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Abstract: The first demonstration of a hollow core photonic bandgap fiber 

(HC-PBGF) suitable for high-rate data transmission in the 2 µm waveband 

is presented. The fiber has a record low loss for this wavelength region (4.5 

dB/km at 1980 nm) and a >150 nm wide surface-mode-free transmission 

window at the center of the bandgap. Detailed analysis of the optical modes 

and their propagation along the fiber, carried out using a time-of-flight 

technique in conjunction with spatially and spectrally resolved (S2) 

imaging, provides clear evidence that the HC-PBGF can be operated as 

quasi-single mode even though it supports up to four mode groups. Through 

the use of a custom built Thulium doped fiber amplifier with gain 

bandwidth closely matched to the fiber’s low loss window, error-free 8 

Gbit/s transmission in an optically amplified data channel at 2008 nm over 

290 m of 19 cell HC-PBGF is reported. 
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1. Introduction 

Since the advent and commercialization of the Erbium doped fiber amplifier and dispersion 

shifted fibers in the late 1980s, research and development in long-haul telecoms optical fibers 

has focused on the 1.55 µm wavelength region. Over the past decade, R&D efforts have been 

almost exclusively focused on optimizing the transmitters and receivers and on designing ever 

more advanced modulation formats. In contrast, comparatively little progress has been 

reported on the transmission fiber itself. More recently, however, the quest for radical 

solutions to increase transmission capacity per fiber, decrease fiber loss and nonlinearity and 

reduce signal latency has stimulated interest in novel and more exotic fiber types [1, 2]. High-

risk, high-payoff fiber solutions are being actively pursued, which may eventually justify a 

shift away from the traditional operating wavelengths. Hollow core-photonic bandgap fibers 

(HC-PBGFs) hold great promise as a transmission medium due to their ultra-low nonlinearity 

and lower latency as compared to conventional solid fibers. These properties stem from the 

unique ability of HC-PBGFs to guide light in a hollow core, with minimal overlap (as low as 

0.1%) between the optical field and the silica glass structure. Still a maturing technology, HC-

PBGFs cannot yet rival the loss levels of standard silica single mode fiber [3]. However, 

steady and substantial progress has been made recently in understanding and engineering the 

transmission properties of these complex optical fibers. For instance, an eight-fold 

improvement in the transmission bandwidth of low loss (3.5 dB/km) HC-PBGFs has recently 

been reported [4]. This result was achieved by combining a 19-cell core design, offering low 

scattering loss [5], with a thin wall surround [6], enabling surface mode-free operation over a 

160 nm wide window at the center of the optical bandgap. Through a similar fiber design 

principle, a wide bandwidth low loss 37 cell HC-PBGF was also recently demonstrated [7]. 

The ability to obtain a wide, low-loss transmission region is a key step to enable dense 

wavelength division multiplexing (DWDM) in these fibers, where a well-tempered dispersion 

profile [8] is also of crucial importance. Furthermore, whilst low-loss HC-PBGFs are 

inherently multi-moded, it was shown that, through a combination of optimized fiber structure 

(to suppress surface modes) and selective input and output coupling [4], these fibers can be 

operated as quasi-single mode to a level that meets the challenging requirements for error-free 

data transmission. Recently, 1.5 Tbit/s transmission (37x40 Gbit/s on-off keyed DWDM 

channels on a 100-GHz ITU grid) was demonstrated over 250 m of a HC-PBGF [9], further 

improved to 30.7 Tbit/s (96x320 Gb/s) dual-polarization (DP)-32QAM using coherently-

detected, polarization-multiplexed transmission [10]. More recently, a record capacity of 73.7 

Gbit/s was demonstrated through a combination of DWDM and mode-division multiplexing 

(MDM) using the three lowest order modes of a 37 cell HC-PBGF [11]. 

