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Abstract: In several optical systems, a specific Point Spread Function
(PSF) needs to be generated. This can be achieved by shaping the complex
field at the pupil. The Extended Nijboer-Zernike (ENZ) theory relates
complex Zernike modes on the pupil directly to functions in the focal
region. In this paper, we introduce a method to engineer a PSF using the
ENZ theory. In particular, we present an optimization algorithm to design
an extended depth of focus with high lateral resolution, while keeping the
transmission of light high (over 60%). We also have demonstrated three
outcomes of the algorithm using a Spatial Light Modulator (SLM).
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1. Introduction

Engineering an elongated focal spot by manipulating the incident wavefront has been done for
a long time. It has been known that by putting an annulus in the lens pupil the depth of focus is
increased [1]. In fact, it turned out that if the annulus is made extremely narrow, a diffraction-
free Bessel beam is approximated [2]. Another method which has been proposed to extend the
depth of focus is by dividing the lens pupil in rings and modulate the phase and amplitude of
each ring [3]. These and other methods are discussed in more detail in [4–10].

In this article, a new method of designing pupil function is proposed. It relies on a result of
the Extended Nijboer-Zernike theory, as has been suggested by [11]. By exploiting a one-to-
one correspondence between the Zernike polynomials which compose the pupil function and
functions which compose the focal field [12], the number of degrees of freedom reduces to the
number of polynomials with which the pupil is constructed, while the computation of the focal
field is done by a quick matrix multiplication, rather than a time consuming diffraction integral.
In particular, we present in this work an algorithm to find a pupil function which gives rise to
an extended depth of focus for the case of a 0.4 numerical aperture, with low loss (less than
40%) of light intensity.

The relevance of such a focal field with an extended depth of focus is apparent from the many
applications of Bessel beams, which range from optical tweezers to certain forms of microscopy
to barcode scanners. The solution which is presented here however, has the advantage that light
passes through the pupil in more areas than just the outer ring, which is a standard method to
create a Bessel beam, and thereby achieving higher transmittance.

Finally, three outcomes of the algrotihm have been obtained experimentally using a phase-
only Spatial Light Modulator (SLM) to shape the pupil field [13].

2. Theory

In this section we briefly discuss theoretical results required for the optimization algorithm that
is later presented in this paper. First we give the definition of the complex Zernike polynomials,
in which any pupil function can be decomposed. Then, we explain a result from ENZ-theory
[12,14], which relates the pupil Zernike modesZm

n to basic functionsVm
n in the field in the focal

region.

2.1. Complex Zernike polynomials

Any complex function defined on the unit disk can be expanded in terms of complex Zernike
polynomials

f = ∑
n≥|m|

β m
n Zm

n , (1)

where the coefficientsβ m
n can be complex and where the complex Zernike polynomials are

defined as
Zm

n (ρ ,φ) = R|m|n (ρ)eimφ , (2)
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where

Rm
n (ρ) =

p

∑
s=0

(−1)s(n− s)!
s!(q− s)!(p− s)!

ρn−2s,

p=
1
2
(n−|m|),

q=
1
2
(n+ |m|).

(3)

This expansion determines both the phase and amplitude of the pupil function. The Zernike
polynomialsZm

n are a complete set of orthogonal functions on the unit disk [12].

2.2. Result from ENZ-theory

In [12] it is shown that there exists a one-to-one correspondence between the complex Zernike

polynomialsZm
n (ρ ,θ ) which compose the pupil fieldE0(ρ ,θ ) and functionsV |m|n (r, f ) which

compose the electric field in the focal regionE(r,φ , f ):

E0(ρ ,θ ) = ∑
n≥|m|

β m
n Zm

n (ρ ,θ )

←→

E(r,φ , f ) ∝ ∑
n≥|m|

β m
n V |m|n (r, f )2i|m|eimφ ,

(4)

where(ρ ,θ ) are polar coordinates,(r,φ , f ) cylindrical coordinates, andβ m
n complex coeffi-

cients. An expression for theVm
n -functions is given in [15] and is included in the Appendix.

