revision of the system the voter 
component is upgraded to illustrate the efficiency of 
the incremental analysis. This is performed by 
systematically connecting fault models to the new 
voter, thus modelling a faulty instance of the 
component. The purpose is to ensure that the 
system safety property imposed on the system is not 
violated after the upgrade.  

Incremental Qualification 
A key property of an IMA system is the 

modularity which opens up for the capability to 
add, change or upgrade functions as well as using 
them for different programs given that some of the 
certification evidence can be reused. DO 297 [1] 
defines the concept of incremental acceptance as: 

“A process for obtaining credit toward 
approval and certification by accepting or finding 
that an IMA module, application, and/or off-aircraft 
IMA system complies with specific requirements. 



This incremental acceptance is divided into tasks. 
Credit granted for individual tasks contributes to the 
overall certification goal. Incremental acceptance 
provides the ability to integrate and accept new 
applications and/or modules, in an IMA system, and 
maintain existing applications and/or modules 
without the need for re-acceptance.” 

Approval of an IMA system installation may 
be based on the accumulation of incremental 
acceptance. The incremental acceptance may be 
granted in the form of an acceptance letter, i.e. 
acknowledgement by a certification authority.  

We use the term incremental qualification to 
denote the ability to take these incremental steps in 
the verification effort while integrating a new 
component. However, there are some difficulties 
with a modular approach and the reuse of evidence 
due to concerns about safety requirements being 
lost. Safety is a system property and assessing the 
safety of components in isolation does not 
necessarily ensure that once integrated they will 
behave as expected or desired. Hence, integrated 
modular components need to be specified and be 
composed in a way in which design assurance data 
of a component is divided into two categories:  

1) previously verified or accepted certification 
data which can be reused in a subsequent aircraft 
system design, and  

2) new or revisited certification data which 
must be obtained in each new aircraft system 
design, a “delta” set of a components certification 
data. 

In addition, details of safety analysis processes 
which support IMA architectures are not yet well 
developed. The work leading to the demonstration 
in this paper provides s modular, staged design and 
safety analysis method. It allows software 
components with safety interfaces to capture impact 
on the safety requirements in presence of faults.  

Theoretical Approach 
Traditional methods for safety analysis such as 

Failure Mode and Effects Analysis (FMEA) and 
Fault Tree Analysis have their deficiencies. First of 
all, deriving the failure propagation inside digital 
subsystems requires in depth knowledge about the 
system and becomes tedious or intractable in the 

absence of suitable tools. Secondly, the resulting 
FMEA tables and fault trees are extremely large. 
Thus, these methods are not optimal for incremental 
analysis. The effect of changing or upgrading a 
component in a safety-critical system often results 
in a complete review of the initial FMEA and FTA. 
This is due to the fact that the previous safety 
arguments must be proven to hold in the new 
system and there is no support for efficient 
incremental proofs. 

One way of dealing with the increased 
complexity in safety assessment is to integrate the 
two separate activities of functional design and 
safety assurance through introduction of formal 
models that are shared and reused [2, 3]. With this 
approach, the safety assessment is based on the 
system design model and formal fault models. This 
model-based approach enables verification tools, 
such as model checkers, to automatically check if 
the system design tolerates the modelled failures at 
design time. Also, a formal framework supporting 
assume-guarantee reasoning can enable incremental 
analysis, i.e. changes in the design can be formally 
verified to hold by analysing parts of the system 
while reusing previous safety arguments. This 
requires that each component provides a guarantee 
that it behaves in a determined way in presence of 
faults under certain assumptions; much the same as 
the intuitive notion of contracts.  

Earlier work has defined a formal component 
model supporting incremental analysis [4]. This 
section briefly sketches that formal approach and 
presents the method for incremental safety analysis. 
For the purpose of this paper, we will use an 
informal description of the formal framework; for 
formal definitions of components and related 
methodology see [4]. We will also give an overview 
of the tool support developed earlier. 

Formal component model 
The adopted underlying formalism for 

specifying components and component assemblies 
is based on the notion of reactive modules [5]. A 
reactive module is a model reminiscent of input 
output automata, for concurrent systems, that can be 
used for modelling both synchronous and 
asynchronous applications. The model supports 
compositional and hierarchical design which is a 
prerequisite for modeling complex systems. We 



present a special class of reactive modules with 
synchronous composition and finite variable 
domains that we call synchronous modules (here 
referred as simply modules, denoted M).  

