

Demonstration of a Formal Method for

Incremental Qualification of IMA Systems

Jonas Elmqvist, Simin Nadjm-Tehrani, Kristina Forsberg and Stellan Nordenbro

Linköping University Post Print

N.B.: When citing this work, cite the original article.

©2008 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

Jonas Elmqvist, Simin Nadjm-Tehrani, Kristina Forsberg and Stellan Nordenbro,

Demonstration of a Formal Method for Incremental Qualification of IMA Systems, 2008.

http://dx.doi.org/10.1109/DASC.2008.4702860

Postprint available at: Linköping University Electronic Press

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-72606

http://dx.doi.org/10.1109/DASC.2008.4702860
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-72606

DEMONSTRATION OF A FORMAL METHOD FOR INCREMENTAL
QUALIFICATION OF IMA SYSTEMS

Jonas Elmqvist, Simin Nadjm-Tehrani, Linköping University, Linköping, Sweden
Kristina Forsberg, Stellan Nordenbro, Saab Avitronics, Jönköping, Sweden

Abstract
In this paper we address the process of

incremental certification/qualification of Integrated
Modular Avionic (IMA) systems. The work aims to
show that given a scalable avionics architecture we
can apply a component-based development process
and save some safety analysis effort by reusing
design models for components. This creates a
formal framework for IMA system safety
assessment.

Introduction
Developing a formal framework for

compositional safety analysis requires a formal
representation of the system and its components.
We use the notion of a safety interface that is part
of an earlier developed formal component model
for analysis of fault tolerance. The safety interface
describes how the component behaves with respect
to violation of a given system level property in
presence of faults in its environment. This approach
is supported by proof-of-concept tools, and
provides a link between formal analysis of
components in safety-critical systems and modern
engineering processes supported by model-based
development. In this paper we demonstrate the
overall approach by showing how an upgrade of an
existing system can be carried out and reuse some
of the analyses of the earlier generation by focusing
on the safety interfaces and compositional
reasoning.

The approach is demonstrated in a test
environment at Saab Avitronics. The functionality
used in the test environment is an Altitude
component and a Voter component. These software
components come with a safety interface capturing
the faults that the components are resilient to. The
safety interfaces are geared towards the context of
the “correctness of altitude data” which is a safety-
critical property at system level. The voter

component exists in two different versions, a simple
one and a more fault-tolerant one. Components and
faults are modelled in the toolset of Scade. The
impact of faults on system safety is computed using
the Design Verifier in Scade that automatically
propagates effects of a faulty Altitude Subsystem
on aircraft safety (erroneous control).

Once the design has been analysed, the
software components are integrated with a Flap
Control function running on an IMA computer in
the test environment. The IMA computer
(incorporating a partitioning operating system) is
connected to an IMA test rig which is used for
demonstration control, fault emulation and data
presentation. To validate the design level safety
analysis in this test environment, those faults that
the components were shown to be resilient to at the
analysis stage are now injected at the code level.
The result is verified against the flap control
software in the rig

In a revision of the system the voter
component is upgraded to illustrate the efficiency of
the incremental analysis. This is performed by
systematically connecting fault models to the new
voter, thus modelling a faulty instance of the
component. The purpose is to ensure that the
system safety property imposed on the system is not
violated after the upgrade.

Incremental Qualification
A key property of an IMA system is the

modularity which opens up for the capability to
add, change or upgrade functions as well as using
them for different programs given that some of the
certification evidence can be reused. DO 297 [1]
defines the concept of incremental acceptance as:

“A process for obtaining credit toward
approval and certification by accepting or finding
that an IMA module, application, and/or off-aircraft
IMA system complies with specific requirements.

This incremental acceptance is divided into tasks.
Credit granted for individual tasks contributes to the
overall certification goal. Incremental acceptance
provides the ability to integrate and accept new
applications and/or modules, in an IMA system, and
maintain existing applications and/or modules
without the need for re-acceptance.”

Approval of an IMA system installation may
be based on the accumulation of incremental
acceptance. The incremental acceptance may be
granted in the form of an acceptance letter, i.e.
acknowledgement by a certification authority.

We use the term incremental qualification to
denote the ability to take these incremental steps in
the verification effort while integrating a new
component. However, there are some difficulties
with a modular approach and the reuse of evidence
due to concerns about safety requirements being
lost. Safety is a system property and assessing the
safety of components in isolation does not
necessarily ensure that once integrated they will
behave as expected or desired. Hence, integrated
modular components need to be specified and be
composed in a way in which design assurance data
of a component is divided into two categories:

1) previously verified or accepted certification
data which can be reused in a subsequent aircraft
system design, and

2) new or revisited certification data which
must be obtained in each new aircraft system
design, a “delta” set of a components certification
data.