The importance of this result lies in the fact that now the intensity distribution can be com-
puted directly using the Zernike coefficientsβ m

n and the precalculatedVm
n rather than using the

input fieldE0(ρ ,θ ) and the diffraction integral [16].

2.3. The optimization algorithm

In order to find good solutions efficiently, we rely on Eq. (4). This equation states that once one
has foundβ such that

I = |E|2 ∝

∣

∣

∣

∣

∣

N

∑
k=0

β 0
2kV

0
2k

∣

∣

∣

∣

∣

2

,

is close to a desired pattern, the corresponding pupil function follows immediately from

E0(ρ ,φ) =
N

∑
k=0

β 0
2kZ

0
2k. (5)

Note that choosingm= 0 implies that we only consider circularly symmetric pupil functions.
Since theVm

n ’s only need to be precalculated once, the intensityI can computed this way sig-
nificantly faster than using the diffraction integral.

In the algorithm, only the intensity distributions along the lateral axis (x-axis) and along
the optical axis (z-axis) are considered. More specifically, let(0,0) be the Gaussian focal point.
ThenIx = I(x,z= 0) is the intensity along the lateral axis in the focal plane andIz= I(x= 0,z) is
the intensity along the optical axis. Using a least squares method, theβ m

n coefficients are found
such thatIx andIz approximate two target functionsIx,targetandIz,targetas shown in Fig. 1. After
that, the transmittance of the pupil function is optimized using the Nelder-Mead algorithm. The
algorithm is explained in more detail in the Appendix.
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In Fig. 2 the cross sections of the phase and amplitude of the obtained pupil function are
shown, accompanied by the intensity profiles in the focal region along thez-axis andx-axis.
The focal spot for this pupil is longer in the axial direction than in the aberration-free case,
meaning that the depth of focus is increased. Since this pupil involves a quite structured am-
plitude illumination, we have made some approximations in such a way that the pupil could
more easily be implemented in an experimental setup. This is treated in detail in the following
section.
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Fig. 1. Example ofItarget(x,0) andItarget(0,z) which may be used to find an initial solution
~β1. HereRA = 0.61λ

NA and RE = nλ
NA2 . The vertical line in the figure ofItarget(x,0) indicates

wherex= RA. These target functions are approximated using a least-squares method.
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Fig. 2. Figures a and b show the cross sections of the amplitude and phase respectively
of one of the pupil functions found with the algorithm. The pupil function is circularly
symmetric, so only the cross sections along the radius (which is in this case normalized to
the radiusa of the aperture) are needed. This pupil function produces an elongated focal
spot along the optical axis and a high lateral resolution in the focal plane, as is shown in
Figures c and d respectively. The Zernike coefficients are given in Table 1 in the row C2.

2.4. Creating binary pupil functions

In order to simplify the experimental implementation, the pupil functions found by the algo-
rithm (for example the one shown in Fig. 2) are made binary. Consider theβ m

n shown in Table
1. According to theory these coefficients should give pupil functions which give rise to an ex-
tended depth of focus and a lateral resolution below the diffraction limit. To construct the binary
pupil functions we first define

Ẽ0(ρ ,θ ) =
N

∑
k=0

β 0
2kZ

0
2k(ρ ,θ ), (6)
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Table 1. The complex Zernike coefficients used to create the pupil functions ‘Phase’ (P),
‘Complex1’ (C1) and ‘Complex’ (C2) which are tested experimentally.

