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Demonstration of Einstein–Podolsky–Rosen steering with

enhanced subchannel discrimination
Kai Sun1,2, Xiang-Jun Ye1,2, Ya Xiao1,2, Xiao-Ye Xu1,2, Yu-Chun Wu1,2, Jin-Shi Xu1,2, Jing-Ling Chen3,4, Chuan-Feng Li1,2 and
Guang-Can Guo1,2

Einstein–Podolsky–Rosen (EPR) steering describes a quantum nonlocal phenomenon in which one party can nonlocally affect the
other’s state through local measurements. It reveals an additional concept of quantum non-locality, which stands between
quantum entanglement and Bell nonlocality. Recently, a quantum information task named as subchannel discrimination (SD)
provides a necessary and sufficient characterization of EPR steering. The success probability of SD using steerable states is higher
than using any unsteerable states, even when they are entangled. However, the detailed construction of such subchannels and the
experimental realization of the corresponding task are still technologically challenging. In this work, we designed a feasible
collection of subchannels for a quantum channel and experimentally demonstrated the corresponding SD task where the
probabilities of correct discrimination are clearly enhanced by exploiting steerable states. Our results provide a concrete example to
operationally demonstrate EPR steering and shine a new light on the potential application of EPR steering.
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INTRODUCTION

In the original discussion of Einstein–Podolsky–Rosen (EPR)
paradox,1 Schrödinger2,3 described a quantum non-local phenom-
enon that Alice can steer Bob’s state through her local
measurements. Since then, great efforts have been made to
understand quantum nonlocality. It was not until 2007, Wiseman,
Jones, and Doherty revisited Schrödinger’s discussion and
formulated the concepts of quantum non-locality as quantum
entanglement, EPR steering, and Bell non-locality in terms of
quantum information tasks.4,5 It is now clear that all steerable
states are entangled, but not all steerable states exhibit the Bell
non-locality,4,5 which implies that EPR steering sits between
quantum entanglement and Bell non-locality. This hierarchy also
holds for all possible positive operator valued measures.6 EPR
steering has recently drawn plenty of attention.7 For example,
several theoretical studies including the verification of EPR
steering based on steering inequalities8 and all-versus-nothing
proof,9 no-cloning of quantum steering,10 temporal steering,11–15

quantification of steerability,16–18 and one-way EPR steering19

have been reported as well as the corresponding experiments.20–
26 There are also other interesting steering experiments, such as
the high-order steering27 and loophole-free steering.28–30 More-
over, the parallel works based on the continuous variable
systems31–39 have been reported.
Similar to the necessary and sufficient verification of quantum

entanglement with a quantum information task named quantum
channel discrimination,40 which refers to the task of distinguishing
among different quantum operations,41–43 EPR steering can be
characterized necessarily and sufficiently based on a quantum task

named subchannel discrimination (SD).17 As an extension of the
quantum channel generally representing the physical transforma-
tion of information from an initial state to a final state in which the
quantum operation is trace-preserving for all input states,44 a
subchannel is a completely positive operator that does not
increase the trace in the density matrix space.17 A series of
subchannels {Λh}h, that constitute a channel Λ satisfying
Λ ¼Ph Λh, can be treated as a decomposition of the channel
into its different evolutionary branches with the corresponding
probability Tr(Λh[ρ]) for any state ρ, as shown in Fig. 1a. Here,
Λh½ρ� ¼ KhρK

y
h , where the Kraus operators Kh are the explicit matrix

descriptions of Λh and satisfy
P

h K
y
hKh ¼ I. The SD task allows one

to distinguish in which subchannel the quantum evolution occurs,
whereas this information is lost if the process is described simply
in the framework of the quantum channel. Moreover, SD tasks
might lead to the emergence of new quantum phenomena and
applications in quantum information processing, such as the SD-
based quantum key distribution.45

Recently, it has been proven that for any bipartite state, we can
verify it is steerable if there exists an SD task in which the
successful discrimination probability is enhanced by this state
compared with the case employing single-qubit states; otherwise,
if no such SD tasks exist, it is unsteerable.17 Also, such an SD task
presents an operational method to characterize EPR steering.
However, the detailed construction of such subchannels has not
been investigated up to now. In this article, we design a feasible
collection of concrete subchannels and experimentally demon-
strate EPR steering with the corresponding SD task.
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RESULTS