In addition, details of safety analysis processes
which support IMA architectures are not yet well
developed. The work leading to the demonstration
in this paper provides s modular, staged design and
safety analysis method. It allows software
components with safety interfaces to capture impact
on the safety requirements in presence of faults.

Theoretical Approach
Traditional methods for safety analysis such as

Failure Mode and Effects Analysis (FMEA) and
Fault Tree Analysis have their deficiencies. First of
all, deriving the failure propagation inside digital
subsystems requires in depth knowledge about the
system and becomes tedious or intractable in the

absence of suitable tools. Secondly, the resulting
FMEA tables and fault trees are extremely large.
Thus, these methods are not optimal for incremental
analysis. The effect of changing or upgrading a
component in a safety-critical system often results
in a complete review of the initial FMEA and FTA.
This is due to the fact that the previous safety
arguments must be proven to hold in the new
system and there is no support for efficient
incremental proofs.

One way of dealing with the increased
complexity in safety assessment is to integrate the
two separate activities of functional design and
safety assurance through introduction of formal
models that are shared and reused [2, 3]. With this
approach, the safety assessment is based on the
system design model and formal fault models. This
model-based approach enables verification tools,
such as model checkers, to automatically check if
the system design tolerates the modelled failures at
design time. Also, a formal framework supporting
assume-guarantee reasoning can enable incremental
analysis, i.e. changes in the design can be formally
verified to hold by analysing parts of the system
while reusing previous safety arguments. This
requires that each component provides a guarantee
that it behaves in a determined way in presence of
faults under certain assumptions; much the same as
the intuitive notion of contracts.

Earlier work has defined a formal component
model supporting incremental analysis [4]. This
section briefly sketches that formal approach and
presents the method for incremental safety analysis.
For the purpose of this paper, we will use an
informal description of the formal framework; for
formal definitions of components and related
methodology see [4]. We will also give an overview
of the tool support developed earlier.

Formal component model
The adopted underlying formalism for

specifying components and component assemblies
is based on the notion of reactive modules [5]. A
reactive module is a model reminiscent of input
output automata, for concurrent systems, that can be
used for modelling both synchronous and
asynchronous applications. The model supports
compositional and hierarchical design which is a
prerequisite for modeling complex systems. We

present a special class of reactive modules with
synchronous composition and finite variable
domains that we call synchronous modules (here
referred as simply modules, denoted M).

A module M represents an abstract
(mathematical) description of the implementation of
a component. Semantically, a module can be seen
as an automaton with input variables, output
variables and private variables. Modules can be
composed into more complex modules by the
parallel operator ||, i.e. M1 || M2 denotes a system
consisting of the composition of the two modules
M1 and M2. The behavior of the system consists of a
set of traces, starting from the initial state and
making subsequent transitions into new states based
on possible transitions in the underlying automata.

Since we are focused on analysing safety of
systems, we need a way to express the safety
properties. A safety property ϕ can be seen as a set
of desired behaviors i.e. traces that keep the system
in desirable states. Hence, if we can prove that a
module M fulfils a property ϕ (denoted M ╞ ϕ), we
know that every behavior of the module is included
in the desirable set denoted by ϕ . These types of
proofs can for example be done automatically using
model checkers.

Fault modes
In traditional safety analysis, faults can be

classified into the following high-level categories:
omission faults, value faults, commission faults and
timing faults [4, 6, 7]. In this work, we do not focus
on timing faults and our work does not include the
process of identifying fault modes, which is itself a
different research topic.

We assume a given set of fault modes (much in
the spirit of FMEA), and model these faults as
being part of the environment to the component, i.e.
delivery of faulty input to the component, see
Figure 1. Each faulty input constitutes a fault mode
for the component. The behaviour of the fault mode
is explicitly modelled as a separate module (which
we denote F) that is composed in between the
environment and the affected module. The input
fault of one component thereby captures the output
failure of a component connecting to it.

Figure 1 Fault mode composed with a model.

The composition operator for composing faults
with modules is denoted ◦ and differs from the
parallel operator || for technical reasons [4]. By
composing the fault with the affected module we
may analyse whether the safety property is fulfilled
by the module even in presence of faults, i.e.
whether F1 ◦ M1 ╞ ϕ holds. A positive result (i.e.
the property holds) would imply that the module M1
tolerates the fault F1 (i.e. it is resilient to the fault).