β0
0 β0

2 β0
4 β0

6 β0
8 β0

10 β0
12 β0

14 β0
16 β0

18 β0
20 β0

22 β0
24 β0

26
P 0.342 0.688 0.183 -0.555 -1.009 -0.041 1.147 -1.619 -0.392 0.840 -0.592 0.035 -0.114 0.145

C1 -0.232 -0.503 -0.352 0.208 0.533 0.325 -0.521 -1.172 1.377 0.013 -0.835 0.531 -0.003 0.317
C2 0.183 0.370 0.192 -0.270 -0.463 -0.257 0.747 0.674 0.442 -0.890 0.215 1.429 -1.316 -0.122

whereZm
n are the complex Zernike polynomials as defined in Eq. (2). The pupil function for

‘Phase’ (named so because only the phase is modulated) is obtained using

E0,phase(ρ) = sgn(Ẽ0(ρ)). (7)

Note that this is well-defined, because using only Zernike modes withm= 0 means that̃E0(ρ)
is real. The pupil functions for ‘Complex 1’ and ‘Complex 2’ (named so because both amplitude
and phase are modulated) are obtained using

E0,complex(ρ) =

{

0 if |Ẽ0(ρ)| ≤ t

sgn(Ẽ0(ρ)) if |Ẽ0(ρ)|> t,
(8)

where it turns out by trial-and-error thatt = 0.57 is a good choice for ‘Complex 1’ and t = 0.55
for ‘Complex 2’. The resulting pupil functions which will be assigned to the SLM are shown
in Figs. 3(a)–3(c). Note that in the regions where the amplitude should be 0, a phase ramp is
added so that light hitting that region of the SLM is tilted away. The corresponding theoretical
intensity distributions in the focal region produced by these pupil functions are shown in Figs.
3(d)–3(f). For ‘Complex 2’, the pupil function that gives the longest focal depth, 61% of the
light is transmitted.

3. Experiment

In the experiment we used a Holoeye PLUTO liquid crystal Spatial Light Modulator (SLM)
to assign the pattern to the laser beam. The specifications of the SLM are given in [17]. A
schematic of the experimental setup is shown in Fig. 4. A He-Ne laser with a wavelength of
633nm is used as the source. Its light is coupled to a single-mode optical fiber after which it
emerges as a point source (by approximation). The light is then collimated using a lens with
a focal length of 80cm and cut off by an aperture. The collimated light passes through the
beamsplitter, hits the SLM perpendicularly, and is reflected by the same beamsplitter. The plane
of the SLM is conjugated with the plane of the entrance pupil of a 0.4 NA microscope objective
using two lenses with a focal length of 30cm. The light in the focal region of the 0.4 NA
microscope objective is then imaged onto a CCD camera using a 0.9 NA microscope objective
and a tube lens. The 0.4 NA microscope objective can be translated back and forth using a
piezo-stage, which allows us to scan different planes of the focal field. An interferometer is
used to determine the exact position of the piezo-stage [18]. Several important details of the
experimental setup are summarized in Table 2.

3.1. Measurement method

First, we need to realize that not all the light that hits the SLM gets modulated by it due to
interpixel space and a ‘wrong’ polarization. Thus in order to separate the modulated from the
unmodulated beam an additional phase ramp is added on top of the images shown in Fig. 3 [19].

To view different focal planes, a lens phase is added to the image assigned to the SLM. The
strength of this lens phase can be expressed as the Zernike defocus coefficientα0

2 (note that
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Fig. 3. Figures a, b and c show the pupil masks according to Table 1 which are assigned
to the SLM. In the black regions the phase is 0. In the grey regions the phase isπ. In the
regions with a phase ramp the light is tilted away, which corresponds to the amplitude being
modulated to 0. Figures d, e and f show the theoretical intensity distributions in the focal
region and the corresponding profiles along the optical axis for the three pupil functions.
For comparison, the aberration-free case (uniform illumination) is included.
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Table 2. Details of the setup used to measure the focal field of a wavefront modulated by
the PLUTO SLM and focused by a microscope objective. The schematic of the setup is
shown in Fig. 4.