SD task for the two-setting case

First, we would like to introduce the detailed SD task in the
simplest case with two measurement settings. In this work, we
consider a channel consisting of four subchannels Λij (i, j= 0 or 1),
where the corresponding Kraus operators are denoted by Kij. We
exploit an entanglement-breaking channel (EBC)46 to limit the
bound established in the single-qubit protocol. The Kraus
operators Kij are implemented with the EBC, as illustrated in Fig.
1b, where Aj (j= 0 or 1) is regarded as the intermediate
subchannel and satisfies Kij ¼ ij i ih j � Aj (i, j= 0 or 1) (see Methods).
Since the information of i is included in the output ρout, the SD
task is transformed into the task of distinguishing Aj based on i. To
realize {Aj}j, a unitary operation U is performed on a quantum
system consisting of a target qubit in the state ρ and an auxiliary
qubit initially in the state 0j i,47 as shown in Fig. 1c. In this work,
the operation is represented as follows,

U ¼ A0 �A1

A1 A0

� �

: (1)

Aj is determined according to the output jmeasured along the z
direction on the auxiliary qubit. The SD task in single-qubit
protocol is completed by guessing j according to the output b that
is measured along a direction ~n on the target qubit. Since the
target qubit only carries the classical information after the EBC,~n is
optimized to be z to maximize the success probability Psρ. With the

input state ρ, the results of different strategies for guessing j are
denoted by pc0ρ ; pc1ρ (guessing j is the constant 0 or 1 regardless of

b, respectively), p00ρ ; p01ρ (guessing j= b or j= b ⊕ 1 where ⊕

represents addition modulo 2, respectively). The success prob-

ability is denoted as Psρ ¼ max pc0ρ ; pc1ρ ; p00ρ ; p01ρ

n o

, and the upper-

bound probability Ps in the single-qubit case is obtained by

optimizing the input state, which implies Ps ¼ maxρ Psρ

n o

.
We now consider the two-qubit Werner states ρAB

48 with the
form of,

ρAB ¼ η Φj i Φh j þ ð1� ηÞI=4; (2)

where η ∈ [0,1], Φj i is the maximally entangled state, and I=4 is
the maximally mixed state. As illustrated in Fig. 1d in the two-
setting case (m= 1, and g1 is identical), the task is that Alice
guesses j and announces to Bob based on a which is obtained by

measuring along~ni (chosen according to b). Since b∈ {0, 1}, there
are two directions~ni along which Alice can choose to measure. In
this work, we follow two rules to design the SD tasks, i.e., (i) the
success probability of maximally entangled state is 100%; (ii) the
success probability of maximally mixed state is 50%. Thus, the
success probability of SD task PρAB equals to 1/2+ η/2. In the linear
EPR steering inequalities, CLHS

n denotes the bound established by
the local hidden state model where n is the number of
measurement settings.20 In the case of n= 2, CLHS

2 ¼ η�2 where
η�2 ¼ 1=

ffiffiffi

2
p

is the visibility bound of the Werner states. When η>η�2,
ρρAB is steerable. For the single-qubit protocol, by directly
calculating, we find Ps ¼ 1=2þ CLHS

2 =2 (see Section I of the
Supplemental Material for details (See the Supplemental Mate-
rial.)). Thus, if Bob finds PρAB>P

s, the steerability from Alice to Bob is
observed.

SD task for the multi-setting cases

EPR steering from Alice to Bob relates to the number of settings
measured by Alice.4,49 For some predictably steerable states,
steering fails because of the very limited number of measurement
settings.25 To capture as much information about the states as
possible to demonstrate EPR steering, it is necessary for Alice to
apply multiple measurement settings to approach the predictions
of infinite measurement settings. In this work, we consider the
regularly spaced directions which are given by the Platonic solids
with the number of measurement settings n corresponding to 2, 3,
4, 6, and 10.20 Compared with the optimal measurement settings
introduced in,49 here, the two-setting and three-setting measure-
ments are optimal and EPR steering can be affirmed necessarily
and sufficiently. For other multi-setting cases, the optimal
measurements don’t correspond to the regularly spaced direc-
tions and are difficult to realize in experiment. Moreover, the
diffence between the results in this work and the predictions of
the optimal measurements is very small (see Section I of the
Supplemental Material (See the Supplemental Material.)). To
experimentally realize such a task, on Bob’s side, the qubit
equiprobably evolves through several unitary gates gm before the
Kraus operators Kij, as illustrated in Fig. 1d, and the details can be
found in Section I of the Supplemental Material (See the
Supplemental Material.). The corresponding measurement setting
based on Bob’s result b|gm, which denotes that b is obtained
under the gate operation gm, is then implemented on Alice’s side.
In fact, for each gm, the SD process can still be regarded within the

