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Quantum computers, besides offering substantial computational speedups, are also expected to
provide the possibility of preserving the privacy of a computation. Here we show the first such
experimental demonstration of blind quantum computation where the input, computation, and
output all remain unknown to the computer. We exploit the conceptual framework of measurement-
based quantum computation that enables a client to delegate a computation to a quantum server.
We demonstrate various blind delegated computations, including one- and two-qubit gates and
the Deutsch and Grover algorithms. Remarkably, the client only needs to be able to prepare and
transmit individual photonic qubits. Our demonstration is crucial for future unconditionally secure
quantum cloud computing and might become a key ingredient for real-life applications, especially
when considering the challenges of making powerful quantum computers widely available.

Among many quantum-enhanced applications, quan-
tum computing has generated much interest due to the
discovery of applications [1–4] that outperform their best-
known classical counterparts. Although vast technologi-
cal developments already allow for small-scale quantum
computers with ionic [5–8], photonic [9–16], supercon-
ducting [17–21], and solid state [22–24] systems, the hur-
dles encountered in realizing quantum devices are enor-
mous. This intrinsic technical complexity may result
in, initially, only a few powerful quantum computers, or
quantum servers, operating at specialized facilities. Ob-
viously, a key challenge in using such central quantum
computers is enabling a quantum computation on a re-
mote server, while keeping the client’s data hidden from
the server [25–30].

The classical analogue of this issue was addressed for
the first time in 1978 by Rivest and co-authors [31] and
became one of the most active fields in cryptography. A
full solution was over 30 years in the making and en-
ables [32] the evaluation of data-processing circuits over
encrypted data without the need for any decryption,
but provides only computational security. In analogy to
many widely used cryptographic protocols, this means
that the security relies on the assumption of a limit to
the adversary’s computational power, as well as on the
difficulty of the underlying mathematical problem.

Remarkably, the recent theoretical work by Broadbent,
Fitzsimons, and Kashefi [29] overcomes this limitation
and shows that quantum computers can provide uncon-
ditional security in data processing — a hitherto unrecog-
nized potential of quantum computers that is not known
to be achievable classically. This new fundamental ad-

vantage of quantum computers is manifested in the blind
quantum computing (BQC) protocol that combines no-
tions of quantum cryptography and quantum computa-
tion to achieve the delegation of a quantum computation
from a client with no quantum computational power to
an untrusted quantum server, such that the client’s data
remains perfectly private.

BQC uses the concept of one-way quantum comput-
ing [33–37], a measurement-based model of computa-
tion [38, 39] which represents a paradigm shift in the un-
derstanding of complex data processing by clearly sepa-
rating the classical and quantum parts of a computation.
In the most general case, a one-way quantum computer is
based on highly entangled multi-particle states, so-called
cluster states, which are a resource for universal quantum
computing. On these cluster states, adaptive single-qubit
measurements alone are sufficient to implement deter-
ministic universal quantum computation. Different al-
gorithms require only a different pattern of single-qubit
measurements on a sufficiently large cluster state.

Therefore, a quantum computation is hidden as long
as these measurements are successfully hidden. In or-
der to achieve this, the BQC protocol exploits special
resources called blind cluster states that must be cho-
sen carefully to be a generic structure that reveals noth-
ing about the underlying computation (see Figure 1).
These blind cluster states are multi-particle entangled
states created by preparing qubits in |θj〉 = 1/

√
2(|0〉 +

eiθj |1〉), where |0〉 and |1〉 are the computational basis
of the physical qubits and θj is chosen uniformly at ran-
dom from {0, π/4, . . . , 7π/4}, and then interacting each
qubit via controlled-phase (CPhase) gates with its near-
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FIG. 1: The universal blind cluster state for blind quantum
computing. This family of cluster states can be built by join-
ing (yellow edges), for example using optical fusion opera-
tions, smaller cluster states (purple edges, grey background)

that are in one of the configurations of |Φθ̂〉 as implemented
in the laboratory. The resulting state allows universal blind
quantum computation when combined with measurements in
the basis |±δ〉, δ ∈ {0, π/4, . . . 7π/4}.

est neighbours (here, CPhase|i〉|j〉 7→ (−1)ij |i〉|j〉 with
i, j ∈ {0, 1}). Similar to the one-way quantum com-
puter, a blind computation is described by a pattern of
consecutive adaptive single-qubit measurements. Mea-
suring the first qubit, initially in state |θ1〉, of a one-
dimensional linear blind cluster in the basis |±δ1〉 =
1/
√
2(|0〉 ± eiδ1 |1〉) has the effect of applying a single-

qubit rotation Rz(−δ1 + θ1), on the encoded input state
|+〉, followed by a Hadamard, H. As long as the angle θ1
of the rotated qubit is unknown, the real rotation remains
secret. Here, Rz(φ) = exp(−iφσz/2), H = (σx + σz)/

√
2

and σx, σy and σz denote the usual Pauli matrices.

