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System codes for simulation of safety performance of nuclear plants may contain parameters whose values are not known very
accurately. New information from tests or operating experience is incorporated into safety codes by a process known as calibration,
which reduces uncertainty in the output of the code and thereby improves its support for decision-making.�e work reported here
implements several improvements on classic calibration techniques a	orded by modern analysis techniques. �e key innovation
has come from development of code surrogate model (or code emulator) construction and prediction algorithms. Use of a fast
emulator makes the calibration processes used here with Markov Chain Monte Carlo (MCMC) sampling feasible. �is work uses
Gaussian Process (GP) based emulators, which have been used previously to emulate computer codes in the nuclear 
eld. �e
present work describes the formulation of an emulator that incorporates GPs into a factor analysis-type or pattern recognition-
type model. �is “function factorization” Gaussian Process (FFGP) model allows overcoming limitations present in standard GP
emulators, thereby improving both accuracy and speed of the emulator-based calibration process. Calibration of a friction-factor
example using a Method of Manufactured Solution is performed to illustrate key properties of the FFGP based process.

1. Introduction

Propagating input parameter uncertainty for a nuclear reac-
tor system code is a challenging problem due to o�en non-
linear system response to the numerous parameters involved
and lengthy computational times, issues that compound
when a statistical sampling procedure is adopted, since the
code must be run many times. Additionally, the parameters
are sampled from distributions that are themselves uncertain.
Current industry approaches rely heavily on expert opinion
for setting the assumed parameter distributions. Observa-
tional data is typically used to judge if the code predictions
follow the expected trends within reasonable accuracy. All
together, these shortcomings lead to current uncertainty
quanti
cation (UQ) e	orts relying on overly conservative
assumptions, which ultimately hurt the economic perfor-
mance of nuclear energy.

�is work adopts a Bayesian framework that allows
reducing computer code predictive uncertainty by calibrating

parameters directly to observational data; this process is
also known as solving the inverse problem. Unlike the
current heuristic calibration approach, Bayesian calibration
is systematic and statistically rigorous, as it calibrates the
parameter distributions to the data, not simply tune point
values. With enough data, any biases from expert opinion on
the starting parameter distributions can be greatly reduced.
Multiple levels of data are easier to handle as well, since
Integral and Separate E	ect Test (IET and SET) data can
be used simultaneously in the calibration process. However,
implementing Bayesian calibration for safety analysis codes
is very challenging. Because the posterior distribution cannot
be obtained analytically, approximate Bayesian inferencewith
sampling is required. Markov Chain Monte Carlo (MCMC)
sampling algorithms are very powerful and have become
increasingly widespread over the last decade [1]. However, for
even relatively fast computer models practical implementa-
tion of Bayesian inference with MCMC would simply take
too long because MCMC samples must be drawn in series.

Hindawi Publishing Corporation
Science and Technology of Nuclear Installations
Volume 2015, Article ID 839249, 17 pages
http://dx.doi.org/10.1155/2015/839249



2 Science and Technology of Nuclear Installations

As an example, a computer model that takes 1 minute to run
but needs 105 MCMC samples would take about 70 days to
complete. A very fast approximation to the system code is
thus required to use the Bayesian approach. Surrogatemodels
(or emulators) that emulate the behavior of the input/output
relationship of the computer model but are computationally
inexpensive allow MCMC sampling to be possible. An emu-
lator that is 1000x faster than the computer model would
need less than two hours to perform the same number of
MCMC samples. As the computer model run time increases,
the surrogate model becomes even more attractive because
MCMC sampling would become impractically lengthy.

Gaussian Process- (GP-) based emulators have been used
to calibrate computer code for a variety of applications.
Please consult [2–5] for speci
c cases as well as reviews of
other sources. �is work applies a relatively new class of
statistical model, the function factorization with Gaussian
Process (FFGP) priors model, to emulate the behavior of the
safety analysis code. �e FFGP model builds on the more
commonly used GP emulator but overcomes certain limiting
assumptions inherent in theGP emulator, as will be explained
later. �e FFGP model is therefore better suited to emulate
the complex time series output produced by the system code.
�e surrogate is used in place of the system code to perform
the parameter calibration, thereby allowing the observational
data to directly improve the current state of knowledge.

�e rest of this paper is organized as follows. An overview
of the entire emulator-based Bayesian calibration process is
described in Section 2. Section 3 discusses the emulators in
detail. �e 
rst half of Section 3 summarizes the important
expressions related to GP emulators. Most of these expres-
sions can be found in numerous other texts and references
on GP models, including [6, 7]. �ey are repeated in this
paper for completeness as well as providing comparison
to the FFGP expressions in the latter half of Section 3.
Section 4 presents a method of manufactured solutions-type
demonstration problem that highlights the bene
ts of the
FFGP model over the standard GP model.

2. Overview of Emulator-Based
Bayesian Calibration

As already stated, the emulator-based approach replaces the
potentially very computationally expensive safety analysis
code (also known as a simulator, computer code, system
code, or simply the code) with a computationally inexpensive
surrogate. Surrogate models are used extensively in a wide
range of engineering disciplines, most commonly in the
form of response surfaces and look-up tables. Reference
[4] provides a thorough review of many di	erent types of
surrogate models. �e present work refers to the surrogates
as emulators to denote that they provide an estimate of their
own uncertainty when making a prediction [5]. An emulator
is therefore a probabilistic response surface which is a very
convenient approach because the emulator’s contribution
to the total uncertainty can be included in the Bayesian
calibration process. An uncertain (noisy) emulator would
therefore limit the parameter posterior precision, relative to
calibrating the parameters using the long-running computer

code itself. Obviously, it is desirable to create an emulator that
is as accurate as possible relative to the computer code, which
limits the in�uence of error and uncertainty on the results.