Fig. 1 The process of subchannel discrimination (SD). a The collection of subchannels {Λh}h composing a quantum channel Λ. b The protocol
for realizing the Kraus operators Kij using the entanglement-breaking channel (EBC) scenario. The state ρ is measured along the z direction
with output result i after passing through the intermediate subchannel Aj. A new state is prepared based on the value of i. c The single-qubit
protocol for SD in the case of two measurement settings. The unitary operation U related to the intermediate subchannels A0 and A1 is
demonstrated with the qubit state ρ and an auxiliary qubit 0j i which is finally measured along z with output result j. After the EBC, the
measurement along a direction~n is performed on the signal qubit, and the result b is obtained. d The two-qubit protocol for SD with multiple
measurement settings. One of the two qubits, in a state ρAB, is sent to Bob, and the other is sent to Alice. On Bob’s side, the qubit passes
through one of the unitary gates gm with probability 1/m before the evolution Kij. Alice chooses one of the measurement directions~ni based
on the result b|gm from Bob and obtains the result a
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framework of two measurement settings. In the single-qubit

protocol with n measurement settings, denoting Psm;ρ for each gm,

the total success probability is obtained as

Psn ¼ maxρ
P

m 1=mPsρ;m

n o

. Similarly, for the two-qubit state ρAB,

PρAB ;n ¼
P

m 1=mPρAB ;m. Furthermore, similar with the two-setting

case, we have CLHS
n ¼ η�n and Psn ¼ 1=2þ CLHS

n =2 (see Section I of
the Supplemental Material for details (See the Supplemental
Material.)) when the multiple measurement settings are selected
based on the Platonic solids.20 As a result, the constructed SD task
provides an operational method to characterize the steerability of
Werner states. If the success probability of SD is enhanced by
using the two-qubit state ρAB, i.e., PρAB>P

s, then ρAB is steerable
from Alice to Bob regardless of the number of measurement
settings; otherwise, under n measurement settings performed by
Alice, i.e., PρAB ;n � Psn, Alice fails to steer Bob’s states.
Compared with the two-setting case in which there are four

subchannels, the multi-setting cases can be regarded as multi-
subchannel discrimination tasks where more subchannels con-
sisting of gates gm and the corresponding Kraus operators Kij are
required, and the reconstructed subchannels could be expressed
as K 0

ijm ¼ Kij � gm. Following the similar method designing sub-
channels for Werner states, we can also create the corresponding
subchannels for other types of two-qubit states, like the Bell
diagonal states (see Section I of the Supplemental Material (See
the Supplemental Material.)).

Experimental setup

The unitary operation U shown in Fig. 1c can be decomposed
into several parts, including two control-not (CNOT) gates
(CNOT1 and CNOT2) and the other unitary evolutions E, V1, V2,

and V3, and implemented in an optical Sagnac-like interferometer
(SLI), as illustrated in Fig. 2 (see Methods). And U could be
expressed as

U ¼ IC � V3ð Þ � CNOT2 � IC � V2ð Þ � CNOT1 � E � V1ð Þ; (3)

where IC is the identical operation on the control qubit. To obtain
the bound Ps and verify the setup, the single-qubit protocol is
performed with the input state denoted as ρðθÞ ¼ cosθ Hj i þ
sinθ Vj i where Hj i and Vj i represent the horizonal and vertical
polarizations of the photons, respectively. For the two-qubit
protocol, Werner states are prepared via the spontaneous
parametric down conversion process by pumping the nonlinear
crystal of periodically poled KTiOPO4 (PPKTP) which is placed in a
polarization Sagnac interferometer.50 Here, Φj i is prepared to be
HHj i þ VVj ið Þ=

ffiffiffi

2
p

. The experimental Werner states ρAB are
prepared with an average fidelity of 98.3 ± 0.2%. The detailed
experimental preparation can be found in Methods.