Wavelength 633nm
NA Microscope objective (focusing) 0.4
NA Microscope objective (imaging) 0.9

CCD resolution 1280×960
CCD pixel size 4.7µm×4.7µm
Magnification 50.4

A L 2

M2

L 4

L 3

M3

0.4 0.9

Displacement

interferometer

Beam 

splitterF1

(80 cm)

20 cm

F3

(30cm)

F2 

(30 cm)

S

L

M

M1

L 5

Camera

F2 

(30cm)

F3

(30cm)

L 2

SLM = Spatial Light Modulator

A = Aperture

L = Lens

P = Polarizer

M = Mirror

F = Focal distance

SLM = Spatial Light Modulator

A = Aperture

L = Lens

P = Polarizer

M = Mirror

F = Focal distance

L 1 P

He-Ne Laser 

Fig. 4. Schematic of the experimental setup used to modulate the phase of the laser beam
and scan through the focal field of the 0.4 NA microscope objective.

the corresponding Zernike polynomial is real and describes the phase only, as opposed to the
coefficients and Zernike polynomials used in the optimization which are complex).

However, if we want to compare measurement results to the theoretical predictions, we first
need to find out how the Zernike defocus coefficientα0

2 relates to the Rayleigh unitRE, i.e.
which value forα0

2 corresponds to a shift of 1RE. This has been done by scanning through
focus without a phase mask, and observing for what value forα0

2 the intensity has dropped to
1/e times the maximum intensity. This value ofα0

2 corresponds to 1RE. In Fig. 5 the result of
this measurement is shown.

3.2. Results and discussion

Once the calibrations are done, we obtained the focal field intensity distributions for the three
pupil functions (as in Table 1) and compared them with the theoretical predictions as shown in
Fig. 6. In Fig. 7 the lateral width (along thex-axis) of the focal spot for the aberration-free case
and for the pupil function ‘Complex 2’ are compared. Although the measurement results clearly
indicate an extended depth of focus of a length similar to the prediction, there are still some
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Fig. 6. The experimental results of intensity distributions of the focal fields for the three
pupil functions (from top to bottom) ‘Phase’, ‘ Complex 1’ and ‘Complex 2’. The left col-
umn shows the on-axis intensity distributions. The right column shows the through-focus
intensity distributions in the xz-plane.
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Fig. 8. Comparison of the two scanning methods (adding a lens phase and moving the
microscope objective). The graphs have been normalized to the intensity atz= 0, since
that is the point where no lens phase is added and thus the measurements are the same.

discrepancies. To find out the possible causes, we compared the cases where the through focus
scans were made by adding a lens phase, or by moving the 0.4 NA microscope objective. The
comparison is shown in Fig. 8. It turns out that these measurements give somewhat different
results, but it still does not account for the mismatch with the theory. A possible explanation
may be that because the 0.9 NA objective used for imaging is infinity corrected, so whenever a
plane other than the focal plane is imaged, aberrations may come into play. This is particularly
relevant in our case since the focal depth is around 18RE. Nevertheless, the experimental results
have demonstrated that pupil masks indeed create elongated focal spots and that the lateral
resolution at the focal plane is below the diffraction limit.

4. Conclusion

In conclusion, we used the Extended Nijboer-Zernike theory to obtain a focused field with
elongated focal length (up to 18 Rayleigh distances) with diffraction-limited spot size, while
keeping the transmittance over 60%. Since this theory is based on functions that can be pre-
calculated, the optimisation parameters are reduced to a limited number of Zernike coefficients
that compose the pupil, allowing fast calculation of the focal field. We have found not only a
way to create elongated focal spots, but also we have shown more generally that ENZ theory has
the potential to be used for pupil engineering, as had been suggested by [11]. We also demon-
strated experimentally three pupil functions generated by an SLM that produce elongated focal
spots.
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Appendix A: An expression for theVm
n functions

An expression ofVm
n is given in [15]:

Vm
n (r, f ) = εmexp

(

1
2

i f

) ∞

∑
k=0

(2k+1)ik jk

(

1
2

f

) k+p

∑
lmin

(−1)l wkl
J|m|+2l+1(2πr)