This feature of blind cluster states is used to perform a
delegated computation on a server, such that all data and
the whole computation remain hidden. The only quan-
tum power that is required from the client is the prepara-
tion of each qubit j in a state |θj〉 and the transmission of
the qubits to the server — in particular, there is no need
for any quantum memory [40] or ability to perform quan-
tum gates. From this point on in the protocol, the client
communicates only measurement instructions and can
be considered completely classical. The quantum server,
which can perform universal quantum computation, per-
forms a CPhase gate between qubits received from the
client. Then in each round of interaction, the server per-
forms adaptive single-qubit measurements in the |±δj 〉
basis, as instructed by the client. The measurement ba-
sis is chosen such that δj = φj + θj + πrj , where φj is
the desired target rotation and rj is a randomly chosen
value in {0, 1} which hides the value of the measurement
outcome. These classical measurement angles are set in
such a way to compensate for the initial random rotation
θj and any other Pauli byproducts [12, 41] produced by
previous measurements.

In the present work, we present a optimised version of
the original protocol using photonic qubits. Photons are
ideally suited for BQC as they provide the natural choice
as quantum information carrier for the client and enable
quantum computing for the server. This is a unique fea-
ture of photonic systems and so far not realizable in other
quantum systems. We experimentally demonstrate the
concept of BQC via a series of blind computations on
four-qubit blind cluster states. As shown in Figure 1,
these photonic states can be combined via optical gates
to create a universal resource state for BQC [29].

Our protocol uses, compared to the original BQC pro-
posal [29], the experimental resources in an optimised
way, independent of the physical system and without af-
fecting blindness.

Optimised blind quantum computing

It is a conceptual strength of the BQC protocol that
perfect security can be established over a subset of com-
putations even if not all of the qubits are unknown to the
server. In fact, for the four-qubit blind cluster state it is
sufficient for the client to be able to prepare only one or
two of the qubits in arbitrary states |θj〉 for delegating
various one- and two-qubit circuits as well as quantum
algorithms, see Figure 2. This is a remarkable optimi-
sation for the experimental requirements and is demon-
strated for the first time here (see Appendix for theoret-
ical details). Furthermore this optimisation is scalable
beyond our four-qubit experimental setting and creates
an interesting challenge on the design level to construct
a computation such that the sensitive measurements re-
main hidden.

We thus fix θ1 and θ4 equal to zero, while varying the
choices of θ2 and θ3. The resulting four-qubit linear blind
cluster state is:

|Φθ̂〉 =
1

2
(|+ 00+〉1234 + eiθ3 |+ 01−〉1234 (1)

+ eiθ2 | − 10+〉1234 − ei(θ2+θ3)| − 11−〉1234) .

Our experimental implementation of BQC is based
on such a family of four-qubit linear blind cluster
states. These are produced using photon emissions of
a non-collinear type-II spontaneous parametric down-
conversion process (SPDC) [10, 42], as described in de-
tail in the Appendix. If four photons are emitted into
the output modes of the polarizing beam splitters 1, 2,
3 and 4 (see Figure 3A), they are in a highly entangled

state which is equivalent to the state |Φθ̂〉 under the local
unitary operation H ⊗ I⊗ I⊗H:

|Φθ̂
L〉 =

1

2
(|0000〉1234 + eiθ3 |0011〉1234 (2)

+ eiθ2 |1100〉1234 − ei(θ2+θ3)|1111〉1234)
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FIG. 2: Blind circuits and corresponding measurement patterns. (A-F) We implement various types of blind computations

using different configurations for |Φθ̂〉. For all implementations, θ2 and θ3 are blind, as has been demonstrated in the experiment.
The angles θ1 and θ4 are fixed to be zero. Dependent on the experimental setting, we can implement blind linear cluster states

|Φθ̂〉→ (A) and |Φθ̂〉← (B), blind horseshoe |Φθ̂〉⊂ (C) and rotated-horseshoe cluster states |Φθ̂〉⊃ (D), blind staircase cluster

states |φθ̂〉yp(E) and blind triangle cluster states |Φθ̂〉△(F). The measurement angle δj , as instructed by the client, depends on
the initial rotation of the qubit θj (unknown to the server), the target rotation φj and a randomly chosen value rj in {0, 1}.

where θ̂ = (n2, n3) and (θ2, θ3) = (n2π
4 , n3π

4 ). In the ex-
periment, we use the polarization of photons to represent
the qubits, with |0〉 denoting the horizontal polarization
state and |1〉 denoting the vertical polarization state.