Safety interface
Given a module, we wish to characterize its

fault tolerance in an environment that represents the
remainder of the system together with any external
constraints. From a system integrator perspective,
we wish to define an interface that provides all
information about the component that he/she needs.
Traditionally, these interfaces do not contain
information about safety or fault tolerance of the
component. Earlier work has defined a safety
interface that captures the resilience of the
component in presence of faults in the environment
with respect to a given safety propertyϕ.

Figure 2 Informal view of a safety interface.

Figure 2 shows the components of a safety
interface. Given a formal model of the behaviour of
the component M,

• E gives weakest assumptions on a
(fault-free) environment that ensures
that component placed in this
environment satisfies the safety
property ϕ i.e:

E || M1 ╞ ϕ

• single describes single faults that the
component is resilient to together with
the assumptions (A’s) on the
environment that need to be fulfilled in
order for the component to be resilient
to declared single faults

• double describes tolerated double
faults together with the assumptions on
the environment that need to be
fulfilled in order for the component to
be resilient to the listed faults

The safety interface thus makes explicit those single
and double faults the component can tolerate, and
the corresponding environments capture the
assumptions that M requires for resilience to these
faults. Earlier work describes how automatic
generation of safety interfaces given M, fault
modes, and the safety property can be supported by
a front-end to formal analaysis tools [8].

A component is thus defined as a pair of
elements, consisting of a module M describing the
component’s (normal) behavior, and a safety
interface specifying the component’s behavior in
presence of faults (see Figure 3).

Figure 3 Informal view of a component.

Incremental Safety Analysis
Typically, safety properties are defined at

system level. Thus, a safety property ϕ is defined

on a composition of modules M1 || M2 || … || Mn.
Hence, the straightforward way of checking that the
system design satisfies the safety property (i.e.
checking whether M1 || M2 || … || Mn ╞ ϕ holds)
would be to compose all components, and let a
model checker analyse the system. In order to
analyse the system-level fault tolerance in our
setting, we could compose every module F with the
affected module, i.e. F1 ◦ M1 || M2 || … || Mn, and
check whether the safety property holds in presence
of the fault using a model checker.

However, the approach of composing all
modules has two main drawbacks. First of all, the
composition of multiple modules may become too
complex, creating a too large state space for the
model checker to handle. Secondly, as described
earlier, safety analysis must be done for each
change in the system. Thus, if an initial analysis has
been performed and a change in one component in
the system is done, the system model must be
(re)composed and complete analysis for all faults
must be performed all over again.

This is where the safety interface can be used.
As mentioned, the safety interface describes
(formally) the behaviour of a component in
presence of certain faults in its environment. If it
may tolerate a fault, it lists the assumptions on its
environment in order to tolerate the fault. By using
the assumptions in an assume-guarantee reasoning
framework, we are able to reason compositionally,
and thereby incrementally.

Imagine that we want to check whether the
system consisting of a set of modules M1 || M2 || … ||
Mn can tolerate the single fault F1 affecting
component C1, i.e.:

F1 ◦ M1 || M2 || … || Mn ╞ ϕ

The assume-guarantee rules enable us to
decompose this formula into n2 premises to check,
where each individual check is less complex than
the composed formula. That is, we need to show
that each component pair satisfies the mutual
requirements on expected environment conditions.
More specifically, if F1 is present in M1‘s safety
interface with assumption A1 then we need to show
that

• each of modules M1 , M2 ,.., Mn implement
an environment that satisfies A1.

• conversely, what each Mi (2≤i≤n) expects
from its environment is satisfied by outputs
generated by F1 ◦ M1

Upgrade Analysis
Reasoning is restricted to changes affected by

the upgraded module and without having to redo the
entire analysis each time a component changes.
This results in fewer proofs on the formal design
models as new components replace old ones [8].

Tool support
The above method is generic and can be

incorporated in any tool chain that supports formals

verification of design models and faults. Earlier
work has resulted in a proof of concept tool
supporting the framework as depicted in Figure 4.
The generation of safety interfaces is automatically
done using a front-end to Scade[9]. The output of
this tool is safety interfaces for every component.

For incremental safety analysis, each
individual premise is checked using the Design
Verifier (in Scade).

It has also been shown that the results of the
formal analysis can be presented in the form of
automatically generated FMEA tables for
components [10].