�e emulator-based approach begins with choosing the
input parameters and their corresponding prior distribu-
tions. If the emulator was not used in place of the system
code, the Bayesian calibration process would start in the
exact same manner. �e priors encode the current state of
knowledge (or lack thereof) about each of the uncertain
input parameters. Choice of prior for epistemically uncertain
variables is controversial and relies heavily on expert opinion.
Justi
cation for the priors used in the applications of this
work is given later on, but choice of the priors is not the focus
of this work. Additionally, the choice of the speci
c input
parameters to be used for calibration may be controversial.
Dimensionality reduction techniques might be used to help
screen out unimportant input parameters [4]. Some screen-
ing algorithms such as the Reference Distribution Variable
Selection (RDVS) algorithm use GPs to identify statistically
signi
cant input parameters [8]. In the nuclear industry
speci
cally, expert opinion-based Phenomena Identi
cation
and Ranking Tables (PIRTs) are commonly used to down-
select the most important physical processes that in�uence
a Figure of Merit (FOM) [9]. More recently, Quantitative
PIRTs, or QPIRTs, have been used in place of the traditional
expert opinion PIRTs to try to remove bias and to capture
relevant physical processes as viewed by the computer code
[10, 11]. No matter the approach, the set of input parameters
and their corresponding prior distribution must be speci
ed.

In the emulator-based approach, the prior has the addi-
tional role of aiding in choosing the training set on which
the emulator is based. As the phrase implies, the training
set is the sequence of computer code evaluations used to
build or train the emulator. Once trained on selected inputs
and outputs, the emulator re�ects the complex input/output
relationship, so training is clearly an essential piece of the
emulator-based approach. �ere are numerous methods and
decision criteria for the selection of the training set; see
[4, 5] for more details. Reference [12] provides an excellent
counter point for the dangers of not using enough points
in generating the training set. �is work does not focus on
choosing the “optimal” or “best” training set, which is an
active area of research. �e input parameter prior is used to
set bounds on the input parameter values; Latin Hypercube
Sampling (LHS) is then used to create a “space 
lling” design
within those bounds. Although not guaranteed to produce
the best possible training set, this method adequately covers
the prior range of possible input parameter values. An active
area of research is how to enhance the training set during
the calibration process itself, in order to focus more on the
posterior range of possible values.

With the training input values chosen, the computer
code is run the desired number of times to generate the
training output.�e complete training set is then the training
input values with their corresponding training output. �e
emulator is then built by learning speci
c characteristics that
allow the emulator to represent the input/output relationship
encoded in the training set. �e speci
c characteristics that
must be learned depend on the type of emulator being used.
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Figure 1: Emulator-based Bayesian calibration �ow chart.

Training algorithms for the standard GP emulator and FFGP
emulator are described in Section 3.

Once trained, the emulator is used in place of the
computer code in the MCMC sampling via an emulator-
modi
ed likelihood function. �e modi
ed likelihood func-
tions are presented in Section 3 for each of the emula-
tors used in this work. Regardless of the chosen type
of emulator, the emulator-based calibration process results
in uncertain input parameter posterior distributions and
posterior-approximated predictions, conditioned on obser-
vational data. A �ow chart describing the key steps in the
emulator-based Bayesian calibration process is shown in
Figure 1.

�e emulator-based Bayesian calibration process pre-
sented in this work 
xes the emulator once it is trained.
Alternatively, the emulator could be constructed simultane-
ously with the calibration of the uncertain input parameters
[2, 3]. �e key di	erence between the two approaches is
that the emulator-modi
ed likelihood function in [2, 3]
is not 
xed since the emulator is not 
xed. Formally, the
alternative approach bases the emulator-modi
ed likelihood
function around the emulator prior predictive distribution
whereas the work presented in this paper bases the emulator-
modi
ed likelihood function around the emulator posterior
predictive distribution. �e di	erence between the posterior
and prior predictive distributions is described in detail
in Section 3.2.4. �e alternative approach therefore makes
emulator predictions conditioned on both the training data
and the observational data simultaneously. In some sense, the
alternative approach ismore of a data or information “fusion”
method rather than a calibration focused approach. �e
drawback of the alternative “data fusion” approach is that the
emulator is not built until a�er the entire Bayesian calibration

process is complete. �us, if multiple levels of data such as
from IETs and SETs are present, the emulators for all of
the IETs and SETs must be calibrated simultaneously, which
considerably complicates and slows the MCMC sampling.
For those reasons, this work does not use the “data fusion”
approach but 
xes the emulator before starting the calibration
of the uncertain input parameters.

3. Gaussian Process-Based Emulators

3.1. Overview. �e emulators used in this work are based on
Gaussian Process (GP) models and are considered Bayesian
nonparametric statistical models. Nonparametric models
o	er considerably more �exibility than parametric models
because the input/output functional relationship does not
have to be assumed a priori by the user. �e training data
dictates the input/output relationship, just as a look-up table
functions. As stated earlier, the emulator is a probabilistic
model; therefore, the emulators are essentially probabilistic
look-up tables. Nonparametric models are however con-
siderably more computationally intensive than parametric
models, because the training data is never discarded. If a large
number of training runs are required to accurately capture
the input/output trends, a nonparametric model might be
considerably slower to run than a parametric model of the
same data (e.g., a curve that 
ts the data).

�e underlying principles of the GP model were devel-
oped in the 1960s in the geostatistics 
eld where it was
known as Kriging [4]. Since then Kriging has been widely
used for optimization, but starting in the late 1980s and
early 1990s, [13–15] popularized the approach as Bayesian
approximations to deterministic computer codes. In the early
2000s, Kennedy and O’Hagan used the GPmodel to facilitate
Bayesian calibration of computer codes [16]. �eir work
served as the foundation for this paper and many of the
references cited in the previous section.