Loss reduction is however the key issue which will eventually determine whether HC-

PBGFs are capable of outperforming conventional single mode fibers (SMFs). Whilst there is 

substantial evidence that the limiting loss factor of HC-PBGFs is scattering from roughness at 

the air/silica interface, the intrinsic limit has not yet been determined conclusively. Thus, it is 

still unclear whether losses below the conventional SMF levels, or indeed below the current 

state of the art of 1.7 dB/km [5, 12] are feasible in HC-PBGFs. In any case, both theoretical 

predictions [12] and recent experimental data [13] demonstrate that the minimum loss is 

shifted to longer wavelengths around 2 µm in HC-PBGFs as a consequence of the infrared 

‘multiphonon’ absorption being effectively decreased by the substantially reduced modal 

overlap with the glass. Conveniently, this operating window coincides with that of Thulium 

doped fiber amplifiers (TDFAs), which offer the widest gain band (about 28 THz wide 

window from ~1750 to ~2050 nm) amongst all rare earth doped fiber amplifiers (e.g. C + L 

band of Erbium amplifiers is only ~12 THz), providing further potential advantage to expand 

the overall fiber capacity. It is also to be noted that optical components operating at 2 µm are 

becoming more and more readily commercially available due to relevance to other application 

sectors (e.g. high power fiber lasers, industrial processing, sensing and defense). Whilst data 
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transmission experiments have been reported in the past [14, 15], the significant advantage 

offered by HC-PBGFs over solid fibers opens up new opportunities to re-investigate this 

relatively unexplored wavelength region. 

In this paper we present the characterization of the modal properties of a wide bandwidth 

(152 nm), record-low loss (4.5 dB/km) HC-PBGF for operation at 2 µm. We then assess its 

data transmission capabilities using a combination of state-of-the-art commercially available 

2 μm transmitter and receiver components and a custom built TDFA. We report the first 

error-free transmission of an optically amplified data channel at 8 Gbit/s at 2008 nm over a 

290 m length of HC-PBGF [16]. We believe that this ground-breaking result represents a 

fundamental step towards assessing this radically novel fiber solution for next generation 

transmission systems. 

2. Fiber fabrication and characterization 

The HC-PBGF utilized in the present study had a 19-cell core structure and was fabricated 

from a stacked preform using a two-step drawing procedure. A Scanning Electron 

Micrograph (SEM) image of the fiber is shown in Fig. 1(b). The cladding is composed of 6½ 

rings of holes with an average spacing of ~5.5 µm and average relative hole size of ~0.96-

0.965. The hollow core, 36 µm in diameter, has a thin surround and an expansion ratio 

relative to the cladding engineered to minimize the number of surface modes and thus to 

obtain low-loss guidance over a broad wavelength interval [4]. The sample used in this 

particular experiment was about 300m long, however it is possible to obtain about 2 km of 

HC-PBGF per single draw using our current fabrication process and we are actively 

investigating strategies to substantially further increase the yield per draw. 

The fiber’s spectral attenuation, measured via a careful cutback from 300 m to 5 m using a 

white light source and a long wavelength optical spectrum analyzer (OSA), is shown in Fig. 

1(a). This measurement procedure was chosen to preserve the fiber sample but this 

measurement procedure leads to a probable overestimate of the loss due to the residual 

presence of higher order modes. The minimum loss value of 4.5 dB/km at 1980 nm is the 

lowest reported to date for a HC-PBGF operating in the 2 µm wavelength region. The 3 dB 

transmission window of the HC-PBGF is approximately 152 nm wide, which is well matched 

to the TDFA gain bandwidth, see Fig. 1(a). 

Transmission spectra with higher wavelength resolution, Fig. 1(c), collected using a Tm 

amplified spontaneous emission (ASE) source and input/output coupling via SMF pigtails, 

reveal the presence of gas lines due to the (20012)-(00001) absorption band of CO2 in the 

wavelength interval 2000-2020 nm, superimposed to a smaller background modulation, likely 

due to modal interference. The lines are 2-4 dB in strength, have a 80-100 pm 3 dB width 

with 0.5-0.8 nm separation. As no particular precaution was taken in order to prevent ingress 

of atmospheric gas into the fiber during fabrication, we believe that CO2 in our fibers is due to 

atmospheric content and previous measurements support this hypothesis [17]. While we have 

previously demonstrated that these undesirable spectral features can be eliminated by flowing 

dry gas through the fiber [17] or through an improved fabrication process (e.g. by evacuating 

and purging the fiber preform to remove any atmospheric CO2 prior to fiber drawing), here 

we demonstrate that error-free transmission can be achieved even at these wavelengths by 

tuning the signal to fit between absorption lines. 