Figure 4 Tool supporting framework.

Demonstrator
The demonstrator is basically an altitude meter

which autonomously controls the flap setting during
take-off and landing (Auto Function and Flap
System in Figure 5). The formally verified software
components (Altitude and Voter in Figure 5) are
integrated with the flap control function and a
pressure simulator.

The goal of the demonstrator is twofold, a) the
demonstrator shall be able to show that errors,
handled by the functionality when performing the
formal analysis, also are handled in the
demonstrator after code generation. b) to
demonstrate that functionality can be altered in a
system, by replacing a component, without any
undesired effects.

Pressure
Simulation

Altitude
System Voter

Auto
Function Flap System

Demonstrator
Control
Panel

Figure 5 Functional Overview of Demonstrator.

Demonstrator Architecture
An overview of the demonstrator architecture

is pictured in Figure 6, the red (large dashed) box.
The test equipment consists of five parts;

• The rig control computer and rig control
software

• The real-time VME system and the rig
core software

• The simulation execution environment

• TTP/C communications backend

• The IMA computer under test

The rig control computer is running graphical
control applications where the configurations and
test cases are selected. There is also a visualization
application where user created panels can be used to
display various data, and control the system. The
control computer is connected to the VME System
via a reflective memory.

MoEl-rig

CPU-card
MVME5100

TTP-IP module

TTP-IP module

RDC

ECU

Electrical motor

Isolation

235 VAC

28 VDC

Enable /
Disable

28 VDC

TTP-IP module

CPU-card
MVME5100

SPAK (RVDT)

Rudder
Resolver
(SPPU)

Resolver
(SPPU)

Emulated

Figure 6 Demonstrator Architecture.

The VME system consists of CPU boards,
running WindRiver VxWorks RTOS and handles
the communication between the real-time test
system and the IMA computer. It also hosts the
simulation execution environment which handles
the execution of simulation models, in this case the
pressure simulation model. The VME system also
handles the emulation of the Electric Control Unit

(ECU) and the electrical motor, the blue (small
dashed) box in Figure 6.

The IMA computer runs the GreenHills
Integrity RTOS and handles communication to the
test rig via TTP/C. The altitude system, voter, auto
function and the motor control part of the flap
system is executing in the IMA computer.

Demonstrator set-up
To illustrate the use of probabilistic safety

interfaces we have applied the approach on an
digital Altitude Meter subsystem.

The Altitude Meter subsystem calculates the
altitude of an aircraft above a fixed level. Input to
the Altitude Meter system is the atmospheric
pressure supplied from two static ports outside the
aircraft. The pressure is then transformed into a
corresponding altitude. This value is then used for
planning and controlling the flight. This means that
the Altitude system is a safety-critical function
since an incorrect value from it can have severe
consequences.

The Air Data Computers (ADCs) are advanced
transducers that convert the input data from the
sensors (pressure) to an altitude. This is the ``pure''
altitude value, without any correction or filtering.
The system consists of three ADCs, and all of them
send their status as output to the IMA computer
(System Computer in Figure 7).

The altitude function's goal is to filter and
correct the altitude in order to get as accurate a
value as possible. This is done using the air speed
and the aircraft's acceleration into account. The
system consists of two versions of the Altitude
function, both run on the System Computer.

The role of the Voter is to compare the outputs
from the Altitude Function subsystems and decide
which of these values to use as output from the
system.

The three ADCs (ADC1, ADC2, and ADC3)
are connected directly to the System Computer.
Inside, the redundancy handler checks the status of
each ADC in order to detect if any of these are
malfunctioning. The ADCs send a 2 bit signal,
indicating ``ok'', ``degraded'' or ``total outage'', and
also the calculated altitude. By checking the status
of the ADCs, the Redundancy handler can choose

which of the ADC to use as primary for the Altitude
Function. The Redundancy Handler also sends a
status signal to the Voter.

The two Altitude Functions are both executing
on the IMA computer. Input to these subsystems is
the primary altitude decided by the Redundancy
Handler. The altitude function filters the altitude
and compensates for airspeed and vertical
acceleration. Output from these are sent to the
Voter.

To cope with any malfunction of the IMA
computer, the altitude from the ADC3 is directly
connected to the Voter with an RS-485 bus.

Safety properties and Fault modes
The safety property used here is: Altitude

display shall under no conditions send incorrect
altitude data (accurate to (+/-) 10m).