The client prepares the value of θj , which is done in
our case by a human client. By aligning our setup to pro-

duce |Φ(2,n)
L 〉 for n = 0, . . . , 7 and |Φ(6,m)

L 〉 for m = 0, 4,
we have demonstrated for the first time the prepara-
tion of various four-qubit blind cluster states. Moreover,
we have implemented 1962 different four-qubit measure-

ments with 31392 measured outcomes. These measure-
ments outcomes can be seen as implementing all possible
computational branches (due to different measurement
outcomes), which is equivalent to directly performing the
feed-forward mechanism [12]. However, the remarkably
feature of the BQC protocol is that the client’s privacy
is always preserved, whether or not feed-forward mech-
anisms have been implemented. Similarly, obtaining all
the possible measurement outcomes is equivalent to im-
plementing all possible values of rj , as if the client ran-
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domly re-interprets the measurement outcomes, implic-
itly subsuming rj . Note that, whenever all qubits are
measured in our setup, this method allows the client’s
choice of configuration to also be hidden from the server.

We use an over-complete state tomography for each of
our cluster states, in order to reconstruct the four-qubit
density matrix. The most likely physical density matrix
for each four-qubit state is extracted using a maximum-
likelihood reconstruction [43] (see Figure 3B). Uncertain-
ties in quantities extracted from these density matrices
are calculated using a Monte Carlo routine and assumed
Poissonian errors. Our computed fidelities for the var-
ious blind cluster states achieve maximum values of up
to 67.9 ± 0.4% via local unitary transformation. These
non-ideal fidelities arise due to experimental imperfec-
tions (see Appendix). It is important to note that ex-
perimental influences on the server’s side only affect the
correctness of the computation, while imperfections in
the client’s qubit preparation might also weaken the as-
sumption of an unbiased state distribution.

Blind single- and two-qubit unitaries

The four-qubit linear blind cluster |Φθ̂〉→(Figure 2) can
be used to implement an arbitrary single-qubit unitary
gate. Measuring qubit 1 in the eigenstates of σx, σy,
or σz has the effect of preparing the input on qubit 2
in the state |0〉, |+i〉 or |+〉, respectively, where |+i〉 =
1/
√
2(|0〉+ i|1〉). We are thus left with a three-qubit lin-

ear cluster state that implements a single-qubit rotation
gate with rotations determined by the measurements of
the second and third qubits; this rotates the input qubit
|Ψin〉 to the final state |Ψout〉 = Rx(−φ3)Rz(−φ2)|Ψin〉,
where Rx(α) = exp(−iασx/2). By fixing θ2 and vary-
ing θ3, we can experimentally demonstrate a blind X-
rotation. In the same way, a blind Z-rotation can be
shown experimentally by using the four-qubit linear blind

cluster state |Φθ̂〉←, which has the order of measurements
going from qubit 4 down to qubit 1. Figure 3C depicts
an experimental demonstration of a blind Z-rotation. By
varying θ3 and averaging over all resulting density ma-
trices, we obtain a totally mixed state with a linear en-
tropy of 0.989 ± 0.010 that is close to the entropy of 1
for a perfectly mixed state (see Figure 3C). As the ex-
periments include the preparation of all eight blind clus-

ter states |Φ(2,n)
L 〉, we can quantify the blindness of the

single-qubit rotations demonstrated experimentally. The
value of the Holevo information χ (see Appendix for de-
tails) must then be between 0 (for perfect blindness) and
3 (for no blindness). Using the tomographic measure-
ments performed on these input states we determine χ
of such states to be 0.169 ± 0.074, far below the three
bits necessary to uniquely identify the client’s choice of
φ2 and φ3, proving that within the assumptions of our

model these experimental implementations of the proto-
col maintains close to perfect blindness. The above value
of χ assumes initial state is chosen uniformly at random.
However even when this value is maximised over all possi-
ble prior distributions on the choice of states, it increases
only slightly to 0.185± 0.087.
Two-qubit gates are required for universal quantum