A module M represents an abstract 
(mathematical) description of the implementation of 
a component. Semantically, a module can be seen 
as an automaton with input variables, output 
variables and private variables. Modules can be 
composed into more complex modules by the 
parallel operator ||, i.e. M1 || M2 denotes a system 
consisting of the composition of the two modules 
M1 and M2. The behavior of the system consists of a 
set of traces, starting from the initial state and 
making subsequent transitions into new states based 
on possible transitions in the underlying automata. 

Since we are focused on analysing safety of 
systems, we need a way to express the safety 
properties. A safety property ϕ can be seen as a set 
of desired behaviors i.e. traces that keep the system 
in desirable states. Hence, if we can prove that a 
module M fulfils a property ϕ (denoted M ╞ ϕ), we 
know that every behavior of the module is included 
in the desirable set denoted by ϕ . These types of 
proofs can for example be done automatically using 
model checkers. 

Fault modes 
In traditional safety analysis, faults can be 

classified into the following high-level categories: 
omission faults, value faults, commission faults and 
timing faults [4, 6, 7]. In this work, we do not focus 
on timing faults and our work does not include the 
process of identifying fault modes, which is itself a 
different research topic.  

We assume a given set of fault modes (much in 
the spirit of FMEA), and model these faults as 
being part of the environment to the component, i.e. 
delivery of faulty input to the component, see 
Figure 1. Each faulty input constitutes a fault mode 
for the component. The behaviour of the fault mode 
is explicitly modelled as a separate module (which 
we denote F) that is composed in between the 
environment and the affected module. The input 
fault of one component thereby captures the output 
failure of a component connecting to it. 

 

Figure 1 Fault mode composed with a model. 

The composition operator for composing faults 
with modules is denoted ◦ and differs from the 
parallel operator || for technical reasons [4]. By 
composing the fault with the affected module we 
may analyse whether the safety property is fulfilled 
by the module even in presence of faults, i.e. 
whether F1 ◦ M1 ╞ ϕ holds. A positive result (i.e. 
the property holds) would imply that the module M1 
tolerates the fault F1 (i.e. it is resilient to the fault).  

Safety interface 
Given a module, we wish to characterize its 

fault tolerance in an environment that represents the 
remainder of the system together with any external 
constraints. From a system integrator perspective, 
we wish to define an interface that provides all 
information about the component that he/she needs. 
Traditionally, these interfaces do not contain 
information about safety or fault tolerance of the 
component. Earlier work has defined a safety 
interface that captures the resilience of the 
component in presence of faults in the environment 
with respect to a given safety propertyϕ.  

 

 

Figure 2 Informal view of a safety interface. 

Figure 2 shows the components of a safety 
interface. Given a formal model of the behaviour of 
the component M, 



• E gives weakest assumptions on a 
(fault-free) environment that ensures 
that component placed in this 
environment satisfies the safety 
property ϕ i.e: 

E || M1 ╞ ϕ 

• single describes single faults that the 
component is resilient to together with  
the assumptions (A’s) on the 
environment that need to be fulfilled in 
order for the component to be resilient 
to declared single faults 

• double describes tolerated double 
faults together with the assumptions on 
the environment that need to be 
fulfilled in order for the component to 
be resilient to the listed faults 

The safety interface thus makes explicit those single 
and double faults the component can tolerate, and 
the corresponding environments capture the 
assumptions that M requires for resilience to these 
faults. Earlier work describes how automatic 
generation of safety interfaces given M, fault 
modes, and the safety property can be supported by 
a front-end to formal analaysis tools [8].  

A component is thus defined as a pair of 
elements, consisting of a module M describing the 
component’s (normal) behavior, and a safety 
interface specifying the component’s behavior in 
presence of faults (see Figure 3).  

 

Figure 3 Informal view of a component. 

Incremental Safety Analysis 
Typically, safety properties are defined at 

system level. Thus, a safety property ϕ is defined 

on a composition of modules M1 || M2 || … || Mn. 
Hence, the straightforward way of checking that the 
system design satisfies the safety property (i.e. 
checking whether M1 || M2 || … || Mn ╞ ϕ  holds) 
would be to compose all components, and let a 
model checker analyse the system. In order to 
analyse the system-level fault tolerance in our 
setting, we could compose every module F with the 
affected module, i.e. F1 ◦ M1 || M2 || … || Mn, and 
check whether the safety property holds in presence 
of the fault using a model checker. 