Following faults are included:

• Faulty pressure signal, sensor input to the
ADCs (S1 / S2 in Figure 7)

• Value stuck-at fault for the data passed
between ADC2 and Altitude function 2

• Backup communication channel (RS-485)
error.

Table 1 Fault types

Fault Type Affected component

F1 Value fault ADC1, ADC2

F2 Omission fault Altitude function 2

F3 Value fault RS-485

Test cases
The safety interface captures the faults that the

components are resilient to. The tests are carried out
by injecting those faults (see Table 1).

All combinations of the above faults are tested,
i.e. single, double and triple faults are tested.

The voter component exists in two different
versions, one simple and one more fault-tolerant.
To demonstrate the upgradability, two set-ups are
used with the different Voter components.

Figure 7 Altitude Subsystem and Voter.

Results and Conclusion
Initially, the safety interfaces were generated

using the front-end to Scade. Using the safety
interfaces, a qualitative safety analysis was
performed. The result was that both F2 and F3 were
tolerated by the system while F1 was not tolerated
(the safety property did not hold in presence of F1).
Neither were the double faults <F1, F2 >, <F1, F3>
<F2, F3> tolerated.

After the upgrade of the voter, the upgrade
analysis showed that besides tolerating the same
faults as before, also F1 was now tolerated by the
system.

These theoretical results were also
demonstrated for the Altitude subsystem and Voter
implemented in the test-rig. It is shown that errors,
handled by the functionality when performing the
formal analysis, also are handled in the
demonstrator after code generation. Also it is
demonstrated that functionality can be altered in a
system, by replacing a component, without any
undesired effects.

In addition, this work shows that it is possible
to use this rather theoretical formal framework
(tools, safety interface, component models, code
generator etc) and integrate this into a flap control
system running at an IMA computer at Saab.

Future work needs to examine how this
framework regarding system safety assessment can
be used.

Acknowledgements
This work was supported by the Swedish

National Aerospace research program NFFP4, and
project SAVE financed by the Swedish Strategic
Research Foundation (SSF). The second author was
partially supported by the University of
Luxembourg.

References
[1] RTCA Inc., 2005, RTCA DO-297 Integrated
Modular Avionics (IMA) Development Guidance
and Certification Considerations

[2] Hammarberg J. and S. Nadjm-Tehrani, 2005,
Formal verification of fault tolerance in safety-

critical reconfigurable modules, International
Journal of Software Tools for Technology Transfer
(STTT), vol. 7, no. 3, Springer Verlag.

[3] M. Bozzano and et al, 2003, “ESACS: an
integrated methodology for design and safety
analysis of complex systems,” in ESREL 2003.
Balkema, pp. 237–245.

[4] Elmqvist J., S. Nadjm-Tehrani and M. Minea,
2005, Safety Interfaces for Component-Based
Systems, In Proceedings of 24th International
Conference on Computer Safety, Reliability and
Security (SAFECOMP’05), September 2005,
Springer Verlag.

[5] Rajeev Alur and Thomas A. Henzinger. 1996,
Reactive modules. In Proceedings of the 11th
Symposium on Logic in Computer Science (LICS
’96), IEEE Computer Society, pages 207–218.

[6] Bondavalli A. and L. Simoncini, 1990, Failures
Classification with Respect to Detection, In 2nd.
IEEE Workshop on Future Trends in Distributed
Computing Systems, 47- 53.

[7] Avizienis A., J.-C. Laprie, and B. Randell, C.
Landwehr, 2004, “Basic Concepts and Taxonomy
of Dependable and Secure Computing”, IEEE
Transactions on Dependable and Secure
Computing, Vol 1(1), pp 11-33, January 2004 .

[8] Elmqvist J. and S. Nadjm-Tehrani, 2006,
Safety-Oriented Design of Component Assemblies
using Safety Interfaces, Third International
Workshop on Formal Aspects of Component
Software (FACS'06), September 2006, Springer
Verlag.

[9] Esterel Technologies. 2006, Scade Suite 4.3
User Manual.

[10] Elmqvist J. and S. Nadjm-Tehrani, 2008, Tool
Support for Incremental Failure Mode and Effects
Analysis of Component-Based Systems, in Design,
Automation, and Test in Europe (DATE)
Conference, EDA/ACM/SIGDA, München,
Germany. March 2008.

27th Digital Avionics Systems Conference
October 26-30, 2008

	Demonstration of a Formal Method for Incremental Qualification of IMA Systems-TitlePage.pdf
	FULLTEXT01 (5)