computation; by choosing the order of measurements in

a suitable way, the blind cluster |Φθ̂〉 implements blind
two-qubit gates (Figure 2C–F). One family of two-qubit
gates generated in our experiment is based on the blind

horseshoe cluster |Φθ̂〉⊂, where measuring qubits 2 and
3 of the blind cluster state performs a transformation
on the logical input qubits (Figure 2C). Both imple-
mented rotations are blind and the entire computation
remains hidden. Analyzing the output state, i.e. mea-
suring qubits 1 and 4, delivers the result of the com-
putation. Figure 3D shows an example of a two-qubit
computation using the blind horseshoe cluster. Consis-
tency with blindness can be seen by averaging over all
output states, giving as a result a totally mixed state
with a linear entropy of 0.955 ± 0.011. It is an in-
teresting challenge to demonstrate the consistency with
blindness in full generality by producing 64 blind cluster
states. Our demonstration uses a selection of four states
which suffices to hide the choice of rotations among four
possibilities: Rz(π/2 ± π) ⊗ Rz(π/2 ± π). In a simi-
lar way, the consistency with blindness of the rotated

horseshoe cluster |Φθ̂〉⊃ (Figure 2D) can be shown. We
also realize blind computations based on the blind stair-

case cluster |Φθ̂〉yp (Figure 2E) and blind triangle clus-

ter |Φθ̂〉△ (Figure 2F). The state |Φθ̂〉△ is obtained via

local complementation [44] on qubit 2 of |Φθ̂〉⊂. Thus

U |Φθ̂〉△ = |Φθ̂〉⊂ where U =
√
σz ⊗

√
σx⊗

√
σz ⊗ I (with

U acting on qubits ordered as 1,2,3,4), and measuring the

qubits of |Φθ̂〉⊂ by absorbing the action of U into the mea-

surements yields a computation on |Φθ̂〉△ as represented
by measurement instructions δ′ in Figure 2F. However,
blindness on qubit i is guaranteed only if the resulting
measurement can be expressed as a basis |±δ′

i
〉. We show

in the next sections the blind staircase cluster allows for
the blind implementation of Deutsch’s algorithm, while
the blind triangle cluster allows for the blind implemen-
tation of Grover’s algorithm.

Blind algorithms

One of the most prominent examples where quan-
tum mechanics demonstrates its superiority in computa-
tional speedup is Grover’s search algorithm [3, 45], which
provides a quadratic speedup to the following problem:
Given a function f : {0, 1}n → {0, 1}, find an x such that
f(x) = 1. Here we demonstrate a blind implementation
of Grover’s search for n = 2, where blindness ensures that
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FIG. 3: Experimental setup, measurement results (solid) and ideal values (wireframe). (A) The experimental setup to produce
(client) and measure (quantum server) blind cluster states. The various blind cluster states are created by adjusting the settings
of the phase retarders located along the path of the state emitted into the forward (θ3) and backward (θ2) modes (see Appendix

for detailed information). (B) Density matrix of the four-qubit cluster state |Φ
(2,3)
L 〉 in the laboratory basis. Shown are the

real (left) and imaginary (right) parts of the density matrix. (C) Experimental demonstration of a single-qubit rotation around
the Z-axis of the Bloch sphere and its consistency with blindness. A measurement of δ4 = π/2, δ3 = −π/2, and δ2 = −π/2 on

the blind linear cluster |Φ(2,n3)〉← results in rotations |Ψout〉 = Rx(π)Rz(θ3 + π/2)|Ψin〉 on the encoded qubit that depend on
the initial rotation θ3. By varying θ3 and averaging over all resulting density matrices, we obtain a totally mixed state. (D)
Experimental demonstration a two-qubit gate and its consistency with blindness. Measuring δ2 = 0, and δ3 = −π/2 at the

states |Φ(2,0)〉, |Φ(2,4)〉, |Φ(6,0)〉, |Φ(6,4)〉 results in computations Rz(θ2) ⊗ Rz(θ3 + π/2) Cphase|Ψin〉 dependent on θ2 and θ3.
Averaging over this subset of all 64 possible states results in a totally mixed state. The imaginary part of the density matrices
(C,D) is below 0.05 and hence not shown.