Experimental results

In the case of two measurement settings, the results pc0ρ ; pc1ρ ; p00ρ
and p01ρ are presented in Fig. 3a which show that the input states ρ(θ)

should be optimized to obtain the upper-bound value Ps. More
results in the single-qubit protocol with multiple measurement
settings are presented in Section III of the Supplemental Material
(See the Supplemental Material.). The Werner state ρAB is identified
to be steerable when the SD performance is enhanced with
PρAB>P

s, see Fig. 3b, c. By contrast, when PρAB ;n � Psn (n= 2, 3, 4, 6,
10), Alice fails to steer Bob’s state via the corresponding SD task.
As the number of measurement settings increases, the bound
established for the single-qubit approach decreases, whereas the
success probability achieved by employing steerable resources

Fig. 2 Logic circuit and experimental setup. a The logic circuit for implementing U. b The integrated experimental setup. One photon is sent
to Bob, and the other is sent to Alice. On Bob’s side, each one of the gates gm before the Sagnac-like interferometer (SLI) is realized using a
combination of a quarter-wave plate (QWP), a half-wave plate (HWP) and a QWP; the photons are measured along the z direction using an
HWP and a polarized beam splitter (PBS). On Alice’s side, in the single-qubit protocol, the photons are detected directly to provide a
coincidence signal. While, in the two-qubit protocol, Alice measures her photons along a direction~ni that is chosen based on the result b|gm
received from Bob. The photons on both sides are detected by single-photon detectors (SPD). Finally, Alice’s measurement result is sent to
coincidence units, unit0 and unit1, to coincide with the corresponding results from port0 and port1, respectively. c The unit used to prepare the
investigated entangled states. The polarization Sagnac interferometer is used to prepare the maximally entangled state Φj i to be fed into the
dual-wavelength PBS and HWP, i.e., HWP2. An additional unit M, in which the dashed gray part inserted with a long enough birefringent
crystal (BC) assists in preparing the maximally mixed component I=4, is placed at the port to Alice to produce the mixed state ρAB. Two
moveable shutters are used to adjust the parameter η. BS beam splitter, DM dichroic mirror. d Experimental realization of U with the SLI
constructed from a homemade beam splitter, with half of it coated as a PBS and the other half coated as a non-polarized beam splitter (NBS)
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remains constant, as illustrated in Fig. 3d. All error bars in this work
are estimated as the standard deviation from the statistical
variation of the photon counts, which is assumed to follow a
Poisson distribution. As the error bars on the experimental
probabilities are very small, roughly 0.002, they are not shown
in the figures.

Moreover, by means of the SD task, the difference between EPR
steering and entanglement can be characterized in an operational
way. It is found that the success probability achieved using
unsteerable Werner states ρAB cannot surpass the single-qubit
bound when η � η�10 � 0:524 in the case of ten measurement
settings.20 However, ρAB is still entangled when η > 1/3. This

Fig. 3 Experimental results for the SD task. a The probabilities of successful discrimination with single-qubit states in the case of two
measurement settings. The curves and symbols represent the theoretical predictions and experimental results, respectively. b,c The
experimental results in the two-qubit protocol with two and six measurement settings, respectively. The blue lines represent the theoretical
predictions. The pink and green dots in b and c represent the corresponding experimental results, with the pink and green solid lines
representing the single-qubit upper bounds for two and six measurement settings, respectively. The black dashed lines represent the single-
qubit upper bound for the infinite number of measurement settings. d The comparison of the single-qubit upper bounds Ps with the results
PρAB obtained using the prepared maximally entangled state (blue dots) for different number of measurement settings. The success
probabilities PρAB are lower than the theoretical predictions, which can be primarily attributed to imperfect experimental manipulation. The
brown squares represent the theoretical predictions of the upper bound for single-qubit states, whereas the experimental results are
represented by the purple triangles. The bound Ps established for the single-qubit approach decreases, and it is very close to the value with
infinite measurement settings when the number of measurement setting is equal to ten. The experimental error bars which are very small and
not shown are estimated as the standard deviation

