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ABSTRACT 

In experimental studies of the Plasma Wake-field Accelerator performed to 

date at the Argonne Advanced Accelerator Test Facilit,y, significant nonlineari- 

ties in both plasma and beam behavior have been observed. The plasma wares 

driven in the make of the intense driving beam in these experiments exhibit 

three-dimensional nonlinear behavior which has as yet no quantitative theoreti- 

cal explanation. This nonlinearity is due in part to the self-pinching of the driving 

beam in the plasma, as the the denser self-focused beam can excite larger am- 

plitude plasma waves. Th e se lf- pinching is a process with interesting nonlinear 

aspects: the initial evolution of the beam envelope and the subsequent approach 

to Bennett equilibrium through phase mixing. 
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1. Introduction 

The Plasma Wake-field Plccelerator, 1-4 (PWFPI), a scheme in which charged 

particles are accelerated in the potent,ially ultra-high gradient fields supported 

by plasma waves driven in the wake of an intense particle beam, has been the 

subject of experimental investigation a,t the Argonne Advanced Accelerator Test 

Fa,cility5’6 (AATF). I n course of these experiments, many aspects of nonlinear 

plasma and beam physics have been observed. These include the driving of non- 

linear plasma waves in the wake of the beam, and the behavior of the beam 

itself under the influence of its strong, nonlinear self-focusing wake-fields. This 

self-focusing effect yields considembly larger lens strengths than conventional 

methods, a fact which has led to the proposal of employing plasma wake-fields to 

create a powerful final focusing lens for use in a future linear e+e- collider. 
7-11 

The first compelling evidence for electron beam self-focusing in the PWFA tests 

at the AATF was in fact t,he obserrat,ion of nonsinusoidal plasma wave supported 

wake-fields left behind the driving beam. At, high driving beam currents the ac- 

celerating wake-fields were enhanced in both amplitude and in harmonic content 

beyond what was expected assuming the driving beam did not pinch. The degree 

of nonlinearity in the wake-fields provided an estimate on the self-pinched driving 

beam radius; this estimate agreed well with what was calculat,ed from the theory 

of pla.sma~ focusing.’ 

The experimentally observed nonlinear plasma waves represent one aspect of 

nonlinear physics, the deriation from linear dynamics with increasing amplitude. 

The theoretical problem of describing nonlinear electron plasma waves excited by 

reladivistic electron beams has been examined thoroughly the in one-dimensional 

limit. I’-]’ On the other hand, due to the mathematical difficulty of the anal- 

ysis, not much progress has been made in treating three-dimensional nonlinear 

plasma waves. Theoretical estimates of the expected degree of wake-field wave 

nonlinearity in the experiments at, the AATF were based on a rough synthesis of 

three-dimensional linear’ and one-dimensional nonlinear PWFA theories. This 
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estinmtion method and its limitations are outlined below, and the results of this 

analysis are compared with the experimental d&a. The present status of and fu- 

ture prospects for theoretical work on the three-dimensional theory of nonlinear 

plasma waves are examined. 

After the discussion of nonlinear plasma waves in PWFA research, the inves- 

tigation of nonlinear dynamics in the self-pinching electron beam will be under- 

taken in detail. The nonlinear physics contained in the driving beam dynamics 

has some similarity to the nonlinear plasma waves in that the nonsinusoidal 

envelope motion results in a steep density spike, although this motion rapidly 

dissipates. Even ideal envelope wave motion requires an intrinsically nonzero 

transverse beam temperature, in contrast to the essentially cold fluid behavior of 

the nonlinear wake plasma waves. The combined effects of the beam temperature 

and the nonlinearity of the self-focusing forces cause the coherent envelope motion 

to be collisionlessly damped to approach an equilibrium through the mechanism 

of fa,st phase mixing. This equilibrium corresponds to a Ben=& density profile 

whose minimum width is determined by the beam current and initial tempera- 

ture. 

The beam dynamics is treated b&h analytically and computationally. Be- 

muse in a certain limit the focusing wake-fields become nearly independent of 

the plasma, density and depend only on the beam profile, the self-consistent evo- 

lution of the beam distribution can be treated as an issue approximately sepa- 

rate from the plasma dynamics. Analytical models of the self-pinch process are 

employed below: laminar flow is assumed in calculating the initial focusing dy- 

namics, and the Maxwell-Vlasov equation is utilized to discuss the asymptotic 

approach to self-pinched equilibrium. Particle-in-cell computer simulations are 

shown to complement and clarify the conclusions of t,he analysis, and to examine 

the collisionless approach to equilibrium more completely. The physics of the 

self-pinched beam is then compared to the related process of emittance growth 

of a space charge dominated beam in a linear focusing channel. Aft,er the t,heo- 

retical context is established, results from the AATF experimental measurements 
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are presented and compared with the theory. 

2. Linear Plasma Wake-field Theory 

In the linear theory of plasma wake-fields the function of the bunched beam is 

to provide an impulse t,o the plasma, electron fluid, which causes electron density 

oscillations to be excited at the plasma frequency wP = dw, where no 

is the equilibrium ambient electron densit,y. Linearization of the fluid equations 

requires that the perturbed electron density “1 G n - 7~0 be a small quantity 

compared to no. The linearized fluid equation for plasma oscillations excited by 

an electron beam is given by 

ah, 
w + +t(- + nb) = 0, (2.1) 

where nb is the beam density. If one assumes a steady state condition where 

t,he plasma response in time t and longitudinal coordinate t is given only in the 

combination < = z - vbt, with the beam velocity vb = @bc taken to be const.ant 

(in practice we are concerned almost entirely with ultra.-relativistic beams with 

Vb CY c), then Eq. (2.1) can be written as 

~ + k;(n] + nb) = 0, (2.2) 

where k, = up/‘+. This linear model of plasma oscillations yields a picture 

of independent local oscillators with natural frequency I+ excited by a source 

moving with velocity Vb, giving rise to a simple dispersionless wave with phase 

V&City z’+ = Vb. 