#195516 - $15.00 USD Received 9 Aug 2013; revised 28 Oct 2013; accepted 2 Nov 2013; published 13 Nov 2013

(C) 2013 OSA 18 November 2013 | Vol. 21,  No. 23 | DOI:10.1364/OE.21.028559 | OPTICS EXPRESS  28562



0

20

40

60

80

100

-60

-40

-20

0

20

1800 1900 2000 2100 2200

P
B

G
F

 T
ra

n
s
m

is
s
io

n
 L

o
s
s
 [

d
B

/k
m

]
A

m
p

lifie
r o

u
tp

u
t [d

B
m

]

Wavelength [nm]

(a)

20µm (b)

-16

-14

-12

-10

2000 2005 2010 2015 2020

N
o

rm
a
lis

e
d

 T
ra

n
s
m

is
s
io

n
 [

d
B

]

Wavelength [nm]

(c)

 

Fig. 1. (a) HC-PBGF transmission loss (300 m to 5 m cutback, 2 nm resolution) superimposed 

on the TDFA output to illustrate the location of the signal channel at 2008 nm and extent of 

ASE emission as an indicator of the amplifier bandwidth. (b) SEM image of the fiber. (c) High 

resolution (~50 pm) transmission of 290 m of HC-PBGF at 2000-2020 nm collected using a 

Tm:ASE source and SMF input and output coupling fibers and normalized against input 

intensity. Also shown the signal wavelength (green line) tuned off the CO2 absorption lines. 

The modal properties of the HC-PBGF were investigated by using an S2 imaging 

technique [18]. Our setup was based on a Tm:ASE source, a scanning single-mode fiber 

probe and a long wavelength OSA (Yokogawa AQ6375). An 8 nm wide interval centered at 

2008 nm was sampled at the maximum resolution of the OSA (50 pm). Light from the 

Tm:ASE source was launched into the HC-PBGF was via a standard SMF-28 fiber. The 

results obtained for a 10.7 m long HC-PBGF sample (loosely coiled at ~300 mm diameter) 

are shown in Fig. 2. In addition to the fundamental mode, three further mode groups were 

identified, i.e. the LP11, LP21 and LP02. Under optimized launch conditions, we obtained very 

low multi-path interference (MPI) values (<-40 dB) for all higher order modes. A slightly 

higher level of background as compared to measurements carried out on similar HC-PBGFs 

at 1.5 μm [4] was noted, which is probably due to the higher noise level of the long 

wavelength OSA. Despite this, the lack of a flat “plateau” feature between the peaks provides 

a clear indication of low cross-coupling between the modes. 
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Fig. 2. Modal analysis of the HC-PBGF carried out over a 10.7 m fiber length via S2 imaging 

at 2008 nm, showing the reconstructed modal profiles and values of differential group delay 

relative to the fundamental mode. 

In order to investigate potential intermodal cross-coupling over a longer fiber length and 

to assess the potential of single-mode operation we used a time-of-flight (ToF) technique [4]. 

For this, a mode-locked fiber laser operating at 1940 nm (1 ps pulses at 25 MHz repetition 

rate, from AdValue Photonics), an 8 GHz bandwidth extended InGaAs PIN photodetector 

(Electro-Optics Technology, ET-5010F) and a fast sampling oscilloscope were used. Both 

ends of the HC-PBGF were butt-coupled to SMF-28, providing selective input and output 

coupling into the fundamental LP01 mode. Figure 3 shows the results for a 290 m long HC-

PBGF sample under optimum coupling conditions to the LP01 mode. The photodiode 

exhibited some ringing in the 0–1.5 ns range, which has been corrected for in Fig. 3, but 

results in a slightly elevated residual noise floor. The expected peak positions corresponding 

to the higher order modes, determined from differential group delay (DGD) values obtained 

from the S2 measurement, are also shown in Fig. 3. 

Despite the large mismatch between the LP01 mode of the HC-PBGF and that of the 

launch/collection fibers, we achieved a remarkable 33 dB suppression of the LP11 mode with 

any contributions of higher order modes falling below the noise floor of 37 dB (Fig. 3). The 

peak marked ‘X’ in the figure, which appears with about 1 ns delay and 28 dB below the 

fundamental mode, has no counterpart in the measured S2 spectrum and thus has not yet been 

clearly attributed (we speculate that it could be due to a discrete coupling point between LP01 

and LP11 along the fiber length). 
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Fig. 3. Time-of-flight measurement at 1940 nm over a 290 m long HC-PBGF. The expected 

position of higher order modes (obtained from DGD values measured via S2) is also shown, 

highlighting excellent suppression through optimized input and output coupling. 