Fig. 4 Experimental results of investigating different kinds of correlations via the SD task. a The probabilities of successful discrimination for
the case of ten measurement settings. The colored dots represent the experimental results, and the blue line represents the theoretical
prediction. The dark red solid line and black dashed lines represent the upper bounds in the case of the single-qubit protocol for ten and
infinite measurement settings, respectively. b The experimental results for the Bell-CHSH parameter S as a function of the success probability
of SD, PρAB , in the case of ten measurement settings. The colored dots represent the experimental results. The green solid line represents the
upper bound of local-hidden-variable model. The dark red dashed line represents the single-qubit upper bound. The experimental error bars
which are very small and not shown are estimated as the standard deviation
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implies that the success probability of SD cannot be enhanced by
using unsteerable entangled states, which is experimentally
verified by the two pink dots in Fig. 4a. The concurrences of
these two pink dots are measured to be 0.154 ± 0.008 and 0.223 ±
0.009, which verify that the states are entangled.51 We further
investigate EPR steering with Bell-local states. Theoretically, the
Bell inequality will be violated when η>1=

ffiffiffi

2
p

,48 and according to
ref. 52, ρAB is a Bell-local state when η ≤ 0.683. We measure the Bell-
CHSH parameter S53 which is shown as the function of PρAB in Fig.
4b. The success probabilities of SD using three Bell-local states
which are represented by the dark red dots in Fig. 4 are enhanced,
and therefore, these states are steerable.

DISCUSSION

Based on the proof of the necessary and sufficient characterization
of EPR steering, we designed and experimentally implemented an
SD task to demonstrate EPR steering using two-qubit Werner
states. The methods for decomposing a quantum evolution into
sub-channels can be helpful for gaining a thorough understanding
of complex open-system dynamics. The enhanced probabilities of
successful discrimination achieved using EPR steering provides a
concrete example of the application. Moreover, this practical task
offers an intuitive means of operationally distinguishing the
different concepts of quantum nonlocality.
Compared with the previous experiments using steering

inequalities to investigate EPR steering, in which Bob measures
along several directions when steered by Alice,20,25 our work
exhibits a particular feature that the measurement performed on
Bob’s qubit is restricted to a single direction, which is z in this
work. This feature implies that the SD task offers a convenient
approach for identifying EPR steering. Another character of the SD
task is the measurement sequence of Alice and Bob. In the
previous works,4,21 considering that Alice steers Bob, Bob performs
the measurements after receiving the measurement results from
Alice. However, in the SD task, the sequence is reversed, which
means Alice begins to measure her qubit after Bob’s
measurements.
As EPR steering can be regarded as the one-side device-

independent quantum information task,45 the steering-enhanced
SD task, where Bob trusts his experimental device while Alice’s
side is device-independent, shows the potential application in
one-side device-independent quantum key distribution. Further-
more, in our work, the SD task on Bob’s side is implemented based
on the one-way classical communication (from Bob to Alice).
Considering the situation that Bell non-locality relates to the two-
side device-independent quantum information task,5,45 one might
extend the SD task demonstrating EPR steering to investigate the
Bell non-locality. For instance, a similar quantum information task
referring to a bipartite SD problem (SD tasks on both sides) with
two-way classical communications, which relates to the commu-
nication complexity problem,54,55 might be used to characterize
Bell non-locality in an operational way.

METHODS

The detailed expressions of Aj and Kij in the two-setting case
Following the theoretical method to determine Aj which is introduced in
Section I of the Supplemental Material in detail (See the Supplemental
Material.), we can obtain the expressions of A0, A1 in the two-setting case
as below

A0 ¼
1

4 sin π
8

sin π
8
ffiffi

2
p

1
4 sin π

8
� sin π

8
ffiffi

2
p

0

@

1

A;A1 ¼
sin π

8
ffiffi

2
p � 1

4 sin π
8

sin π
8
ffiffi

2
p 1

4 sin π
8

0

@

1

A: (4)

Considering the Kraus operators Kij which satisfy Kij ¼ ij i ij i � Aj (i, j= 0 or 1),

we can get

K00 ¼
1

4 sin π
8

sinπ8
ffiffi

2
p

0 0

 !

; K01 ¼
sinπ8
ffiffi

2
p � 1

4 sinπ8

0 0

 !

;

K10 ¼
0 0
1

4 sin π
8

� sinπ8
ffiffi

2
p

 !

; K11 ¼
0 0
sinπ8
ffiffi

2
p 1

4 sinπ8

 !

:

(5)

For multi-setting cases, the corresponding expressions of Aj and Kij can
be obtained using the similar method which is shown in Section I of the
Supplemental Material (See the Supplemental Material.).