If we can write the driving beam density for a cylindrically symmetric beam 

as a product of longitudinal and transverse distributions, nb = g([)f(T), with g 
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normalized to unity, then the solution to Eq. (2.2) can is 

nl(t,r) = f(~) m4b<‘Mt~si= hd< - 01. 
J 
c 

The radial profile of the plasma wave amplitude is the same as that of the beam; 

a convolution integral over beam’s current profile gives the the longitudinal re- 

sponse. This convolution over the beam pulse gives a maximum excited wave 

if the beam scale length is shorter than a plasma skin-depth k;‘, approachine 

iinl(r)ll = kPf(‘). If the beam has a Gaussian current profile, then evaluation ot 

the convolution integral gives the degradat,ion of the wave amplitude with rms 

beam length g1 explicitly; Ilnl(+)il = ,$f(~)exp [-(!c~c~)‘/~]. 

Notice that in the limit that the beam bunch is much wider than it is long 

the quantity f(7) can be interpreted as a surface charge density. If the beam is 

also much wider than the plasma skin-depth, then the electric field can be easily 

approximated as arising from a one-dimensional charge distribution - 

m 

E, z 4~13 
J 

[nb(t’) + %(‘t’)]@ = 4r’%f(7)cos (k& (2.4) 

t 

Inclusion of the effects of the wave’s finite transverse geometry requires substitu- 

tion a function F(@) (which is a convolution over the transversr profile using 

the radial Green’s function7 ) for f(~) in Eq. (2.4). This function which is nearly 

proportional to f(7) if the beam is wide compared to kp’. In the opposite limit, 

the longitudinal field becomes logarithmically small and nearly constant inside 

the beam profile if the beam is narrow with respect to ki’. This is due to the fact 

that the plasma motion, and the related electric field, becomes predominant,ly 

radial in this limit. To quantify this effect, we define the radial field efficiency 

~,(!+,a,) of the wave, which is the ratio of t,he convolution integral on axis F(0) 

to its value in the limit that kp + m. The dependence of the on-axis longitu- 

dinal field on the width of the beam distribution or is explicit in this definition. 
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The efficiency p(kpo,) is a monotonically increasing function of its argument, 

approaching unity at large values of kpgr. 

The most relevant remaining facet of the linear theory concerns the strong 

transverse wake-fields which act upon the beam itself. In general, if the lon- 

gitudinal/temporal dependence of the plasma response can be expressed as a 

function of < alone, as we have assumed, then the wake-field in the limit of an 

ultra-relativistic beam 

WzE+ixB (2.5) 

can be derived from a potential, 

W = V(A, - I$) (2.6) 

This is a differential form of the Panofsky-Wenzel t,heorem, ‘* which will explicitly 

manifest itself in the nonlinear wake-field data we will discuss below. In the wake 

plasma wave, the longitudinal component of the electromagnetic vector potential 

A, vanishes and the wave is electrostatic. Inside the beam itself, however, A, 

does not vanish in general, and can give rise to magnetic self-pinching forces. 

The most interesting regimes occur in the limit, that the beam is long com- 

pared to the plasma skin-depth, in which case the beam can be nearly charge 

neutralized, i.e. nj = -g([)f(T). If’ In addition the beam is wide compared to the 

skin-depth, then the plasma electron return current will flow inside of the beam, 

and the net force on the beam is approximately nullified, as the beam charge and 

current densities are neutralized. In such a case, charged particles moving in the 

direction opposite to the beam also feel no net force. This scheme, called plasma 

compensation, has been proposed as a method of alleviating problems associat,ed 

with the strong beam-beam interaction in high energy linear colliders. 
19 

In practice, high energy electron beams tend to be long and narrow, thus 

allowing choice of plasma density which gives a skin-depth small compared to 

the beam length, but large compared to its width. In this case, the plasma 
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return current flows in a disk of radius - kg’ and the beam current density is 

not neutralized. The net force felt by the beam particles is thus the self-focusing 

effect of the magnetic fields arising from the beam current distribution. Since 

the beam is assumed to be ultra-relativistic, this force can be estimated simply 

from Gauss’ law, 

In this approximation the force depends only on the enclosed current density at 

a given point (~,f). Since the current density is not uniform inside the beam 

in general, the self-focusing wake-fields are not linear in T and independent of 

[ as one would desire for aberration-free optics. The effects of the focusing 

nonlinearities on the performance of a plasma lens used near the interaction 

point of a, linear collider has been examined extensively in Refs. 8-11. 

From the discussion above, it would seem that t,here are two distinct regimes 

where the plasma wake-fields can provide large fields which may be of use in 

accelerator physics. If one utilizes an appropriate densit,y plasma the short, wide 

beam can be used to drive large amplitude waves with high-gradient electric 

fields useful for accelerating other particle bunches, as in the PWFA. On the 

other hand, the long, narrow beam can be strongly focused by its self-ma,gnetic 

fields which are left unbalanced when the plasma response neutralizes the beam’s 

space charge density. It is in fact at the border of these two regimes that the most 

intertAng experimental situation has been encountered, as will be seen below. 



a 

3. Nonlinear Plasma Wake-field Theory 

The nonlinear theory of plasma wake-fields has not been developed to the 

point that the linear theory has, with the facility for calculating multi-dimensional 

effects. For this reason the theory is of limited practical use in quantitatively pre- 

dicting or underst,anding experimental results. The one-dimensional treat,ments 

have, however, examined several relevant aspects of the nonlinear regime of the 

PWFA: modulational, convective and relativistic effects on the plasma waves, 
13 

improved transformer ratio (the ratio of the maximum accelerating field in the 

wake to the maximum decelerating field inside the driving beam) in the PWFA,” 

thermal limits on wave amplitude (wave breaking),14 !I5 and ion motion.17 De- 

spite the limitations of the theory, it is of instructive value to review the major 

results of the nonlinear treatments at this point. 