�e machine learning community has also extensively
usedGPmodels for both regression and classi
cation (regres-
sion is used for continuous functions while classi
cation is
used for discrete data) [6, 7]. Even with all of their �exibility,
GP models are still somewhat limited by certain underlying
assumptions to be discussed later, as well as the limitation in
handling very large datasets (just as with any nonparametric
model). In order to overcome these limitations and handle
more complicated input/output relationships, many di	erent
approaches have been developed [6]. One such approach
is based on combining GP models with factor analysis
techniques; this is referred to as Gaussian Process Factor
Analysis (GPFA) models [17, 18]. �e work presented here
uses the factor analysis based approach in order to handle
very large datasets following the formulation of Schmidt [17].

3.2. Standard Gaussian Process (GP) Emulators

3.2.1. Formulation. Within the Bayesian framework, a Gaus-
sian Process (GP) prior is placed on the computer code’s
unknown output. �e computer code, such as RELAP, is
actually deterministic, meaning that the same output will
result if the same input parameters and settings are used over
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and over. �e output, however, is in some sense unknown
until the computer code is run, and it will therefore be
treated as a random variable. A GP is a collection of random
variables, any 
nite number of which have a jointly Gaussian
distribution [6]. A Gaussian Process is simply a multivariate
normal (MVN) distribution and is used presently as a prior
distribution on the computer code input/output functional
relationship.

�e input x will be all� inputs to the computer code that

the GP is trying to emulate: x = [�1, �2, . . . , ��, . . . , ��]T.�e
superscript T denotes the transpose of the vector.�e output,�(x), as stated above, is considered a random variable. A GP
is completely speci
ed by its mean function and covariance
function. �e mean function �(x) and covariance function�(x, x�) are de
ned as [6]

�(x) = E [� (x)] ,
� (x, x�) = E [(� (x) −� (x)) (� (x�) −� (x�))] . (1)

�e GP is then de
ned as

� (x) ∼ GP (� (x) , � (x, x�)) . (2)

An important aspect of (2) is that the covariance between the
outputs is written only as a function of the inputs. �is is a
key assumption in the simplicity of standardGPmodels, since
all the covariance between two outputs depends only on the
values of the inputs that produced those two outputs.

Following [6], as well as many other sources, the mean
function is usually taken to be zero. Besides being the simplest
approach to use, a zero mean function gives no prior bias
to the trend in the data, since no mean trend is assumed.
Covariance functions themselves depend on a set of hyperpa-
rameters; therefore, even though the GP is a nonparametric
model, these hyperparameters specify the covariance func-
tion and must be learned from the training data. However,
the GP model is still considered a nonparametric model,
because a prediction still requires regressing the training
dataset. Numerous covariance functions exist, ranging from
very simple forms to very complex neural net-like functions
[6]. Di	erent forms have various advantages/disadvantages
for di	erent datasets, but the most common type used in the
literature is the squared-exponential (SE) covariance func-
tion. �e SE covariance function is usually parameterized as

� (x�, x�) = �2� exp(−12 (x� − x�)T�(x� − x�)) , (3)

where the subscripts � and � denote (potentially) two
di	erent values for the �-dimensional input vector x. �e
hyperparameters in (3) are the signal variance �2� and the

matrix �, which is a symmetric matrix that is usually
parameterized as a diagonal matrix:

� = diag (�)−2 . (4)

Each diagonal element of � is a separate hyperparameter,��, which serves as the characteristic length scale for the �th
input. Loosely speaking, the length scale represents how far

the input value must move along a particular axis in input
space for the function values to become uncorrelated [6].
Since each input parameter has its own unique length scale,
this formulation implements what is known as automatic
relevance determination (ARD), since the inverse of the
length scale determines how relevant that input is. If the
length has a very large value, the covariance will become
almost independent of that input. Linkletter et al. [8] used
ARD to screen out unimportant inputs using GP models.

Strictly speaking, the GP model can interpolate the
training data exactly if no noise is allowed between the
training data and the GP prior. However, implementation
of an interpolating GP model might be di�cult due to ill-
conditioning issues [5, 6], which will be discussed later on.
Allowing some hopefully very small noise between the GP
prior and training data removes the numerical issues and
turns the model into a GP regression (GPR) model. �e
GP prior is therefore actually placed on a latent (hidden)
function, �(x), that must be inferred from the noisy data� [6]. �is viewpoint brings to light the signal processing
nature of the GPR framework, since the latent function is
the true signal that must be inferred from the noisy data. In
emulating computer codes, the training output is not noisy,
but this setup provides a usefulmathematical framework.�e
computermodel output of interest,�, is then related to theGP
latent function �(x) as

� = � (x) + �, (5)

where � is the error or noise. �e error can take a variety
of forms, but if a Gaussian likelihood model is used with
independent and identically distributed (IID) noise, with zero

mean and variance �2� , the remaining calculations are all
analytically tractable. More complicated likelihood models
can be used and are o�en required to handle very complex
datasets, but the remaining calculationswould no longer have
analytical expressions.

At this point, some important notation needs to be
de
ned. If there are a total of � training points, the inputs
are stacked into an� ×�matrix of all training input values:

� =
[[[[[[[
[

xT1

xT2...
xT	

]]]]]]]
]
. (6)

Each row of � contains the � input parameters for that
particular training case run. �e training outputs, �, are
stacked into a vector of size � × 1: y = [�1, �2, . . . , �	]T.
Since �(x) has a GP prior and the likelihood function is also
Gaussian, the latent variables can be integrated yielding a
Gaussian distribution on the training output [6]:

y ∼N (0,K (�,�) + �2�I) . (7)

In (7), K(�,�) is the training set covariance matrix and I

is the identity matrix. �e training set covariance matrix is
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built by applying the covariance function between each pair
of input parameter values [6]:

K (�,�) =
[[[[[[
[

� (x1, x1) � (x1, x2) ⋅ ⋅ ⋅ � (x1, x	)� (x2, x1) � (x2, x2) ⋅ ⋅ ⋅ � (x2, x	)... ... d
...