However, the approach of composing all 
modules has two main drawbacks. First of all, the 
composition of multiple modules may become too 
complex, creating a too large state space for the 
model checker to handle. Secondly, as described 
earlier, safety analysis must be done for each 
change in the system. Thus, if an initial analysis has 
been performed and a change in one component in 
the system is done, the system model must be 
(re)composed and complete analysis for all faults 
must be performed all over again. 

This is where the safety interface can be used. 
As mentioned, the safety interface describes 
(formally) the behaviour of a component in 
presence of certain faults in its environment. If it 
may tolerate a fault, it lists the assumptions on its 
environment in order to tolerate the fault. By using 
the assumptions in an assume-guarantee reasoning 
framework, we are able to reason compositionally, 
and thereby incrementally. 

Imagine that we want to check whether the 
system consisting of a set of modules M1 || M2 || … || 
Mn can tolerate the single fault F1 affecting 
component C1, i.e.: 

F1 ◦ M1 || M2 || … || Mn ╞ ϕ 

The assume-guarantee rules enable us to 
decompose this formula into n2 premises to check, 
where each individual check is less complex than 
the composed formula. That is, we need to show 
that each component pair satisfies the mutual 
requirements on expected environment conditions. 
More specifically, if F1 is present in M1‘s safety 
interface with assumption A1 then we need to show 
that 

• each of modules M1 , M2 ,.., Mn implement 
an environment that satisfies A1. 



• conversely, what each Mi (2≤i≤n) expects 
from its environment is satisfied by outputs 
generated by F1 ◦ M1 

Upgrade Analysis 
Reasoning is restricted to changes affected by 

the upgraded module and without having to redo the 
entire analysis each time a component changes. 
This results in fewer proofs on the formal design 
models as new components replace old ones [8]. 

Tool support 
The above method is generic and can be 

incorporated in any tool chain that supports formals 

verification of design models and faults. Earlier 
work has resulted in a proof of concept tool 
supporting the framework as depicted in Figure 4. 
The generation of safety interfaces is automatically 
done using a front-end to Scade[9]. The output of 
this tool is safety interfaces for every component.  

For incremental safety analysis, each 
individual premise is checked using the Design 
Verifier (in Scade).  

It has also been shown that the results of the 
formal analysis can be presented in the form of 
automatically generated FMEA tables for 
components [10].

 

Figure 4 Tool supporting framework. 

 

Demonstrator 
The demonstrator is basically an altitude meter 

which autonomously controls the flap setting during 
take-off and landing (Auto Function and Flap 
System in Figure 5). The formally verified software 
components (Altitude and Voter in Figure 5) are 
integrated with the flap control function and a 
pressure simulator.  

The goal of the demonstrator is twofold, a) the 
demonstrator shall be able to show that errors, 
handled by the functionality when performing the 
formal analysis, also are handled in the 
demonstrator after code generation. b) to 
demonstrate that functionality can be altered in a 
system, by replacing a component, without any 
undesired effects. 

 

Pressure
Simulation

Altitude 
System Voter

Auto 
Function Flap System

Demonstrator
Control
Panel

 

Figure 5 Functional Overview of Demonstrator. 



Demonstrator Architecture  
An overview of the demonstrator architecture 

is pictured in Figure 6, the red (large dashed) box. 
The test equipment consists of five parts;  

• The rig control computer and rig control 
software 

• The real-time VME system and the rig 
core software 

• The simulation execution environment 

• TTP/C communications backend 

• The IMA computer under test 

The rig control computer is running graphical 
control applications where the configurations and 
test cases are selected. There is also a visualization 
application where user created panels can be used to 
display various data, and control the system. The 
control computer is connected to the VME System 
via a reflective memory.  

MoEl-rig

CPU-card
MVME5100

TTP-IP module

TTP-IP module

RDC

ECU

Electrical motor

Isolation

235 VAC

28 VDC

Enable /
Disable

28 VDC

TTP-IP module

CPU-card
MVME5100

SPAK (RVDT)

Rudder
Resolver 
(SPPU)

Resolver 
(SPPU)
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Figure 6 Demonstrator Architecture. 

The VME system consists of CPU boards, 
running WindRiver VxWorks RTOS and handles 
the communication between the real-time test 
system and the IMA computer. It also hosts the 
simulation execution environment which handles 
the execution of simulation models, in this case the 
pressure simulation model. The VME system also 
handles the emulation of the Electric Control Unit 

(ECU) and the electrical motor, the blue (small 
dashed) box in Figure 6.  