The first nonlinear corrections to the linear theory arise through the effects of 

the convective derivative and the modulation of the bulk plasma electron density 

in the fluid equations. The nonrelativistic theory developed for this case entails 

keeping the full nonlinear terms in the fluid equation of motion, excluding the 

relativistically correct expression for t,he momentum. In this one-dimensional 

model the wave characteristics are dependent only on I. A useful form of the 

solution to nonrelativistic nonlinear fluid equa.tion is in terms of harmonics of the 

plasma frequency, suppressing phase factors, 
20 

The quantity nl in this expression now represents the amplitude of the funda- 

mental component of the plasma, wave. The longitudinal electric field associat~ed 

with this charge distribution is thus 

E = 4mkpno 
m=l 

(3.2) 

again ignoring phase factors. Note that if nl = no in this expression that the elec- 
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t,ric field associated with the fundamental is E = m,+,/e, which is referred to, 

somewhat inaccurately, as the “wave-breaking” field.” This harmonic decompo- 

sition of the electric field can be used to estimate the amplitude of the nonlinear 

waves in experiments if the harmonics in the longitudinal field are known. To in- 

corporate the beam’s role in the plasma wave excitation and the finite transverse 

dimension of the excited wave we add a factor to account for the radial efficiency 

E = 4xek,no 
5 mm-‘.ir~~,(mk~~r)(~)m, 

2m-l,t 
rn=l 

and we equate our present definition ~1 with our previous usage, taking the 

amplitude of the fundamental to be that given by the linear theory, which for a 

cylindrically symmetric bi-Gaussian beam profile is 

7L1 = le,Nexp [-(krd2/2! 
27ru,2 ’ (3.4) 

where N is the number of particles per hunch, and cr,(,) is the rms beam radius 

(length). 

The plasma waves that, develop in the non1inea.r nonrelativist,ic theory show 

steepening and an increasingly narrow spike in positive electron density as the 

amplitude is increased. This steepening, which is illustrated in Fig. 1, generates 

the harmonics which are contained in Eq. (3.1). 

The addition of relativistic effects into the fluid treatment introduces an ad- 

ditional feature t,o the wave dynamics, that of period lengthening with increased 

amplitude. This phenomenon is shown for a moderately relativistic case in com- 

parison to the nonrelativistic solution for the same maximum fluid electron ve- 

locity v = DC in Fig. 1. The equation for one-dimensional plasma oscillations in 

the limit Vb + c with functional dependence only on [ can be cast in the form 
12 

where z = fli p)/(l + pj. It should be noted that Eq. (3.5) is equivalent to 
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Figure 1. Perturbed plasma electron densities nl /no for one cycle of a nonlin- 

ear plasma wave, with maximum plasma fluid velocity Pm = 0.5~. The solid line 

represents the nonrelativistic solution; the dotted line shows the correct, period 

lengthened 

Fig1 
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k,t/Zn 

Ire 2. Nonlinear plasma wave of maximum fluid velocity pm = 0.9c. Solid 

line shows nl/no, dashed line indicates the electric force -eEjm,cwp, and dots 

represent the electrostatic potential -e4/m,cZ. 
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the Poisson equation, as the electrosta,tic potential is given by -4 = m,c’z and 

the perturbed electron density nl/no = (zm2 - 1)/2. 

Some qualitative remarks on the solution to Eq. (3.5) are in order. The 

first is that the driven equation (na > 0) h as a bifurcation between oscillatory 

and monotonically increasing behavior at nb = no/Z. This is in fact the re- 

quired beam density for an enhanced transformer ratio in the proposed nonlinear 

PWFA scheme.” The undriven waves show oscillatory behavior, which in the 

large amplitude limit tends to exhibit long distances over which the perturbed 

plasma electron density approaches -no/2, interrupted by very narrow spikes 

of high positive density. The corresponding electric field becomes saw-toothed, 

with long linear rises followed by sharp drops, as illustrated in Fig. 2. The period 

expansion with amplitude physically comes from the relativistic mass increase 

of the plasma electrons; mathematically one can see t,hat while for nearly linear 

waves (12 - 11 < 1) there is a linear restoring force in Eq. (3.5), for large ampli- 

tude waves where z > 1 the restoring force in the amplitude dependent oscillator 

saturates, forcing the local oscillation frequency down over much of the cycle and 

thus expanding the period. The expansion of t,he period allows for the possibility 

of electric fields larger than “wave-breaking”. 
14 

4. Nonlinear Plasma Wake-fields: Experiment 

Much of the phenomena we have outlined above have been observed to some 

degree in the nonlinear PWFA experiments6 at the AATF. We now examine 

a few of t,he most relevant observations from these experiments. The 21 Me\’ 

driving electron beam pulse used in the nonlinear experiments has the follou-ing 

characterist,ics: number of electrons per pulse N = 2.5 x 10” (Q = 4 nC), rms 

pulse lengt,h ct = 2.1 mm, and initial rms radius rr = 1.4 mm. The plasma source 

length was set at L, = 33 cm and plasma densities were variable between 7~0 = 

0.5-8.0 x lOI cmm3. The wake-fields in these experiments were directly measured 

by use of a lou-intensity 15 MeV test electron bunch of similar dimensions to the 
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driving beam, which could be delayed to travel a vwiable distance behind the 

driver. The test beam could also be misaligned to measure transverse wake- 

fields. Both the energy spectrum and the transverse deflections of the test bunch 

were measured in a broad-range high resolution magnetic spectrometer. The 

data from these experiments is presented by taking the energy and transverse 

centroids of the test beam distribution a given time delay, and then stepping the 

delay sequentially with small time steps, repeating the centroid measurements 

at each time step. A plot of the test bunch energy or deflection centroid versus 

delay time is referred to as a wake-field scan. 