� (x	, x1) � (x	, x2) ⋅ ⋅ ⋅ � (x	, x	)

]]]]]]
]
. (8)

�e training set covariance matrix is therefore a full matrix.
If the SE covariance function in (3) is used, each diagonal

element of K(�,�) is equal to the signal variance, �2�.
Evaluating the covariance function, however, requires the
hyperparameter values to be known, which is accomplished
by training the GP emulator.

3.2.2. Training. Training or building the emulator consists of
learning the hyperparameters that de
ne the covariance and
likelihood functions. As discussed earlier, there are two types
of hyperparameters in the SE covariance function, the signal

variance, �2�, and the length scales, �. �e Gaussian likelihood

function used presently consists of one hyperparameter,

the likelihood noise (variance), �2� . �e complete set of

hyperparameters is denoted by # = {�2�, �, �2�}.
Two ways to learn the hyperparameters will be discussed

here: the empirical Bayes approach and the full Bayesian
approach. “Full Bayesian” refers to inferring the hyperparam-
eter posterior distribution given the training data. Due to the
complexity of the relationship between the hyperparameters
and the training output, sampling based Markov Chain
Monte Carlo (MCMC) inference is required to perform
the full Bayesian approach. �e “empirical Bayes” method
summarizes the hyperparameters with point estimates. �e
hyperparameter contribution to the output uncertainty is
therefore neglected, but, as discussed by many authors, this
is an acceptable approximation [4, 5]. �e entire GP model is
still considered Bayesian because the GP itself is a statement
of the probability of the latent function, which can then
make a statement of the probability of the output. �e
point estimates can be found either from sampling-based
approaches or by optimization methods. With optimization
procedures, the empirical Bayes approach would be much
faster than the full Bayesian training approach. However,
cross-validation is very important to ensure the optimizer did
not get “stuck” at a local optimum [6].

However, this work used a hybrid approach to training.
MCMC sampling was used to draw samples of the hyper-
parameter posterior distribution just as in the full Bayesian
approach. �e hyperparameters were then summarized as
point estimates at the posterior mean values. Using point
estimates greatly reduced the computer memory required to
make predictions (which are described later). �e sampling
based approach removed having to perform cross-validation
since the point estimates correspond to the values that on
average maximize the posterior density.

�e prior distribution on the set of hyperparameters,
known as the hyperprior, must be speci
ed as part of the

MCMC sampling procedure. �e simplest hyperprior would
be the “�at” improper hyperprior, �(#) ∝ 1; however for
GP models the input and output can be scaled to facilitate
meaningful hyperprior speci
cation. Following [2, 3, 5], the
inputs used in this work are all scaled between 0 and 1,
where 0 and 1 correspond to the minimum and maximum
training set value, respectively. Additionally, the training
output data are scaled to a standard normal, with mean 0
and variance 1. Since the signal variance, �2�, de
nes the

diagonal elements of the covariance matrix, it is biased to be

near 1. �e likelihood noise, �2� , is biased to be a small value

using a Gaussian distribution with prior mean of 10−6. �is
hyperprior format biases the sampling procedure to try to

nd length scale values that match the training output within
this noise tolerance. �e length scale hyperpriors are more
di�cult to set, but the formulation from Higdon was used
[2, 3, 8], which a priori biases the length scales to yield smooth
input/output relationships. Only the training data can reduce
the length scales; therefore only the training data can dictate
if an input strongly in�uences the output variability.

Additionally, a small “nugget” or “jitter” term was added
to the diagonal elements of K(�,�). �e nugget term is
rarely mentioned outside of footnotes in most references in
the literature [6], but it is a very important part of practical
implementations of GP models. �e nugget adds a small
amount of additional noise, preventing a GP model from
interpolating the training set exactly. �is additional noise
may be very useful at preventing the training set covariance
matrix from being ill-conditioned. �ere have been some
detailed investigations into the nugget’s in�uence on the
training algorithm results [5], but for practical purposes the
nugget is a simple way to make sure the covariance matrix is
always invertible.

�e hyperparameter posterior, up to a normalizing con-
stant, can be written as

� (# | y) ∝ � (y | #) � (#) . (9)

In (9), �(#) is the hyperprior described previously and
the likelihood function, �(y | #), is (7) rewritten to
explicitly depend on the hyperparameters. Hyperparameter
posterior samples were drawn using the Adaptive Metropolis
(AM) MCMC algorithm [19]. �e AM-MCMC algorithm
improves the e�ciency of the basic RandomWalkMetropolis
(RWM) sampling algorithm because the MCMC proposal
distribution covariancematrix is empirically computed using
the previous samples. Regardless of the type of MCMC
algorithm used, the likelihood function must be evaluated
for each MCMC sample. �e log-likelihood, written up to a
normalizing constant, is [6]

log [� (y | #)] ∝ − 1

2
y
T [K (�,�) + �2�I]−1 y

− 1

2
log [%%%%%K (�,�) + �2�I%%%%%] .

(10)

Equation (10) clearly shows that the training set covariance
matrix must be inverted at each MCMC sample. �is high-
lights why the nugget term is useful, if for a particular sample
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the likelihood noise, �2� , does not provide enough noise to
allow the matrix to be inverted. �e inversion of the training
set covariance matrix is the most computationally expensive
part of the training algorithm.