3. Experimental set-up 

A schematic of the full transmission set-up used in this work, highlighting the various 

components, is shown in Fig. 4. The single mode diode laser used for the transmission 

experiments was a discrete-mode continuous-wave laser based on a multiple quantum well 

ridge waveguide InGaAs structure on InP substrate [19]. The device was purpose-developed 

for this experiment but is now commercially available [20]. The output intensity vs. bias 

current, showing a threshold current (Ith) of ~16 mA and slope efficiency (SE) of 0.06 

mW/mA, is represented in Fig. 5(a). The laser provided 6 dBm maximum output power at 

~2008 nm with side mode suppression ratio of ~45 dB, as shown in Fig. 5(b). The laser 

wavelength was temperature tuned to ensure that it lay between two adjacent CO2 absorption 

lines (as shown in Fig. 1(c)). The laser diode, packaged in a butterfly module which contained 

a TEC and thermistor, had a very high frequency stability (~100 MHz or ~1.3 pm maximum 

excursion measured over a 60 min period). Furthermore, the CO2 absorption lines are very 

insensitive to environmental effects and the shift with temperature is extremely small (<<1 

MHz/K) and thus is totally negligible for this study. 

 

Fig. 4. Schematic of the full transmission setup. Signal from laser diode is modulated via an 

external LiNbO modulator through on-off keying (OOK), passed through a Thulium fiber 

amplifier (TDFA), a fiber Bragg grating (FBG) filter to remove the ASE noise, launched into 

the 290 m of HC-PBGF, passed through a variable optical attenuator (VOA) and finally 

detected by a fast photodetector and bit error rate tester and digital communications analyzer 

(BERT/DCA) 

The laser was intensity modulated with a 231-1 pseudorandom bit sequence (PRBS) using 

an external lithium niobate Mach-Zehnder modulator (Photline Technologies). Its nominal 

electro-optical bandwidth was 1-2 GHz; however in this particular experiment it was 

operating at 8 Gbit/s, which was the maximum repetition rate for which we could achieve 
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error-free back-to-back operation. Two examples of optical eye diagrams at 1Gbit/s and 8 

Gbit/s, measured using an InGaAs high speed PIN detector (this was the same device used for 

the ToF measurements) are shown in Fig. 6. The corresponding electrical eye diagrams are 

also reported for completeness. The modulator had ~60 ps rise time and over 25 dB extinction 

ratio with an overall loss of 8 dB. 

(a)

(b)

 

Fig. 5. (a) Discrete mode CW laser power as a function of bias current showing the threshold 

current and slope efficiency (SE). (b) Optical emission spectrum at a bias current of 100 mA. 

 

Fig. 6. Performance of the optical modulator at 1 Gbit/s (top) and 8 Gbit/s (bottom): electrical 

driving signal (left) and optical modulated signal (right). 

The generated non-return-to-zero on-off keyed (NRZ-OOK) signal was then amplified 

using a TDFA pumped at 1565 nm, a schematic of which is shown in Fig. 7. The TDFA [21] 

was built with a commercially available Tm3+-doped fiber (OFS TmDF200) having a mode 

field diameter of ~6.2 μm at 2000 nm and a core absorption of ~20 dB/m at 1565 nm. The 

amplifier consisted of two sections of TDF. Firstly, a 12 m long length of TDF was forward 

core pumped by an in-house built fiber Bragg grating (FBG)-stabilized single mode Er3+/Yb3+ 

co-doped fiber laser operating at 1565 nm. The 1565 nm pump wavelength was chosen rather 

than the 790 nm pumping scheme commonly used for high power TDF devices since this 

offers lower noise performance around 2000 nm [22]. The pump and signal wavelengths were 

combined using a 1570/2000 nm WDM coupler. Isolators were placed both at the input and 

output ends to prevent parasitic lasing. A second, 4 m long length of TDF was inserted 

between the input isolator and the WDM coupler. This additional piece of fiber was indirectly 

pumped by the backward-travelling amplified spontaneous emission (ASE) generated from 

the directly pumped 12 m TDF section and provided additional signal gain at the longer 
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wavelength end of the Tm gain window, i.e. around 2000 nm. This pumping scheme is 

similar to that used in L-band EDFA designs [23]. 

(b)

(a)

 

Fig. 7. (a) Detailed schematic of the Tm doped fiber amplifier shown as a single block in Fig. 