To illustrate the most striking nonlinear PWFA phenomena observed we show 

two high resolution wake-field scans. The scan shown in Figs. 3-4, is taken 

with a relatively low plasma density no = 7.3 x lOI cmm3. The witness and 

driver beams are horizontally misaligned in this scan to allow observation of 

the longitudinal dependence of the transverse wake-fields in this case. Several 

qualitative remarks can be made upon inspection of Figs. 3(a) and 4. The first 

is that both the longitudinal and transverse wake-fields are stable, oscillatory 

functions of the distance behind the driving beam [. In fact, the wake-fields 

suffer little degradation in form or amplitude out to 18 wavelengths behind the 

beam in this scan. This is surprising, as narrow nonlinear plasma wave may be 

subject to differences in frequency as a function of transverse position. Secondly, 

the longitudinal wake-fields Wz have taken on a more saw-tooth appearance, 

as we would be naively expect from the one-dimensional nonlinear theory. The 

transverse wake-fields show a form consistent with the Panofsky-Wenzel theorem, 

which implies that IV* = 0, s,‘drU; f or a cylindrically symmetric driver. It is 

a,pparent from inspection that the measured longitudinal wake-fields are to a 

good approximation proportional to the longitudinal derivative of the measured 

transverse wake-fields. 

In addition to these qualitative remarks on the wave-forms, we have can ex- 

amine the Fourier spectrum of the longitudinal wake-fields to attempt to quantify 

the physical basis for the nonlinearity of these waves using our perturbation treat- 
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Figure 3. (a) Longitudinal wake-field scan - test beam energy centroid AE 
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amplitude function w*(f) for longitudinal wake-fields. 
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ment. The FFT of the longitudinal wake-field shown in Fig. 3(a) is displayed in 

Fig. 3(b); note that the ratio of first harmonic to t,he fundamental amplitude in 

the wake-fields is about, 0.3. At a higher plasma density, which for the scan dis- 

played in Fig. 5 is no = 2.8 x lOI cm- 3 the longitudinal wake-fields display even 

more steepening. In this scan the the ratio of first harmonic E2 to fundamental 

El amplitude is 0.48. This wave amplitude is not consistent with the prediction 

excitation amplitude from linear theory if one ignores possible pinching of the 

driver beam. This is easily seen by using Eq. (3.4) to evaluate the the present 

case; with gr taken as its initial value to obtain nl/no = 0.04, which is much 

smaller than the estimate from harmonic content. This fact, along with other 

evidence available from the PWFA measurements,6 led to the suggestion that 

significant self-pinching of the driver must have occurred, an assertion which was 

directly verified in later experiments. 

The plasma skin-depth in the scan shown in Fig. 5 is 0.1 mm, or less than 

one-half of the rms beam length. This case is geometrically in the regime of 

the plasma lens. The dynamics and equilibration of the beam self-pinch will 

be explored in much greater detail below, so a simplified explanation of the 

the self-focusing effect on the nonlinear PWFA experiment is o&red presently. 

Calculation using thick plasma lens t,heory’ predict that the beam in this case 

will focus inside the plasma, and give an approximat,e equilibrium self-pinched 

beam radius is ceq 2 F&&, where c is the beam transverse emittance, y is 

the beam relativistic Lorentz factor and v is Budker’s pammeter, the number of 

particles per unit length in units of a classical particle radius. The maximum 

current as a function of [ in our beam corresponds to v(O) = vo = 1.3 x 10e2. 

Thus, with e = 7 x 10m6 m-rad we have ueg = 0.44 mm, or approximately one- 

third the original beam radius. This pinching is not uniform along the length of 

t,he beam, as in our model it depends on the enclosed current at a given point 

in <, a fact, we can reflect by writing v(t) = va exp ( -<2/2u~). We then have 

geq(om2 = (voc)exp (-~/zu:)., and the equilibrium density profile on axis is 

proportional to v([)/g& - exp (-[/crz), i.e. the bunch is effectively shortened 
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on axis by a factor of fi. Both th e b earn pinching and the effective on axis pulse 

shortening serve to drive larger amplitude wake plasma waves, as can be seen 

from Eq. (3.4). 

Taking into account the beam self-pinching the estimated ratio of the first 

harmonic to the fundamental in the second scan, using or = (I,~ = 0.44 mm and 

gi = 2.1/& mm in the linear response formula, is E2/El = 0.38, in much better 

agreement with observation. If we apply the deconvolution analysis of Ref. 12 

to include the effects of the finite resolution of the test beam, we obtain for this 

case a peak longitudinal field of W, = 5.3 MeV/m. This is in reasonable accord 

with the value from Eq. (3.3) of 6 MeV/ m, and with simulations performed at 

WLA,22 which indicate a maximum average accelerating gradient for this case 

of 7 MeV/m. The observed steepened form of the wake-fields is also reproduced 

well in the simula,tions. In regard to the maximum longitudinal field, it should be 

noted that no resolvable period lengthening has been observed in the PWFA ex- 

periments at the AATF, despite the large density nonlinearities. This is reflected 

in the fact that the wave-breaking field E,b for this plasma density is over 500 

MeVim, and we have measured the field to only one percent of this value. In the 

one-dimensional limit E/E,* is approximately the same as nr/ne. This does not 

occur in our case because the plasma electron motion becomes more radial due to 

the na,rrowness of the driving beam. This effect lowers the longit,udinal field, and 

t,he plasma electrons do not attain relativistic velocities to support large density 

perturbations. Thus one would not expect period expansion in a narrow wave. 

In these nonlinear PWFA measurements, the beam is narrower than a plasma 

skin-depth, and thus the plasma electron response and associated wake-fields 

cannot be well explained by a one-dimensional theory. Thus the theoretical ar- 

guments presented above should not be trusted to give quantitative predictions; 

we have been fortunate that the harmonic decomposition analysis agreed as well 

as it did with the measurements, and cannot expect this to be so in more non- 

linear or narrower waves. A more rigorous approach to this problem would be 

desirable. Exact analysis remains an intractable problem; currently, perturbation 



treatments of nonlinearities in relativistic phase velocity plasma waves are being 

developed by several investigators. 23 Particle-in-cell simulations have proven to 

be valuable so far in modelling nonlinear effects in the PWFA.24 It is reasonable 

to suspect that, simulations will continue to play an important role in understand- 

ing nonlinear plasma wake-fields. There are many questions that must still be 

addressed in this area, including the effect of mult,i-dimensional nonlinear effects 

on the transformer ratio in the PWFA, the stability of the nonlinear plasma os- 

cillations - both in the one-dimensional limit and including transverse variations 

- and the m&mum wake-field that can be expected in the limit that the beam 

is very narrow. 