3.2.3. Predictions. Once the emulator is trained, predictions
can be made at input values that were not part of the training
set. If there are�∗ new test or prediction points, the test input
matrix, �∗, is size�∗ × �. Under the GP model framework,
the latent function at those new test points has the same GP
prior as the training points:

f∗ ∼N (0,K (�∗, �∗)) . (11)

Comparing (11) with the training output GP prior in (7), the
key di	erence is that the covariance matrix is evaluated at
the test input values rather than the training input values. As
written, the test prior provides very little useful information,
since it has no information regarding the structure of the
training dataset. �e test latent output must therefore be
conditioned on the training output. �e joint prior is a
multivariate normal distribution [6]:

[ y
f∗
] ∼N([0

0
] , [K (�,�) + �2�I K (�,�∗)

K (�∗, �) K (�∗, �∗)]) , (12)

where K(�,�∗) is the cross-covariance matrix between the
training and test input values. �e cross-covariance matrix
is size � × �∗ and K(�∗, �) is its transpose. Standard
multivariate normal theory easily allows computing the
conditional distribution �(f∗ | y) which gives the key
predictive equations for the GPR model [6]:

f∗ | y ∼N (f∗, cov (f∗)) , (13)

with the posterior predictive mean given as

f∗ ≜ E [f∗ | y] = K (�∗, �) [K (�,�) + �2�I]−1 y, (14)

and the posterior predictive covariance is

cov (f∗)
= K (�∗, �∗)
−K (�∗, �) [K (�,�) + �2�I]−1 K (�,�∗) .

(15)

�e posterior predictive distribution of the test targets, y∗, is
the same as the latent posterior predictive distribution except
the additional likelihood noise is added:

y∗ ∼N (f∗, cov (f∗) + �2�I) . (16)

Equations (14) and (15) reveal the important features of
the GP emulator. First, the posterior predictive covariance
shrinks the prior test covariance as witnessed by the subtrac-
tion between the 
rst and second terms on the right-hand
side of (15). Second, when making predictions at the training
points (�∗ = �), the predictive uncertainty shrinks to the
allowable error tolerance.

3.2.4. Gaussian Process-BasedCalibration. Once theGP emu-
lator is constructed, it can be used to calibrate the uncertain
input parameters, in place of the computer code. Before going
into detail of the emulator-based calibration calculations,
Bayesian calibration of the computer code itself is reviewed.
�e computer code functional relationship is denoted as
y(xcv, 3), where xcv is the set of control variables that are not
uncertain and 3 are the uncertain input parameters. Control
variables are conditioned controlled by experimenters or in
a transient could also include time. If the computer code
could be used as part of the MCMC sampling, the uncertain
parameter posterior distribution (up to a normalizing con-
stant) could be written as

� (3 | y�) ∝ � (y� | y (xcv,�, 3)) � (3) . (17)

In (17), y� refers to the observational (experimental) data and
xcv,� are the control variables’ locations for the observational
data. �e computer code therefore acts as a (potentially
very nonlinear) mapping function between the uncertain
inputs and the observational data. As discussed previously,
the computer code is computationally too expensive and the
emulator is used in place of the computer code for Bayesian
calibration. To facilitate the emulator-based calibration, the
likelihood function between the computer prediction and the
observational data is split into a hierarchical-like fashion.�e
total likelihood consists of two parts. �e 
rst component
is the likelihood between the observational data and the
prediction, �(y� | y). �e second part is the likelihood
between the computer prediction and the uncertain inputs,�(y | xcv, 3). �e posterior distribution is now the joint
posterior distribution between the uncertain inputs and the
computer predictions, both conditioned on the observational
data:

� (y, 3 | y�) ∝ � (y� | y) � (y | xcv,�, 3) � (3) . (18)

�e likelihood between the observational data and the com-
puter predictions, �(y� | y), is the assumed likelihood model
for the experiment. �is work uses a Gaussian likelihood
with known independent measurement errors at each of the
observational data points. Assuming �� independent data
points, the likelihood function factorizes as

� (y� | y) =
	�∏
�=1
� (��,� | ��) =

	�∏
�=1

N (��, �2
,�) , (19)

where �2
,� is the measurement error variance for the �th
observational data point. �e likelihood between computer
prediction and the inputs, �(y | xcv, 3), is almost impossible
to write analytically because of the very complex nature of the
computer code. However, �(y | xcv, 3) can be approximated
using the emulator which leads to the emulator-modi
ed
likelihood function. As discussed in Section 2, there are two
ways to accomplish this.�e alternate “data fusion” approach
of [2, 3] uses the GP prior distribution to approximate �(y |
xcv, 3). �is work however uses the GP posterior predictive
distribution, of the already built emulator, to approximate�(y | xcv, 3). �e training set is denoted as a whole as



Science and Technology of Nuclear Installations 7

D = {y, �}, and the hyperparameters are assumed to be
already determined as part of the training algorithm. �e
joint posterior between the emulator estimated predictions
y∗ and the uncertain inputs is

� (y∗, 3 | y�,D, #)
∝ � (y� | y∗) � (y∗ | {xcv,�, 3} ,D, #) � (3) . (20)

In (20), �(y∗ | {xcv,�, 3},D, #) is exactly the same as (16),
except that it is explicitly written to depend on the training
set and hyperparameters. Since the GP posterior predictive
distribution is Gaussian and the likelihood between the
observational data and computer prediction is also Gaussian,
the emulator predictions can be integrated out of (20). �e
(integrated) posterior distribution on the uncertain inputs
conditioned on the observational data is then

� (3 | y�,D, #) ∝ � (y� | {xcv,�, 3} ,D, #) � (3) . (21)

�e likelihood between the uncertain inputs and the obser-
vational data is the GP emulator-modi�ed likelihood function
equal to the GP posterior predictive distribution with the
measurement error added to the predictive variance:

y� | {xcv,�, 3} ,D, # ∼N (f∗, cov (f∗) + �2�I+Σ
) . (22)

In (22), Σ
 is themeasurement error covariancematrix which
is assumed to be diagonal. If more complicated likelihood
functions between the observational data and computer pre-
diction were assumed, (21) and (22) would potentially be very
di	erent and even require approximations. Equation (22)
also provides the direct comparison with the “data fusion”
approach described in Section 2. �e emulator-modi
ed
likelihood function given by equation 4 in [2] uses the GP
prior mean and covariance matrix, while this work uses the
GP posterior predictive mean and covariance matrix.