the server is unable to distinguish the actual computa-
tion from within a given family of circuits implement-
ing (I ⊗Rz(ξ)H). Whereas previous realisations [10, 12]
are not amenable to blind implementations, our compu-

tation, embedded into the blind triangle cluster |Φθ̂〉△
(Figure 2F), remains blind. The algorithm proceeds as

follows: the values of x are represented by the states
|00〉, |01〉, |10〉 and |11〉, respectively. A superposition of
all four states is initially created and the oracle tags one
element by applying a phase of π, thus flipping the sign
of this term (see Figure 4A). Then each of the four states
is mapped to an output such that measuring both qubits
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FIG. 4: Blind implementation of Grover’s algorithm. (A)
Quantum circuit. The input to the circuit is |+〉|+〉; apply-
ing one of the operations Rz(0 or π)⊗Rz(0 or π)CPhase de-
fines which of the four input states |00〉,|01〉,|10〉,|11〉 is tagged
and applies a phase shift of π to that state. The operation
(I⊗H)CPhase(HRz(−π/2)⊗I) then maps these four states to
an output that is measured in the basis (|+i〉, |−i〉). (B) Cor-

responding implementation on a triangle cluster |Φθ̂〉△. Here,
the measurement of qubits 2 and 3 corresponds to the tagging
of one of the elements, measuring the output qubits 1 and 4
with measurement angles of π/2 identifies then which input
was tagged. Depending on the state we want to tag, we choose
one set of measurement angles on qubits 2 and 3 from the four
possible sets given in Figure 4a. For example, a measurement
with angles −π/2 and π tags the state |01〉. Since qubits 2
and 3 are blind, the measurement instructions depend on the
initial rotation of the qubit. Without that knowledge, the
quantum server is unable to distinguish the algorithm from
a given family of circuits. (C) Measurement outcomes for

tagging the |01〉 element for all states |Φ(n2,n3)〉△ are shown.
The corresponding error bars are smaller than 0.056 for all
results shown.

in the basis |±i〉 reveals the tagged item. This compu-
tation can be embedded into the blind triangle cluster,

|Φθ̂〉△ (Figure 2F), the choice of φ2 and φ3 determines
which element is tagged. Figure 4C shows the results of a
Grover search for the tagging of the state |01〉. For each
blind cluster state, we show the probability of identify-
ing the tagged state as well as the probabilities of finding
the unwanted states, due to the experimental noise. We
achieve probabilities of finding these positive events of
up to 0.850± 0.039 with an average over all blind states
of 0.720 ± 0.015. Note that no classical algorithm can
succeed in this scenario with probability higher than 0.5.

Another algorithm which demonstrates the power of
quantum computing, is the Deutsch-Josza algorithm [2]
that takes as input an oracle (or black-box) for comput-

A

B

DC

readout

oracle oracle

FIG. 5: Blind implementation of Deutsch’s algorithm. (A,B)
The quantum circuits and the corresponding measurements

on a staircase cluster state |Φθ̂〉yp for the constant and the
balanced oracle, distinguished by the measurement of qubit 2
and qubit 3. Blindness of qubit 3 guarantees that the quan-
tum server cannot distinguish between the execution of each
of these scenarios (constant or balanced oracles) and corre-
sponding families of quantum circuits. (C, D) Experimen-
tal (solid) and theoretical (wireframe) results for a constant
(C) and a balanced (D) oracle for the example of the state

|Φ(6,4)〉yp.

ing an unknown function f : {0, 1}n → {0, 1} with the
promise that f is either constant, meaning f(x) is the
same for all x, or balanced, meaning f(x) = 0 for exactly
half of the inputs x and f(x) = 1 for the other half. The
algorithm determines whether f is constant or balanced
by making queries to the oracle. While the best possi-
ble classical algorithm to solve this problem uses at least
2n−1 +1 queries in the worst case, the Deutsch-Jozsa al-
gorithm takes advantage of quantum superposition and
interference to determine whether f is constant or bal-
anced with only one query. In contrast to previously
realized implementations of Deutsch’s algorithm using
traditional cluster states [16, 46], we exploit blind stair-

case cluster states |Φθ̂〉yp for the implementation of this
quantum algorithm for the case n = 1. Figure 5A shows
the quantum circuits that realise oracles corresponding
to constant and balanced functions. The corresponding

implementation on |Φθ̂〉yp is given in Figure 5B, where
the choice of oracle is done by fixing the measurement on
qubits 2 and 3. Blindness of qubit 3 guarantees that the
quantum server will not recognize the implementation of
a constant oracle from the Grover algorithm or general
circuits implementing Rz(ξ)H⊗I, and a balanced oracle
from (I ⊗H)CPhase(Rz(ξ)H ⊗H), see Figure 5.