5. Nonlinear Beam Dyna,mics: Initial Self-Pinch 

Much of the previous theoretical work on plasma wake-field focusing concerns 

the effect of a thin plasma lens on the t,ransverse profile of a particle beam. In 

the present, experiments, however, the plasma column is long compared to the 

focal length of t,he lens, and the beam dynamics are much more complex. In 

R,ef. 8; there is a treat,ment of the problem of the thick lens correction to the 

thin lens which includes the effects of finite beam emittance and the raising of 

the focusing strength as the beam becomes more dense inside the lens. This 

analysis is not strictly applicable to the if the beam is not uniform in density, 

but shows interesting nonlinear characteristics. A phase-space distribution which 

allows use of this approach is the microcanonical dist.ribution of Kapchinskii and 

Vladimirskii25 (K-V distribution). In this distribution, in which the beam density 

is uniform out to the beam envelope, the emittance r is defined to be four times 

the rms emittance, and equation for the beam envelope A can be written 

(5.1) 

where ’ indicates a derivative with respect to z, The oscillations described by 

this equation are approximately simple harmonic if the envelope is not greatly 



perturbed from its equilibrium value A = me. If the beam envelope is not 

closely matched to this value, then the solution to Eq. (5.1) predicts a large 

densit,y spike (na = v/rr,A’) and period expansion with amplit,ude, as in the 

case of nonlinear plasma waves. 

This coherent envelope motion does not exist for a non-K-V distribution, 

but is approximated only during the initial self-pinching for a beam which is 

initially larger than its equilibrium radius. In this case, the envelope dynamics 

can be simplified further by assuming laminar flow of the beam particles, an 

approach which is equivalent to setting e = 0 in Eq. (5.1) for a K-V beam. This 

approximation breaks down at the same point as the K-V treatment, as it also 

ignores the details of the self-consistent evolution of the beam phase space, but 

it allows us to simply estimate the distance to the first envelope minimum. Since 

the transverse wake-fields felt by a particle depend only on the enclosed current, 

which is conserved in laminar flow, and on the radius of the particle, each pa,rticle 

obeys an equa,tion of motion for paraxial trajectories derivable from a logarithmic 

potential, 

where C(rpo) is a constant dependent on initial radius ~a. Xcar the center of a 

cylindrical Gaussian this constant is given by C(Q) 2 (v/~)(rc/cr)~, where y 

is the Lorentz factor and we have introduced the Budker parameter v, which is 

the number of particles per unit length measured in classical electron radii re. 

Integrating Eq. (5.2), the distance from the plasma boundary to the first focus 

is calculated, lo 
s=&JQ &&jq=TQ I 7r r zc(TD)’ (5.3) 

This expression shows the linear dependence of this approximate half-oscillation 

period on initial amplitude. For a Gaussian initial profile one has s z or m. 

In the AATF experiments where the transverse beam profiles arc measured, de- 

scribed further below, the number of particles per bunch was N = 3.2 x lOlo, 



the rms bunch length (T= = 2.1 mm and y = 42, so the Budker parameter is 

Y = 1.6 x lo-‘. The beam is thus expected to come to its initial focus s z 8 cm, 

which is well before the end of the plasma column of length L = 35 cm. 

It is difficult to analytically estimate the minimum pinched beam radius in the 

presence of aberrations and finite initial emittance, because the transverse profile 

of the beam changes so dramatically as it focuses under t,he influence of nonlinear 

fields. The evolution of the rms beam envelope can be calculated by use of an 

equation which is formally identical to Eq. (5.1),26 but in order to solve it one 

must known the evolution of the emittance, which is not a constant for non-K-V 

distributions. In order to solve for the emittance one must know the details of the 

phase space distribution. This subject can be addressed most straightforwardly 

by use of computer simulations. Computational treatments using a particle-in- 

cell code of dhis and related aspects of the self-pinching process will be presented 

below. Before proceeding to the computational work, an zmalytical model of the 

beam’s approach to equilibrium is explored. 

6. Nonlinear Beam Dynamics: Approa,ch to Equilibrium 

The transverse phase space dynamics of the beam under t.he influence of 

its self-focusing magnetic fields can be calculated in principle from the Maxwell- 

\‘lasov equations, the self-consistent combination of the Maxwell electromagnetic 

field equations and t,he Vlasov equation, which is written 

g t (-we)-‘pl v’,,f + F V,,f = 0. 

Here f(ri, pl) is the beam’s transverse distribution function and F is the Lorentz 

force arising from the charge and current distribution under consideration. In 

this case the force is due to the transverse wake-fields given by Eq. (2.7), which 

depend on the dist,ribution of the beam particles in configuration space. 
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At this point it can be remarked that, because of the large nonlinearities in 

the radial focusing force and the effects of the individual particles’ angular mo- 

mentum, all particles have different effective betatron wave-numbers describing 

the periodicity of their orbits. Thus the initial coherent, self-focusing motion of a 

set of particles decoheres as the particle motion becomes out of phase with each 

other, and the situation is approached where the distribution in configuration 

space becomes uncorrelated with the distribution in momentum space, i.e. the 

distribution seeks an equilibrium through collisionless or Landau damping. This 

approach to equilibrium through phase decoherence in the particle oscillations, 

whereby the coherent radial beam motion dissipates, was in fact initially sketched 

out by by Bennett in 1955, who termed the effect ‘mixing’. 27 This effect is similar 

to a phenomenon, also referred to as decoherence, observed in the experimental 

study of nonlinear transverse dynamics in synchrotrons. 
28 

In our case, however, 

the nonlinear fields are provided by the beam distribution itself, and thus feed- 

back is provided which allows us to view the dissipation of the coherent radial 

motion as a form of Landau damping. 

As a specific type of stationary distribution is of present interest, the hlaxwell- 

Vlasov equation is now written in cylindrincally symmetric equilibrium as 

Pr af waf=, 
ymaT rap, ) 

and the distribution function is assumed separable in coordinate and momentum 

dependence, f(~,p~) = R(r)P(p,), because of the decorrela,ting effects of the non. 

linearities. This assumption will be validated later by our computer simulations. 