3.3. Function Factorization with Gaussian Process (FFGP)
Priors Emulators. For very large datasets, the inverse of the
training set covariance matrix might be too expensive to
compute. Typically, “very large” corresponds to training sets
with over 10,000 points.�ese situations can occur for several
reasons, the obvious being that a large number of computer
code evaluations are required. Training sets become very
large when the goal is to emulate multiple outputs, especially
for time series predictions. If 100 points in time are taken
from a single computer code evaluation (referred to as a case
run) and 100 cases are required to cover the ranges of the
uncertain variables, the total training set consists of 10,000
points.

As stated previously, there are various solutions to this
issue, most of which involve some form of a dimensionality
reduction technique. �e function factorization approach
used in this work embeds the dimensionality reduction as
part of the emulator through factor analysis techniques. �e
following sections describe the formulation and implementa-
tion of the function factorization model.

3.3.1. Formulation. �e main idea of function factorization
(FF) is to approximate a complicated function,�(x), on a high
dimensional space,X, by the sum of products of a number of
simpler functions, ��,�(x�), on lower dimensional subspaces,

X
�. �e FF-model is [17]

� (x) ≈ �∑
�=1

�∏
�=1
��,� (x�) . (23)

In (23), ; is the number of di	erent factors and < is the
number of di	erent components within each factor. �e
function ��,�(x�) is therefore the latent (hidden) function
of the �th component within the >th factor. �ese hid-
den patterns are not observed directly, but rather must be
inferred from the training dataset. �e patterns represent
a hidden underlying trend within the training data that
characterizes the input/output relationship. In the context of
emulating safety analysis codes, the patterns correspond to
trends between the inputs and the code output of interest,
a temperature, for example. With two factors, factor 1 could
be the time factor which captures the temperature response
through time and factor two could be the trend due to an
uncertain input or the interaction of several uncertain inputs.
�ese hidden patterns are not observed directly but interact
together to produce the observed temperature response. As
will be discussed later, constructing the FF-model requires
learning these hidden patterns from the observed training
data.

�e di	erence between a factor and component is more
distinguishable when (23) is rewritten in matrix form. �e
training output data will now be denoted as a matrixY of size�×�. In the GP emulator discussion,� was the number of
training points. In the FF-model framework, � refers to the
number of computer code case runs and � is the number
of points taken per case run. If one data point is taken per
case run, � = 1, then the number of case runs equals the
number of training points. With two factors, there are two
sets of training inputs, x1 and x2.�e inputs do not need to be
the same size. If factor 1 corresponds to the number of points
taken per case run, then x1 is size�×�1. Factor 2 would then
correspond to the number of di	erent case runs; thus x2 is size�×�2.�e entire set of training input values will be denoted
as X = {x1, x2} and the entire training set will be denoted as
for the GP emulator,D = {X,Y}. With 1-component for each
factor the FF-model becomes amatrix product of two vectors
f1 and f2:

Y ≈ f1f
T
2 . (24)

Formore than one component, each factor is represented as a
matrix. �e columns within each factor’s matrix correspond
to the individual components within that factor. For the 2-
factor 2-component FF-model the factor matrices are F1 =[fT1,1, fT1,2]T and F2 = [fT2,1, fT2,2]T. �e FF-model is then [17]

Y ≈ F1F
T
2 . (25)

�e elements within each of the factor matrices are the
latent variables which represent that factor’s hidden pattern
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and must be learned from the training dataset. Performing
Bayesian inference on the FF-model requires speci
cation
of a likelihood function between the training output data
and the FF-model as well as the prior speci
cation on each
factor matrix. In general, any desired likelihood function
could be used, but this work focused on a simple Gaussian
likelihood with a likelihood noise �2� and mean equal to
the FF-model predictive mean. �e likelihood function is
therefore the same as the likelihood function between the
latent GP variables as the training output, just with the FF-
model replacing the GP latent variable. �e prior on each
component within each factor is speci
ed as a GP prior.
Because the FF-model uses a GP, the emulator is known
as the FFGP model. As described in detail by Schmidt,
this FFGP approach is a generalization of the nonnegative
matrix factorization (NMF) technique [17]. Each GP prior is
assumed to be a zero-meanGPwith a SE covariance function,
though in general di	erent covariance functions could be
used. �e GP priors on the �th component for each of the
two factors are written as

�1,� (�1) ∼ GP (0, �1,� (�1, �1�) ; #1,�) ,
�2,� (�2) ∼ GP (0, �2,� (�2, �2�) ; #2,�) . (26)

�e semicolon notation within each of the GP priors denotes
that both priors depend on the respective set of hyper-
parameters. Each covariance function consists of a similar
set of hyperparameters as those shown in (3), namely, the
signal variance and the length scales. An additional nugget

hyperparameter, �2� , was included to prevent ill-conditioning
issues, but rather than 
xing its value it was considered
unknown. �e hyperparameters for the (>, �)th covariance

function are denoted as in (26), #�,� = {�2�, �, �2� }�,�. Writing

the GP priors in vector notation requires applying each of
the covariance functions to their respective number of input
pairs. Using notation consistent with Section 3.2.1, the GP
priors on the �th component for both factors are

f1,� ∼ GP (0,K1,� (x1, x1) ; #1,�) ,
f2,� ∼ GP (0,K2,� (x2, x2) ; #2,�) . (27)