Experimental implementation of the unitary operation U

We construct an inherently stable optical interferometer, namely, a Sagnac-
like interferometer (SLI), to realize this operation U (see Fig. 2b). The path
and polarization degree of freedom of the photons are used as the
auxiliary qubit, which is initially in the state 0j i, and the probe qubit,
respectively. A homemade beam splitter, of which one half is coated as a
PBS and the other half is coated as a non-polarized beam splitter (NBS),
acts as the input-output coupling element of the interferometer. Each
single-qubit gate evolution of the probe qubit (the polarization of
photons), i.e., V1,V2, and V3, is realized through a combination of two
HWPs. The operation E on the auxiliary qubit is realized by adjusting the
ratio of the numbers of photons on the 0j i and 1j i paths, which is achieved
by means of a continuously variable neutral density filter (CVF) crossing
both paths. For the first CNOT gate, the path qubit is the control qubit,
while the polarization is used as the target qubit. Thus, the polarization of
photons on the 0j i path remains the same, whereas the polarization on the
1j i path reverses, meaning that the polarization Hj i is flipped to Vj i and Vj i
is flipped to Hj i. This process is realized by placing one HWP on each of the
two paths; HWP0, located on the 0j i path, is set at 0° for phase
compensation, while HWP1 is set at 45° to reverse the polarizations of Hj i
and Vj i. The second CNOT gate is the inverse of the first CNOT gate; the
polarization is treated as the control qubit affecting the target qubit, which
is the qubit related to the path information. This gate is implemented in
the PBS part of the homemade beam splitter. In detail, the Hj i polarization
remains unchanged (retaining the same path information), while the Vj i
polarization flips to the other path. The imperfect optical elements,
especially the homemade beam splitter, would reduce the visibility of the
interferometer and introduce system errors.
To realize {gm} in the multi-setting cases, several wave plates including

HWPs and quarter-wave plates (QWPs) are employed. This part is explained
in detail in Section II of the Supplemental Material (See the Supplemental
Material.).

Preparation of the experimental states
To obtain the single-qubit upper bound and verify the setup, we perform
the SD task using the following single-qubit state ρ(θ),

ρðθÞ ¼ cosθ Hj i þ sinθ Vj i: (6)

In this case, the photons on Bob’s side are prepared as the state
expressed in Eq. (6), and the photons on Alice’s side are detected directly
to provide coincidence signals. ρ(θ) are simply prepared with a half-wave
plate (HWP) set at the angel θ/2 following a polarized beam splitter (PBS).

The upper bound is then Ps ¼ maxρðθÞ PsρðθÞ

n o

.

The investigated ρAB states are manufactured by combining the
maximally entangled state Φj i and the maximally mixed state I=4. Φj i is
prepared via the spontaneous parametric down conversion process where
a χ(2) nonlinear crystal of periodically poled KTiOPO4 (PPKTP) is pumped by
an ultraviolet laser with a peak wavelength of 404.1 nm and a spectrum
width of 0.05 nm. The crystal is placed in a polarization Sagnac
interferometer,50 as illustrated in Fig. 2c. The dichroic mirror (DM) is
designed to exhibit high transmission at 404 nm and high reflection at 808
nm. A dual-wavelength polarization beam splitter (PBS) is employed as the
input-output coupling element of the Sagnac interferometer, and a dual-
wavelength HWP set at 45° is used to change the vertically polarized
component of the ultraviolate photon to the horizonal polarization to
pump the PPKTP crystal. The crystal is placed in a thermoelectric oven with
the temperature set at 28.5 ± 0.1 °C. The maximally entangled state Φj i is
prepared with a brightness of ~18,000 pairs s−1mW−1, which is filtered
using 3 nm bandwidth filters, and the state fidelity is 95.5 ± 0.4%. As shown
in Fig. 2c, a part of the input of unit M still remains as the maximally
entangled state Φj i Φh j, and the other part is used to prepare the
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maximally mixed state I=4 with the dashed gray part in unit M. Two HWPs
are set at 22.5° and a birefringent calcite crystal (BC) of 10mm in length is
employed to induce decoherence between the horizonal and vertical
polarizations of the photons. The shutters are used to adjust the ratio
between Φj i Φh j and I=4 to control the parameter η.

Data availability
All relevant data and program codes are available from the corresponding
author upon the reasonable request.
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