Upon substitution of the radial dependence of the magnetic self-force W; 

from Eq. (2.71, and separation of variables, one obtains the momentum equation 

L3P “PI p -=-- 

apr 7m ’ 
(6.3) 
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where -a is the separation constant, and the radial equa,tion 

(6.4) 

The solution to the Eq. (6.3) is, of course, a Gaussian (thermal) distribution, 

P= 
J 

-exp [-ap32ym]. 
2xym 

(6.5) 

The solution to the radial equation corresponding to this thermal equilibrium in 

momentum space is a Bennett profile 
27 

which has the form 

R(r) - nb(r) = p + &2]2 ’ 

where a is the Bennett radius. The usual expression for the Bennett radius relates 

it to the beam Debye length AD, with p ^I 1, 

2kTL 2kT, 2 a2 = t3),; = ~ = ----a 
re2Pb lJmc2 1 (6.7) 

which only specifies the relationship between the beam transverse temperature 

and current, not the radius, which cancels out, of the equation. This uncertainty 

can be be removed by invoking an approximate constraint on the asymptotic 

form of the distribution function. 

To derive t,his constraint, note that from the form of the self-fields of a cylin- 

drically symmetric bea,m and the associated Maxwell-Vlasov equation that the 

phase space densit,y must be constant, at (‘1,~~) = (O,O), as from Eq. (6.1) 

we see that af/& = 0 there. If one takes an original four-dimensional phase 

space density corresponding to a cylindrically symmetric bi-Gaussian profile, and 

equates its initial value of f(O,O) to the final value of f(O,O) associated with the 

Bennett equilibrium, the Bennett radius is given by 

4e2 
(g=A, 

-/v 
(6.8) 

where cn = Prc is the initial normalized emitt,ance. 
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This argument is not strictly rigorous, however. Even though f(O,O) is a 

constant of the motion, the form of the asymptotic state that we have assumed 

is not completely correct. It has b een known for some t,ime that the Bennett 

profile, being a state in thermal equilibrium, can evolve from a different initial 

state due to the therm&zing influence of multiple scattering of beam particles 

off the background plasma ions. 
29 

The distribution function can become smooth 

during this collisional process and thus approach the equilibrium solution to 

the Maxwell-Vlasov equation, which is the product of two smooth functions, a 

Bennett radial profile and Gaussian momentum profile. 

In the case of the collisionless damping, however, the near-equilibrium state 

evolves from the initial pinch by filamentation of the beam phase space as it 

spirals under the influence of its own nonlinear self-fields. This filamentation 

process does not great,ly affect the center of the distribution in phase space if the 

self-focusing forces there are nearly linear, which is the case for conditions not 

t,oo far from equilibrium. This is because near equilibrium the small amplitude 

orbits in phase space are well behaved rotations about the fixed point of simple 

harmonic motion? (0,O). On the other hand, large amplitude orbits experience 

very nonlinear fields, and the filamentation is quite pronounced in these regions of 

phase space. Since the derivation given above of the asymptotic Bennett radius 

is concerned wit.h the final values of f(rL,pl) at or near (O,O), the fact, that 

the motion near this point is well behaved makes the argument, which depends 

critically on approximation of the distribution as a smooth funct,ion at small 

amplitudes; quite accurate for cases relatively close too equilibrium. 

If the motion is not well behaved even for small amplitude particles, as hap- 

pens if the initial conditions are too far from equilibrium (e.g. a < ur), then the 

distribut~ion function filaments near the origin in phase space, and the approx- 

imation of the actual distribution function as a product of smooth continuous 

functions is not as good. Filament&ion at small amplitudes thus causes the 

asymptotic Bennett radius to be larger? and we rewrite Eq. (6.8) as an inequal- 

ity, a 1 2e,/fi. In fact, other effects, such as a deviation from the assumed 
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initial cylindrical symmetry, spurious plasma oscillations or nontrivial r&urn cur- 

rent density inside the beam radius will serve t,o strengthen this inequality. All 

of these effects are present in experiments to some extent. 

As an aside, we note that the filamentation of phase space and associated 

emittance growth is closely related to the degree to which the beam is ini- 

tially near it,s Debye shielded equilibrium. In the case of the magnetically self- 

constricted beam equilibrium, the Debye shielding length is essentially just the 

Bennett radius, as is seen from Eq. (6.7). The b earn distribution is inherently 

thermal, and no fluid description is needed to describe the beam phase space. If 

the initial beam radius is much larger than the Bennett radius (Debye length), 

then the fluid motion of the beam is important, however, and filaments will form 

in phase space, effectively converting fluid motion into thermal motion. This be- 

havior is also displayed in the related system of a space-charge dominated beam 

propagating in a constant focusing channel.30-32 If a space-charge dominated 

beam is matched to a focusing in the rms sense, then the final emittance is given 

by 
32 

K 
c2 = e; + -R’LI, 

16 

where R is the rms beam radius, K is the generalized beam perveance, and 

LTn is the normalized nonlinear field energy of the initial beam distribution, a 

dimensionless factor that is a measure of the degree of fluid motion in phase 

space necessary to shield the external focusing forces of the channel. As a space 

charge-dominated beam reconfigures to minimize its nonlinear field energy, it of 

course becomes more uniform, except for a region of a few Debye lengths near 

the beam edge where the density rapidly vanishes. It is seen from Eq. (6.9) that 

this process results in more phase space filamentation and emittance growth in 

the final state as the rms beam mdius R becomes large compared to t,he Debye 

length AD = (2K)-‘14&, or equivalently, as R is increased in comparison to 

the emittance. This corresponds to weaker focusing, or more laminar (fluid-like) 

initial flow of the beam. In this limit the spiralling beam fluid filaments in phase 
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space can occupy a region whose area is proportional to the rms beam radius, 

giving rise to the dependence seen in Eq. (6.9). 