Figure 5C and 5D show the outcome of our measure-
ment for the case of |Φ(6,4)〉yp. A tomography of the state
of qubit 4 is performed in order to fully characterize the
output of the computation. In this case, the obtained
fidelity for the output state is F = 0.930 ± 0.025 for
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FIG. 6: Testing of the quantum server. By measuring the
probability distributions of a fixed measurement setting for all
blind cluster states and comparing those with the theoretical
expectations, the client can find out if the server possesses any
quantum technology or not. For example, fixing the measure-
ment settings to δ1 = −σz, δ2 = π, δ3 = −π/2, and δ4 = π/2
leads to different theoretical (blue) and experimental (green)
probability distributions dependent on the underlying blind
cluster state. A pure classical server guesses every outcome
with the same probability (1/16) and can be detected in this
way (red line). Conservatively, we show Poissonian errors
which constitute a lower limit for the experimental error due
to imperfections in the state generation (see Appendix).

the constant oracle and F = 0.887 ± 0.033 for the bal-
anced oracle, with the algorithm producing the correct
result with probabilities 0.899 ± 0.006 for the constant
and 0.895± 0.022 for the balanced oracle.

Towards verifying the quantumness

Self-testing is a verification process for the operations
of a collection of untrusted quantum devices [47, 48]; a
key application of the blind computing protocol is also
towards such verification of quantum devices [29, 30]. In
the setting of our experiment we demonstrate a notion of
verification that can be used as a heuristic probabilistic
test for whether the server indeed possesses any quan-
tum technology or is a completely classical device. For
this, the client chooses a measurement setting for which,
for each measurement outcome, there exists a state with
a detection probability of zero. Due to blindness, how-
ever, the quantum server has no information about which
initial states the client has prepared. If it has no quan-
tum technology in hand, it attempts to use its classical
devices and guesses the outcome for the client’s com-
putation wrong with probability at least 1/8. Better
bounds can be achieved using statistics of several rounds
by comparing it with the known theoretical statistics to
test whether the quantum-computing server is producing
the expected outcome or not.
We experimentally demonstrate the testing procedure

using statistics of several outcomes for different measure-

ment instructions. Figure 6 shows relevant theoretical
predictions as well as experimental outcomes which con-
firm the quantum nature of the server. By instructing the
quantum server to measure, for example, this statistical
distribution, the client can see if the outcomes coincide
with the expectations. Our demonstration is the first
step towards an efficient verification scheme for quantum
technology and acts as experimental benchmark for fu-
ture fault-tolerant protocols using more qubits, that is
expected to enable the detection of a cheating quantum
server with probability exponentially close to one.

Discussion

We have experimentally demonstrated the concept
of blind quantum computing. Generating a family of
four-qubit blind cluster states, we obtained a universal
set of single-qubit and non-trivial two-qubit quantum
logic gates, as well as implementations of Deutsch’s and
Grover’s algorithms. We use the photon’s mobility, an
intrinsic advantage of this physical quantum system, for
preparing various qubits on the client’s side which are
then processed by a locally separated quantum server.
On the path from our proof-of-principle experiment to

a full implementation of the BQC scheme, there are sev-
eral technical challenges to be faced: Emitted photons
that do not contribute to the generation of the clus-
ter state can in principle reveal information about the
blind phases. Furthermore, post-selection and photon
losses decrease the efficiency of the protocol. There-
fore, the realization of single-qubit states on demand
and the heralded generation of blind cluster states us-
ing measurement-induced interactions with high fidelity
and low losses will be crucial for future applications. In
our experiment, the blind angles were chosen by the hu-
man client and the measurement settings were selected
from a prepared list. Ideally, the source of randomness
should be carefully scrutinized to avoid any correlations
with the server, and an efficient shot-by-shot random-
ization should be implemented. Considering the photon
rates in our experiment, the realization of full random-
ization for each measurement is a major challenge, but
seems within reach by advancing current technologies.
The question of how far imbalances and deviations from
the uniform distribution can be acceptable is a topic of
current research.
Our experiment is the first step towards uncondition-

ally secure quantum computing in a client-server environ-
ment, where the client’s entire computation remains hid-
den — a functionality not known to be achievable in the
classical world. We anticipate that this will become an
important privacy-preserving technique in future quan-
tum computing networks or clouds [49]. Especially con-
sidering the tremendous challenges encountered in mak-
ing quantum computers widely available, such future net-
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works could consist of a few powerful quantum-computer
nodes. The only quantum requirement for the clients
would be to communicate with the nodes via quantum
links enabling the transfer of arbitrary qubits. Although
photonic quantum systems seem to be ideally suited for
privacy-preserving quantum computing, we stress that
our results are applicable to any physical implementation
of qubits and that in the near future the precise quantum
control of multi-qubit quantum systems [50] will allow for
implementing more complex algorithms.
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APPENDIX