Comparing (27) to theGP emulator formulation immediately
highlights the key di	erences between the two emulator
types. First, the GP emulator was able to specify a prior
distribution on the output data itself, as given by (7), while
the FFGP emulator speci
es prior distribution on the latent
patterns. As described in Section 3.2.1, (7) was actually
derived by integrating the GP latent variables. �e FFGP
latent variables cannot be integrated however, and so the
FFGP model requires learning the latent variables as well as
the hyperparameters as part of the training algorithm. �is
adds signi
cant complexity compared to the training of the
standard GP emulator. However, this added complexity may
enable an important computational bene
t. �e standard
GP emulator covariance matrix consists of the covariance
function applied to every input pair in the entire training
set. For the present scenario there are a total of�� training
points, whichmeans the covariancematrix is size��×��.

In the FFGP framework, each factor’s covariance matrix is
constructed by evaluating the factor’s covariance function
only at each of that particular factor’s input pairs. �e
factor 1 covariance matrix is therefore size � × � and the
factor 2 covariance matrix is size � × �. By decomposing
the data into various patterns, the FFGP emulator is a
dimensionality reduction technique that works with multiple
smaller covariance matrices.

3.3.2. Training. Training the FFGP emulator requires learn-
ing all of the latent variables and hyperparameters. For nota-
tional simplicity, the following set of expressions will assume
a 2-factor 1-component FFGP model. �e joint posterior for
FFGP models with more components is straightforward to
write out. Denoting the set of all hyperparameters as Ξ ={#�,�, �2�}, the joint posterior distribution (up to a normalizing
constant) between all latent variables and hyperparameters
for a 2-factor 1-component FFGP model is

� (f1, f2, Ξ | D)
∝ � (Y | f1, f2, �2�) � (f1 | #1) � (f2 | #2) � (Ξ) . (28)

�e log-likelihood function (up to a normalizing constant)
between the training output data and the FF-model is [17]

log� (Y | f1, f2, �2�) ∝ − 1

2�2�
AAAAAY− f1fT2 AAAAA2�

− ��
2

log�2� .
(29)

In (29) ‖ ⋅ ‖2� denotes the Frobenius norm. �e log prior for
each of the factor’s priors is

log� (f� | #�) ∝ − 1

2
log

%%%%K�%%%% − 1

2
f
T
� K
−1
� f�, > = 1, 2. (30)

�e two factors are assumed to be independent a priori in
(28). With more components, the setup is the same if all
componentswithin each factor are also assumed independent
a priori. Any correlation between any of the components
as well as across the factors is induced by the training data
through the likelihood function. Drawing samples from the
joint posteriorwithMCMCdoes not require any assumptions
about the posterior correlation structure. �erefore any data
induced posterior correlation can be completely captured by
the MCMC inference procedure.

Following Schmidt in [7], the Hamiltonian Monte Carlo
(HMC)MCMCschemewas used to build the FFGP emulator.
�eHMC is a very powerful MCMC algorithm that accounts
for gradient information to suppress the randomness of a
proposal. See [7, 9, 16] for detailed discussions on HMC.
�e HMC algorithm is ideal for situations with a very large
number of highly correlated variables, as is the case with
sampling the latent variables presently.

�is work has several key di	erences from Schmidt’s
training algorithm in [17], to simplify the implementation
and increase the execution speed. Following [20], the latent
variables and hyperparameter sampling were split into a
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“Gibbs-like” procedure. A single iteration of the MCMC
scheme 
rst samples the latent variables given the hyperpa-
rameters and then samples the hyperparameters given the
latent variables.�e latent variables were sampledwithHMC,
but the hyperparameters can now be sampled from a simpler
MCMC algorithm such as the RWM sampler. Although less
e�cient compared to theHMC scheme, the RWMperformed
adequately for this work.

�e next key di	erence relative to Schmidt’s training
algorithm was to use an empirical Bayes approach and 
x
the hyperparameters as point estimates, similar to the hybrid
style training algorithm of Section 3.2.2.�e hyperparameter

point estimates are denoted as Ξ̂. Once the hyperparameters
are 
xed, the HMC algorithm is restarted, but now the
hyperparameters are considered known.

�e end result of the HMC algorithm is a potentially very
large number of samples of all of the latent variables. One last
simpli
cation relative to Schmidt’s setup was to summarize
the latent variable posteriors as Gaussians. �eir posterior
means and covariance matrices were empirically estimated
from the posterior samples. All of the latent variables are

denoted in stacked vector notation as f̂ and the empirically

estimated means of the latent variables are E[f̂ | D, Ξ̂].
�e empirically estimated covariance matrix of all the latent

variables is cov[f̂ | D, Ξ̂]. Aswill be shown in the next section,
this assumption greatly simpli
ed making predictions with
the FFGP emulator and ultimately provided a very useful
approximation that aided the overall goal of emulator-based
Bayesian model calibration.