2πr
, (9)

in which εm = e
m−|m|

2 ,p = (n− |m|)/2, q = (n+ |m|)/2, and the minimum bound ofl in the
summation is given as:

lmin =







p− k, if 0 < k< p
0, if p≤ k≤ q
k−q, if q< k

wkl =
p

∑
s=0

min(k,s)

∑
t=0

f |m|ps bkstg
|m|
k+s−2t,l , (10)

l ∈ [max(0,k−q, p− k),k+ p]. Whenm= 0, we have:

wk,k+p−2 j = bkp j; j = 0,1, · · · ,min(k, p). (11)

where

f m
ps= (−1)p−s

[

2s+1
p+ s+1

(

m+ p− s−1
p− s

)(

m+ p+ s
s

)/(

p+ s
s

)]

, s= 0, · · · , p (12)

gm
ul =

m+2l +1
m+u+ l +1

[(

m
u− l

)(

u+ l
u

)/(

m+ l +u
u

)]

(13)

=
m+2l +1

m+u+ l +1

(

m
u− l

) u

∏
i=1

l + i
l +m+ i

, u= l , · · · , l +m,

bs1s2t =
2s1+2s2−4t+1
2s1+2s2−2t+1

(

As1−tAtAs2−t

As1+s2−t

)

, t = 0, · · · ,min(s1,s2), (14)

whereAt =
(2t

t

)

. Form= 0:
f 0
ps= δps, g0

ul = δul, (15)

δ is Kronecker’s delta.

Appendix B: The optimization algorithm

B.1. Formulating the problem

The goal is to construct a radially symmetric pupil functionE0(ρ) defined in the exit pupil
(which is the unit disk) such that the intensity distribution in the focal fieldI(x,y,z) =
|E(x,y,z)|2 has a sharp peak near(x,y) = (0,0) for a long range along the opticalz-axis. This
means that the lateral resolution is high and the depth of focus long. In order to give a more
precise formulation, we introduce the following simplifications and conventions:

⋆ We only consider pupil functions which can be expressed as a linear combination of
N Zernike polynomials of the formZ0

n, N being finite:E0(ρ) = ∑N
k=0 β 0

2kZ
0
2k. The pupil

function then depends onρ only and therefore has circular symmetry, and the electric
field E(r,φ ,z) in the focal region does not depend onφ .
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⋆ We only consider real Zernike coefficientsβ . This implies thatI(x,y,z) is symmetric in
z.

⋆ The cross-sectionsI(x,z) = I(x,0) andI(x,z) = I(0,z) are a sufficiently good represen-
tation ofI(x,z) in the entire positivexz-plane, hence we only consider the cross-sections.

⋆ The transverse coordinates in the focal region are normalized by the Airy radiusRA =
0.61λ
NA , andz is normalized by the Rayleigh unitRE = nλ

NA2 . RA denotes the lateral width
of the focal spot of a focused plane wave, whileRE denotes the length of the spot along
the optical axis for this field.

We are now able to define our decision variables:

• Define~β = [β 0
0 ,β

0
2 · · ·β

0
N]

T .
• Definex0 to be the location of the local minimum ofI(x,0) closest to the optical axis.
• Definez0 to be the location of the point with smallest value whereI(0,z)< 0.9.
• DefineT to be the transmittance of the pupil:

T = 2

1
∫

0

ρ |E0(ρ)|2dρ .

Note that the maximumT is obtained when|E0(ρ)|= 1, in which caseT = 1.
• DefineM to beM = max

x>x0
I(x,0).

Using these definitions, the problem can be formulated as follows:
Find~β such that:

♦ x0 is minimized,
♦ z0 is maximized,
♦ T is maximized,

subject to

♦ M < 0.2.