Proof of blindness for optimised BQC

Our optimised protocol guarantees full blindness of a
computation, even though not all qubits have an a initial
rotation. Here, we show that algorithms that admit a
measurement pattern in which the secret can be encoded
over a few qubits can be made fully blind using only a few
blind qubits. This construction works as long as measure-
ments following the blind qubit measurements are chosen
in the Clifford group (integer multiples of π/2), and thus
our constructions works for Deutsch’s and Grover’s algo-
rithms.

In our setup, in order to achieve blindness for measure-
ments of qubits 2 and 3 the quantum server should learn
nothing about φ2 and φ3, the client’s choice of measure-
ments on those qubits. The quantum server holds the ro-
tated qubits 1√

2

(

|0〉+ eiθ2 |1〉
)

and 1√
2

(

|0〉+ eiθ3 |1〉
)

; it

also has the measurement instructions δ2 = φ2+θ2+πr2
and δ3 = φ3 + θ3 + πr3. For simplicity we define new
variables θ̃2 = θ2 + πr2 and θ̃3 = θ3 + πr3. Thus the

server holds the quantum states 1√
2

(

|0〉+ ei(θ̃2+πr2)|1〉
)

and 1√
2

(

|0〉+ ei(θ̃3+πr3)|1〉
)

. Since r2 and r3 are ran-

dom and unknown to the quantum server, the density
matrices corresponding to these systems, as held by the
server, are identically I/2, that is, the systems are com-
pletely mixed and thus independent of θ̃2 and θ̃3. As
these angles are themselves uniformly random, the clas-
sical information δ2 = φ2 + θ̃2 and δ3 = φ3 + θ̃3 is also
uniformly random and independent of φ2 and φ3. Hence,
the quantum server, despite receiving classical informa-
tion δ2 and δ3 and quantum states |θ2〉 and |θ2〉, cannot
distinguish between the possible choices of the client’s
measurements on qubits 2 and 3. Now, these blind mea-
surements may be followed by non-blind ones. This will
not affect the blindness (no information about φ2 and φ3

will be leaked to the server) as long as the structure of
the algorithm permits the non-blind angles to be integer
multiples of π/2. This optimisation is due to the fact that
for φ4 ∈ {0, π/2, π, 3π/2}, a sign flip on φ (φ → −φ)
can be re-interpreted as the (possible) addition of π to
φ (φ → φ + π). Thus the feedforward structure for
φ4 is given by the addition of an optional multiple of π.
This is completely hidden by the usual addition of a ran-
dom πr4, included in δ4. Thus, from the server’s point
of view, the process of measuring qubit 4 is independent
of φ2 and φ3.

Leakage of information in experimental blind

quantum computing

In order to quantify any deviation from perfect blind-
ness introduced by experimental imperfections we need
a model for the information received by the server dur-
ing a run of the protocol. To this end, we assume that
the only information obtained by the server is the ini-
tial quantum state supplied by the client, as well as
the classical set of angles δi received during the proto-
col. We also assume that the state produced by the
experimental setup for a given choice of the ideal in-
put state is fixed, and that the client’s choices can be
considered uniformly random. In such a model, the
amount of information leaked is bounded by the Holevo
information of the quantum state, ρ received by the
server, χ = −Tr(ρ log2 ρ) +

∑

θ
1
8Tr(ρθ log2 ρθ), where

ρθ = 1
2 (ρ
′
θ + ρ′θ+π) and ρ′θ is the state produced in the

experimental apparatus for the client’s choice of θ.
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Experimental setup