In the limit of applicable beam-plasma parameters, kpuz > 1 >> kpc,, some 

predictions can now be made concerning the outcome of experiments. In the 

present experiments the normalized emittance c, = 3 x 10m4 rad-m. Since the 

maximum in t,he beam current at [ = 0 corresponds to a maximum Budker 

parameter of vo = 1.6 x 10e2, the minimum Bennett radius predicted from the 

Vlasov analysis is ao > 0.72 mm. This pinching is not uniform along the length 

of the beam, as in the model it depends on the current at a given point in 

<, a fact that can be reflected by writing v(E) = vg exp (P[2/2~i). One then 

has CZAR = ai2exp(-</2~t), and the equilibrium density profile on axis is 

proportional to exp (-t/u:), i.e. the b unch is effectively shortened on axis by a 

factor of ~4. 

7. Nonlinear Bea,m Dynamics: Simulation 

In order to examine the devia,tions from the approximate theoretical treat- 

ments presented to this point, particle-in-cell simulations of the beam motion 

have been performed. In these calculations, which employed a modified ver- 

sion of t,he code EMIvIA,~~ written by iYoble to calculate emittance growth in 

a space-charge dominated transport channel, cylindrical symmetry is assumed, 

longitudinal effects are ignored, and the wake-fields are calculated simply by us- 

ing Eq. (2.7). The evolution of the beam distribution at one point in [ can 

be quickly followed under these assumptions. Some relevant aspects of these 

computational results are presented here, which clarify the analytical work and 

provide more concrete predictions for the experimental data. These results are 

specialized in that the spurious effects of plasma oscillations are ignored in or- 

der to concentrat,e on the beam dynamics; fully electromagnetic 2;.dimensional 

particle-in-cell simulations of beam self-focusing by plasma wake-fields have been 

performed previously. I1 
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7. Calculated correlation parameter (7~‘) /ev as a function of kpz, for 

initial condition a/u, = 0.51. 



26 

To begin, we examine the evolution of the peak beam density pb/pb~ as it self- 

pinches, which is shown in Fig. 6. The longitudinal distances are given in units 

of Ii’, where kp = m is the initial small amplitude betatron wavenumber 

in the beam’s self-focusing wake-field. All parameders in the computations shown 

correspond to the strongest focusing experimental case, in which a/u7 = 0.51, 

where the initial beam distribution function is Gaussian in momentum and co- 

ordinate and the beam is at a waist. The initial pinching occurs in kps = 1.27, 

which is in excellent agreement with the value of kgs = @ 2 1.25 derived 

in Eq. (5.3). The peak beam density is approximately 20 times the initial peak 

density at this point; after slight defocusing, it subsequently does not reach such 

large densities, but tends rapidly towards equilibrium. The maximum predicted 

equilibrium density associated with a/ oT = 0.51 is pb/pbo = 2(~7~/a)’ = 7.85. It 

appears that the equilibrium which develops is slightly less dense than this. 

The fluctuations in the peak density have nearly damped after kpt = 3, or 

one beam envelope oscillation, which is extremely quick. The degree to which the 

distribution function comes into equilibrium, i.e. approaches a separable Bennett- 

coordinat,e/Gaussia.n-momentum form, can be quantified by examining the COT- 

relation parameter (7~‘) /c,. Here F, = 

/2r2---,-~...- 

L (r ) ((T ) ) ~ (TT’)~) is the radial rms 

emittance. The evolution of this parameter is shown in Fig. 7. After initial 

large excursions associated with the first focus and defocus, the correlations then 

damp more slowly while oscillating with period kpX z 4. These oscillations do 

not in large part reflect oscillation of the core of the beam, as these would have a 

period koX = 2x(a/o,) z 3.2, and would show up also in Fig. 6. The correlations 

are instead due to the spiralling ‘arms’ of the distribution, which occur at large 

amplitude and thus have a. lower average wave-number. These spirals, which 

come into equilibrium more slowly than the beam core due to the decrease in 

focusing strength with amplitude and the larger initially empty regions of phase 

space with which they must mix, have been observed in the simulations; they are 

not shown in the interests of brevity. These results support the conclusion that 

the phase space correlations in the beam core indeed dissipate quickly, after one 



radial oscillation, as is necessary to apply the results of the Vlasov analysis. 

It is apparent from Fig. 6 that the maximum beam density has stabilized 

by kpz = 5, which corresponds to the length of the plasma column in these 

experiments. It is reassuring to plot the transverse profile of the beam density 

at this point, as is shown in Fig. 8, along with the Bennett profile from the 

theoretical prediction of the Vlasov treatment. The calculated profile is slightly 

less dense and has a marginally wider core than the minimum-radius Bennett 

profile, indicating small effects due to phase space filamentation. 

Thus the simulations confirm the major conclusions of the analytical ap- 

proaches that have been developed, and give additional insight into the expected 

experimental results. The observation of core equilibration within kpz = 3 a.- 

lows use of the results of the Vlasov treatment to predict the self-pinched beam 

radius, as this equilibration length is shorter than the plasma column in the 

measurements, which are presently described. 

::: 
0 0.5 L 1.5 2 2.5 

Figure 8. Histogram of the calculated beam density at kp = 5 (the end of 

the plasma column in the experiments), for initial condition a/a, = 0.51. Solid 

line is the Bennett profile predict by the Vlasov treatment. 
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8. Measurement of Self-focused Beam Profiles in Plasma 

In order t,o further investigate the mechanisms behind the wake-field excita- 

tion of nonlinear plasma waves and to test aspects of plasma focusing theory, ex- 

perimental measurements of the self-focused beam profiles at the end of a plasma 

column have been recently performed at the AATF.34 The beam pulse delivered 

t,o the plasma source has, to restate, the following parameters; iV 2 3.2 x lOlo 

electrons, rms length cr, 1 2.1 mm transverse emittance e z 7 x 10V6 m-rad, and 

gl. z 1.4 mm. This experiment used a one-picosecond resolution streak camera 

as the basis of a diagnostic that allowed measurement of the transverse profile of 

the beam as a function of longitudinal position in the beam. We summarize the 

results of these measurements here; for a detailed discussion see Ref. 34. 