The IMA computer runs the GreenHills 
Integrity RTOS and handles communication to the 
test rig via TTP/C. The altitude system, voter, auto 
function and the motor control part of the flap 
system is executing in the IMA computer.  

Demonstrator set-up  
To illustrate the use of probabilistic safety 

interfaces we have applied the approach on an 
digital Altitude Meter subsystem. 

The Altitude Meter subsystem calculates the 
altitude of an aircraft above a fixed level. Input to 
the Altitude Meter system is the atmospheric 
pressure supplied from two static ports outside the 
aircraft. The pressure is then transformed into a 
corresponding altitude. This value is then used for 
planning and controlling the flight. This means that 
the Altitude system is a safety-critical function 
since an incorrect value from it can have severe 
consequences.  

The Air Data Computers (ADCs) are advanced 
transducers that convert the input data from the 
sensors (pressure) to an altitude. This is the ``pure'' 
altitude value, without any correction or filtering. 
The system consists of three ADCs, and all of them 
send their status as output to the IMA computer 
(System Computer in Figure 7). 

The altitude function's goal is to filter and 
correct the altitude in order to get as accurate a 
value as possible. This is done using the air speed 
and the aircraft's acceleration into account. The 
system consists of two versions of the Altitude 
function, both run on the System Computer. 

The role of the Voter is to compare the outputs 
from the Altitude Function subsystems and decide 
which of these values to use as output from the 
system. 

The three ADCs (ADC1, ADC2, and ADC3) 
are connected directly to the System Computer. 
Inside, the redundancy handler checks the status of 
each ADC in order to detect if any of these are 
malfunctioning. The ADCs send a 2 bit signal, 
indicating ``ok'', ``degraded'' or ``total outage'', and 
also the calculated altitude. By checking the status 
of the ADCs, the Redundancy handler can choose 



which of the ADC to use as primary for the Altitude 
Function. The Redundancy Handler also sends a 
status signal to the Voter. 

The two Altitude Functions are both executing 
on the IMA computer. Input to these subsystems is 
the primary altitude decided by the Redundancy 
Handler. The altitude function filters the altitude 
and compensates for airspeed and vertical 
acceleration. Output from these are sent to the 
Voter. 

To cope with any malfunction of the IMA 
computer, the altitude from the ADC3 is directly 
connected to the Voter with an RS-485 bus. 

Safety properties and Fault modes 
The safety property used here is: Altitude 

display shall under no conditions send incorrect 
altitude data (accurate to (+/-) 10m).  

Following faults are included: 

• Faulty pressure signal, sensor input to the 
ADCs (S1 / S2 in Figure 7) 

• Value stuck-at fault for the data passed 
between ADC2 and Altitude function 2 

• Backup communication channel (RS-485) 
error. 

 

Table 1 Fault types 

Fault Type Affected component 

F1 Value fault ADC1, ADC2 

F2 Omission fault Altitude function 2 

F3 Value fault RS-485 

 

Test cases 
The safety interface captures the faults that the 

components are resilient to. The tests are carried out 
by injecting those faults (see Table 1).  

All combinations of the above faults are tested, 
i.e. single, double and triple faults are tested.  

The voter component exists in two different 
versions, one simple and one more fault-tolerant. 
To demonstrate the upgradability, two set-ups are 
used with the different Voter components.

 

 

 

Figure 7 Altitude Subsystem and Voter.



Results and Conclusion 
Initially, the safety interfaces were generated 

using the front-end to Scade. Using the safety 
interfaces, a qualitative safety analysis was 
performed. The result was that both F2 and F3 were 
tolerated by the system while F1 was not tolerated 
(the safety property did not hold in presence of F1). 
Neither were the double faults <F1, F2 >, <F1, F3> 
<F2, F3> tolerated. 

After the upgrade of the voter, the upgrade 
analysis showed that besides tolerating the same 
faults as before, also F1 was now tolerated by the 
system. 

These theoretical results were also 
demonstrated for the Altitude subsystem and Voter 
implemented in the test-rig. It is shown that errors, 
handled by the functionality when performing the 
formal analysis, also are handled in the 
demonstrator after code generation. Also it is 
demonstrated that functionality can be altered in a 
system, by replacing a component, without any 
undesired effects. 

In addition, this work shows that it is possible 
to use this rather theoretical formal framework 
(tools, safety interface, component models, code 
generator etc) and integrate this into a flap control 
system running at an IMA computer at Saab.  

Future work needs to examine how this 
framework regarding system safety assessment can 
be used. 
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