B.2. Finding solutions

In order to find good solutions efficiently, we rely on Eq. (4). This equation states that once one
has foundβ such that

I = |E|2 ∝

(∣

∣

∣

∣

∣

N

∑
k=0

β 0
2kV

0
2k

∣

∣

∣

∣

∣

)2

,

provides a good result, the correspondig pupil function follows immediately using

E0(ρ ,φ) =
N

∑
k=0

β 0
2kZ

0
2k. (16)

B.2.1. Precalculations

We start by defining grid points onx andz where we want to calculate the focal field intensity,
and the pointsρ where we want to find the pupil function

x :=













x1

.

.

.
xmax













, z :=













z1

.

.

.
zmax













, ρ :=













ρ1

.

.

.
ρmax













.
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We then proceed by calculating theV2k andZ0
2k for those points

Vx,k(x) =













V0
2k(x1,0)

.

.

.
V0

2k(xmax,0)













,Vz,k(z) =













V0
2k(0,z1)

.

.

.
V0

2k(0,zmax)













,Zρ ,k(ρ) =













Z0
2k(ρ1)
.
.
.

Z0
2k(ρmax)













.

If we now define the matricesX, Z andR as

X =
[

Vx,0(x) Vx,1(x) ... Vx,N(x)
]

,

Z =
[

Vz,0(z) Vz,1(z) ... Vz,N(z)
]

,

R =
[

Zρ ,0(ρ) Zρ ,1(ρ) ... Zρ ,N(ρ)
]

,

thenI(x,0), I(0,z) and|E0|
2 are calculated and normalized according to

I(x,0) =
|X~β |2

max|X~β |2
, I(0,z) =

|Z~β |2

max|Z~β |2
, |E0(ρ)|2 =

|R~β |2

max|R~β |2
.

Note that these matrices need to be calculated only once, which makes this method of finding
the focal field distribution much more efficient than calculating a diffraction integral repeatedly.

B.2.2. The algorithm

We start the algorithm by defining the target functionsItarget(x,0) andItarget(0,z) which roughly
resemble our desired intensity distribution as in Fig. 1. This is shown in the flowchart in
Fig. 9. Then we find~β which closely match these targets using the built-in Matlab algorithm
lsqnonlin. The merit functionf is defined as:

f =
∣

∣

[

Itarget(x,0) Itarget(0,z)
]

−
[

I(x,0) I(0,z)
]∣

∣

2
(17)

If we feedlsqnonlin a random starting~β0, it will apply thetrust-region-reflective algorithm
using f and returns a~β1. We keep creating random starting~β0 until the output is satisfactory.

Having found an initial solution we proceed by improvingx0, z0, T andD using another
Matlab function,fminsearch. Given a starting point, it applies theNelder-Mead algorithm,
a heuristic search method, to find minima. Of course, while improvingT, we do not wantx0 or
z0 to worsen. Therefore we use the following scheme:

• Given a starting solution~β1, we calculatex∗0 andz∗0.

• We define a functionMT(~β ) which, given a certain~β , calculatesx0, z0, andT, and
returns

MT(~β ) =

{

1
T(~β )

if x0(~β )≤ x∗0,z0(~β )≥ z∗0 andM < 0.2

∞ otherwise
(18)

So basicallyx∗0 andz∗0 are constraints forx0 andz0.

• We apply the Nelder-Mead algorithm to the functionMT(~β ), using the starting solution
β1. It then returns a new~β , say~β2, with improvedT.

The algorithm is summarized in Fig. 9.
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Define
Itarget(x,0)

and
Itarget(z,0).

Generate
a random

β0

Find β1

which
approx-
imates
Itarget

with
least-

squares
method.

max(Ix)=
Ix(0) and
M < 0.2
for β1?

Discard
β1

Calculate
x∗0 = x0

and
z∗0 = z0

for β1.

Find β2

for which
MT(β )
is min-
imized
with

Nelder-
Mead.

no

yes

Fig. 9. Flowchart of the algorithm
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