The time resolved pictures of the beam intensity profile obtained in this 

manner confirmed that at high plasma density (Qr 2 2), the beam profile was 

self-pinched with equilibrium radius dependent on t, with the narrowest profile 

occurring at the current, maximum, as expected. This self-pinched distribution 

led to effective pulse shortening on axis, also validating a theoretical prediction. 

As an example of a self-pinched profile we will show a case where the plasma 

density no = 6.0 x lOI cmm3. In terms of the initial beam profile, this corresponds 

to a beam length in plasma radians k+r, z 3, and is t,hus inside the regime where 

the plasma space charge neutralizes the beam and magnetic self-focusing occurs. 

The plots in Fig. 9 shows the transverse cross-section (a projection of the 

most intense 0.5 mm long transverse strip) of the beam intensity streak image 

for the dense plasma present and absent. In the case of plasma absent shown in 

Fig. 9(b), we also include a best fit of the data, to a Gaussian of width or = 1.4 

mm; with a, dashed line. When the dense plasma is present the self-pinched pro- 

file shown in Fig. 9(a) is obt,ained, with a best fit of the data, to a Bennett profile 

of radius a = 0.91 mm, indicated by the dashed line. The agreement in form 

is about as good as would be expected on the basis of the profile shown in Fig. 

8. Recall that the minimum predicted Bennett radius for this case is ag = 0.72 
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mm. The experimentally measured value is larger by about 25% due to the ef- 

fects previously mentioned; the beam does not have perfect cylindrical symmetry 

initially, and deviations from this ideal undoubtedly allow more filament&ion 

and effective dilution of the phase space density of the beam. In addition, t,here 

are effects due to the plasma response; even in the high plasma density case 

considered here the product k+r, which results on axis after pinching (due to 

the effective pulse shortening described above) is about 2.2, which is just, on the 

border of the adiabatic regime of the plasma electron fluid motion where one can 

assume approximate charge neutralizat~ion of the beam. The focusing in the core 

of t,he beam can be lowered by the lag of the plasma electron response to the 

larger gradients in the beam charge density. 

The effects of this response lag are displayed in Fig. 10. The on-a.xis beam 

profiles - projection of the most intense 0.2 mm wide longitudinal strip - of the 

beam image arc plotted for four different plasma densities, no = 0.9,1.5,2.9, 

a,nd 6.0 x lOI cm- 3 (dashed, dotted, dot-dash and solid lines, respectively). At 

low density the plasma skin-depth is longer than the beam scale length and the 

maximum focusing, reflected by the maximum in beam intensity, lags the current 

maximum. At the highest plasma density, the plasma response is nearly adiabatic 

and the on-axis profile regains its symmetric, Ga,ussian-like shape. The rms beam 

length for the highest, density case is oz = 1.5 z 2.1/4 mm, in agreement with 

our naive prediction concerning the on-axis pulse shortening. This observation is 

important, as it is necessary to invoke pulse shortening to attempt explanation 

of the wake-field nonlinearity observed in Fig. 5. More detailed presentation and 

discussion of the results of the plasma wake-field focusing experiments at the 

AATF can be found in Ref. 34. 
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Figure 9. Plots of beam transverse intensity profiles (a projection of the 

most intense 0.5 mm long transverse strip in the streak image) (a) With dense 

plasma present - the self-pinched profile (solid line) with a best fit of the data 

to a Bennett profile of radius a = 0.91 mm (dashed line). (b) With no plasma - 

the unpinched profile (solid line) with a best fit of the data to a Gaussian pro!% 

of width 6, = 1.4 mm (dashed line). 
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Figure 10. The on-axis beam profiles - projection of the most intense 0.2 mm 

wide longitudinal strip - of the beam image, plotted for four different plasma 

densities, no = 0.9,1.5,2.9, and 6.0 x lOI cmm3 (dashed, dotted, dot-dash and 

solid lines, respectively). 
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9. Conclusions 

In this paper we have examined experimental and theoredical aspects of non- 

linear beam and plasma physics in plasma wake-fields. The beam and plasma 

behavior are, of course, intimately related experimentally, and this presentation 

has partially been an attempt to reflect that relationship. As a whole, the theo- 

retical picture we have drawn explains the experimental sit,uations encountered 

quite well. The experimental results to form a fairly self-consistent and nearly 

complete set, in that they investigated t,he obvious physical questions in beam 

and plasma parameters accessible with present experimental facilities. 

Having understood past and present experiments with their challenging non- 

linear attributes to a fair degree of satisfaction, we can look with some trepidation 

and excitement towards the future. The planned upgrade of the AATF35 at Ar- 

gonne will include a 150 i&V low emittance elect,ron beam, with 100 nC in 5 

psec pulse. The peak current in this beam is 75 times that used in t,he present 

nonlinear wake-field experiments. Wit,h this beam one can access a regime where 

the beam will actually be denser than the plasma, (no - 2 x lOI cm-‘). None 

of the approximations we have used to explain the plasma response will be of 

reasonable validity in this limit. While the plasma physics in this regime be- 

comes much more nonlinear, the transverse beam behavior becomes more linear 

- inside the beam the plasma electrons will be completely ejected, leaving a uni- 

form density ion column which gives rise to linear focusing forces. This is the 

regime of the underdense plasma lens, 
1011 

which is superior to the overdense 

case we have considered as a final focusing linear-collider lens. This is due to 

the background problem that can arise from the ha,rd beam lepton-plasma ion 

collisions. Demonstration of underdense plasma, focusing is one interesting re- 

sult that may arise from future AATF experiments. Depending on the d&ails of 

the plasma response, one can also conceive of observing accelerating gradients in 

these nonlinear wake-fields which are approximately “wave breaking” amplitude, 

which is greater than 1 GeV/m for projected plasma densities. More computa- 
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tional investigation of these experimental scenarios is necessary to obtain more 

rigorous predictions concerning the nonlinear wake-fields driven by very intense 

electron beams. At the same time, it would also be most beneficial to have useful 

analytical models of the three-dimensional nonlinear plasma response, in order to 

better understand the fundamental physics of the plasma make-field interaction. 
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