In our experiment (main paper, Fig. 3A), entangled
photon pairs are produced by exploiting the emissions of
a non-collinear type-II SPDC process. For this, a mode-
locked Mira HP Ti:Sa oscillator is pumped by a Coher-
ent Inc. Verdi V-10 laser. The pulsed-laser output (τ =
200 fs, λ= 789 nm, 76MHz) is frequency-doubled using
a 2mm-thick Lithium triborate (LBO) crystal, resulting
in UV pulses of 0.8W cw average. We achieve a sta-
ble source of UV-pulses by translating the LBO to avoid
optical damage to the anti-reflection coating of the crys-
tal. Afterwards, dichroic mirrors are used to separate
the up-converted light from the infrared laser light. The
UV beam is focused on a 2mm-thick β-barium borate
(BBO) crystal cut for non-collinear type-II parametric
down-conversion. Afterwards the beam is reflected and
passes the crystal a second time. Entangled photon pairs
are emitted into the forward modes, a and b, and the
backward modes, c and d. Half-wave plates (HWPs) and
additional BBO crystals compensate walk-off effects and
allow the production of any Bell state in the forward and
backward mode. The modes of the different pairs a, c and
b, d, respectively, are then coherently overlapped at po-
larizing beam splitters (PBSs) by equalizing the different
path lengths. Narrow-band interference filters (∆λ = 3
nm) are used to spatially and spectrally select the down-
converted photons which are then coupled into single-
mode fibers that guide them to the polarization anal-
ysis setup. There, different polarization measurements
are performed using quarter-wave plates (QWPs), HWPs
and polarizing beam splitters.

Experimental preparation of blind cluster states

The blind cluster state in the laboratory basis is com-
posed of four terms that correspond to different emis-
sions of four photons. Such four-photon emissions can
experimentally be obtained either by an emission of two
entangled pairs, one in the forward and one in the back-
ward mode, or by double-pair emissions into the forward
or the backward mode. The production of our clus-
ter state exploits coherent superpositions of these dif-
ferent four-pair contributions and utilizes the properties
of the polarising beam splitters (PBSs) as well as post-
selection to obtain the appropriate state. In order to
produce the desired state, we align our setup such that
a |Φ−θ3〉 = (|HH〉 − eiθ3 |V V 〉)/

√
2 state is emitted in the

forward direction and a |Φ+
θ2
〉 = (|HH〉 + eiθ2 |V V 〉)/

√
2

state in the backward direction, where |H〉 (|V 〉) denotes
the horizontal (vertical) polarization state. The emis-

sion of only one entangled pair in the forward direction
and only one pair in the backward direction results in
two different four-photon terms: |H〉1|H〉2|H〉3|H〉4 and
−ei(θ2+θ3)|V 〉1|V 〉2|V 〉3|V 〉4 due to the properties of the
PBSs. The two-pair emissions also lead to fourfold coin-
cidences, namely to a −eiθ3 |H〉1|H〉2|V 〉3|V 〉4 state and a
eiθ2 |V 〉1|V 〉2|H〉3|H〉4 state for a double-pair emission in
the forward and in the backward direction, respectively.
We shift the phase of the term −eiθ3 |H〉1|H〉2|V 〉3|V 〉4
by π to generate a sign shift. For this, we use the
method [10] where a rotation of an additional wave plate
has the desired effect. The final output state is a super-
position of all these four terms. In our setup we use a
combination of quarter-wave plates and half-wave plates
to adapt the phase of the state that is emitted into the
forward mode. The phase of the backward pair is adapted
by tilting one of the compensation crystals. Note that
after the PBS two quarter-wave plates are inserted in
modes 3 and 4 to compensate for birefringence effects.
By changing the phases of the entangled pairs, we can
now manipulate the values of θ2 and θ3 of the client’s
qubits.

In our experiment, the emitted Bell pairs show a typ-
ical visibility of about 0.9, depending on the specific ex-
perimental setting. The different photon emissions then
interfere at the PBSs with average visibilities of 0.85.
Additional errors arise due to phase drifts during the
measurements. These main error contributions, together
with minor errors like polarisation drifts, decrease the fi-
delity of our blind cluster states with respect to the ideal
state. In our calculations, we always assume Poissonian
errors. In fact, these indicate a lower bound for the ac-
tual error that takes all the experimental imperfections
into account. This is underlined by an analysis of the
data of Figure 6 (main paper) where we obtain a value
of χ2 of 1.6 when assuming Poissonian errors only. In-
cluding the errors mentioned above, we obtain a χ2 value
satisfactorily close to one (about 1.1).

In the context of BQC, the client has access to the
various four-photon emissions and prepares the encoded
phases, for example θ2 and θ3, by applying local opera-
tions. These photons are then sent to the quantum server
who generates entangled blind cluster states by superim-
posing these qubits on two polarizing beam splitters, fol-
lowed by a successful detection of a four-fold coincidence
in the output modes 1-4. The settings for the compu-
tation are set by phase retarders in each of the output
modes to align the setting for the consecutive projective
measurements. We note that due to the down-conversion
process the client rather prepares arbitrarily rotated Bell
pairs instead of single qubits, which enables a compact
client-server network without affecting the blindness.
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