4. (b) Gain and noise figure of the TDFA operating at the signal wavelength of 2008 nm. 

Figure 7(b) shows the TDFA gain and external NF as a function of pump power for 

different input signal powers. The amplifier is capable of providing a maximum gain of 34 dB 

for a signal input power of −21.9 dBm and a saturated output power of 22 dBm. Its NF 

decreases with increasing pump power or amplifier gain. A minimum NF of ~6 dB was 

measured for input powers ranging from −21.9 dBm to −6.7 dBm when the pump power 

exceeds ~27 dBm. The internal NF was measured to be less than 5 dB. A more detailed 

analysis and a discussion of the method used for the amplifier characterization can be found 

elsewhere [20]. The TDFA output was then filtered by a FBG with 2 nm reflection bandwidth 

centered around the signal wavelength, to suppress amplified spontaneous emission from the 

amplifier and increase the out of band signal suppression to >50 dB. The signal was then butt-

coupled into and out of the HC-PBGF via SMF-28 pigtails with particular care taken to 

ensure reliable excitation of the fundamental mode as previously discussed. The transmitted 

signal was detected using the extended InGaAs high-speed detector. The total insertion loss 

through the pigtailed HC-PBGF was ~10 dB, mostly attributed to coupling losses due to the 

large modal mismatch between the HC-PBGF (~22 µm MFD) and the SMF-28. It should be 

noted that the use of an amplifier was not strictly required to perform the transmission test 

given the relatively low insertion loss of the HC-PBGF span. Rather, we used it here to 

demonstrate the feasibility of using this technology with the much longer (and less lossy) 

fiber spans we anticipate will become available in the near future. Also note that a direct 

diode-pumped version of the amplifier (rather than fiber-laser-pumped used for the present 

study) has become available [24], which represents a significant advancement in terms of 

compactness, robustness, controllability and power consumption. 
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4. Transmission results 

The performance of the transmission system both before and after transmission through the 

fiber was assessed in terms of eye diagrams and bit error ratio (BER). Figure 8 shows eye 

diagrams and BER curves with and without the HC-PBGF (labeled as HC-PBGF-290m and 

back-to-back, respectively). Good open eyes were observed at the output of the fiber with 

negligible degradation compared to the back-to-back performance, which confirmed that 

modal cross talk effects were negligible over the measured length. This was also quantified 

by the corresponding BER measurements. The power penalty was negligible at a BER of 10−3 

and increased up to 1.2 dB at 10−9. No BER floor was observed when measuring BERs down 

to the 10−11 level. It should be noted that the choice of data rate was solely limited by the 

bandwidth of the amplitude modulator and photoreceiver used in the experiment. With 20 

GHz bandwidth photoreceivers and a first generation of WDM components now beginning to 

appear on the market it appears entirely feasible that substantially higher data rates and 

overall capacities could soon be achieved in wide transmission bandwidth HC-PBGFs. 
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Fig. 8. Amplified transmission experiments at 2008 nm over 290 m of HC-PBGF: BER 

characteristics at 8 Gbit/s and eye diagrams corresponding to back-to-back and transmission 

over the fiber. 

5. Conclusions 

We have presented the first demonstration of a low loss, wide bandwidth 19-cell HC-PBGF 

suitable for high data rate single mode transmission at 2 μm and highlighted the suitability of 

TDFA technology for broadband amplification in the anticipated minimum loss window for 

this emerging fiber type. Our fiber exhibits a transmission loss of 4.5 dB/km (the lowest value 

reported to date for a HC-PBGF operating at 2 μm), a wide bandwidth (152 nm) and very low 

modal crosstalk (<-33 dB SMF-to-SMF) between fundamental and higher order modes, 

enabling quasi-single mode operation over a 290 m length. Error-free transmission of an 8 

Gbit/s amplified channel at 2008 nm was demonstrated with only minor power penalty. 

Whilst a few challenges still remain to be addressed, and in particular the loss reduction 

benefit has yet to be demonstrated, this work result provides the first demonstration of the 

technological viability of using HC-PBGFs operating at wavelengths around 2 μm (in 

conjunction with TDFAs) as a possible basis for future generation high-performance optical 

communication systems. Future work will need to address the pressing challenge of achieving 

low loss over longer HC-PBGF lengths, and the more practical issues of interconnection, 

elimination of gas absorption and the investigation of long term reliability of these fibres. 
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