3.3.3. Predictions. �e expressions required to make predic-
tions with the FFGP emulator were summarized brie�y in
[21], but they will be described in detail here. Prediction
with the FFGP emulator consists of two steps: 
rst, make
a prediction in the latent factor space and then combine
the factor predictions together to make a prediction on the
output directly. A latent space posterior prediction is very
straightforward following MVN theory and is identical in
procedure to posterior predictions with the GP emulator.�e
joint prior between the training latent variables and test latent
variables is written out similar to (12). Before writing the joint
prior, the two factors are stacked together into a single stacked

vector, f̂ = [fT1 , fT2 ]T. Because the factors are independent
a priori, the stacked covariance matrix is a block diagonal
matrix:

K̂ = [K1 0

0 K2

] . (31)

If more components are used, the individual factor covari-
ance matrices are themselves block diagonal matrices. �e
training latent variables prior in the stacked notation is

f̂ ∼N (0, K̂f ; Ξ̂) . (32)

�e subscript f is used on the stacked covariance matrix to
denote that it is the stacked training covariance matrix. �e
test latent variables prior in stacked notation is similar to (32):

f̂∗ ∼N (0, K̂∗∗; Ξ̂) . (33)

�e subscript ∗∗ is used on the stacked covariance matrix in
(33) to denote that it is the stacked test covariance matrix.
�e cross-covariance matrix between the training and test

points in stacked notation is de
ned as K̂f,∗, which requires
evaluating the covariance function between the training and
test inputs within each factor. �e stacked joint prior is now
easily written as

[ f̂

f̂∗
] ∼N([0

0
] , [ K̂f K̂f,∗

K̂T
f,∗ K̂∗∗

] ; Ξ̂) . (34)

Equation (34) is identical in format to (12), except for one
key di	erence.�e joint prior is de
ned between the training
and test latent variables, not between the training output
and the test latent variables. Conditioning on the training
latent variables, the test latent variable posterior predictive
(conditional) distribution is

f̂∗ | f̂ , Ξ̂ ∼N (E [f̂∗ | f̂] , cov (f̂∗ | f̂)) . (35)

�e posterior predictive (conditional) mean is

E [f̂∗ | f̂ , Ξ̂] = K̂
T
f,∗K̂
−1
f
f̂ , (36)

and the posterior predictive (conditional) covariance matrix
is

cov (f̂∗ | f̂ , Ξ̂) = K̂∗∗ − K̂T
f,∗K̂
−1
f
K̂f,∗. (37)

�e goal is to make a prediction conditioned on the train-
ing dataset, not on particular values of the training latent
variables. �erefore the training latent variables must be
integrated out using their own posterior distribution com-
puted during the training algorithm.�e resulting predictive
distribution will be approximated as a Gaussian with the
mean estimated using the Law of Total Expectation [7]:

E [f̂∗ | D, Ξ̂] = ∫E [f̂∗ | f̂ , Ξ̂] � (f̂ | D, Ξ̂) �f̂ . (38)

Substituting in (36) gives

E [f̂∗ | D, Ξ̂] = K̂
T
f,∗K̂
−1
f
∫ f̂� (f̂ | D, Ξ̂) �f̂ . (39)

�e expression within the integral of (39) is simply the
mean of the (stacked) training latent variables, which was
empirically estimated from the posterior MCMC samples
from the training algorithm. �us, the posterior predictive
test latent variable means are

E [f̂∗ | D, Ξ̂] = K̂
T
f,∗K̂
−1
f
E [f̂ | D, Ξ̂] . (40)

�e Law of Total Covariance is used to estimate the posterior
predictive covariance of the test latent variables. In words, the
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Law of Total Covariance sums up the mean of the predictive
conditional covariance with the covariance of the predictive
conditions means, which is given as

cov (f̂∗ | D, Ξ̂) = E [cov (f̂∗ | f̂ ,D, Ξ̂)]
+ cov (E [f̂∗ | f̂ ,D, Ξ̂]) . (41)

Substituting in (36) and (37) as well as rearranging yields

cov (f̂∗ | D, Ξ̂)
= K̂∗∗

− K̂T
f,∗ (K̂−1f − K̂−1

f
cov (f̂ | D, Ξ̂) K̂−1

f
) K̂T

f,∗.
(42)

Equations (40) and (42) are the approximate posterior pre-
dictive test latent variable mean and covariance matrix. �ey
are referred to as being approximate because the training
latent variable posterior distribution was approximated as a
Gaussian with empirically estimated means and covariance
matrix from the training algorithm.

�e FF-model predictions can now be estimated.�e FF-
model predictive distribution is approximated as a Gaussian,
with the estimated FF-model predictive means stored in an�∗ × �∗ matrix denoted as H∗. �∗ is the number of
predictive “locations” to be made per case, and �∗ is the
number of cases to predict. If the FFGP model is emulating
a transient, �∗ is the number of predictions per case and�∗ is the number of prediction cases. In general, the FFGP
emulator can therefore make prediction at a large number of
case runs all at once, something a computer code cannot do
unless multiple instances are run simultaneously. Within the
present framework of Bayesian calibration of the uncertain
inputs, a single MCMC iteration requires only one case to be
predicted at a time. However, the following expressions are
presented formultiple case predictions at once.�e following
expressions change notation back to using the matrix form of

the latent variables which requires splitting the stacked latent
variables into their respective factors:

f̂∗ = [f̂T1∗ , f̂T2∗]T . (43)

�en the stacked-factor vectors are reshaped into matrices:

F1∗ = vec−1 (f̂1∗) ,
F2∗ = vec−1 (f̂2∗) . (44)

Additionally, the expressions will focus on the predictive FF-
model distribution at a single point rather than in vector
notation. �is simpli
es the notation considerably.

�e FF-model approximate predictive mean requires
computing the expectation of the product of two latent
variable factors. At the (�∗, G∗)th predictive point the FF-
model approximate predictive mean is

E [H∗ (�∗, G∗)] = �∑
�=1

E [F1∗ (�∗, �) F2∗ (G∗, �)] . (45)

�e �th component in the summation in (45) is the standard
result for the product of two correlated random variables:

E [F1∗ (�∗, �)F2∗ (G∗, �)]
= E [F1∗ (�∗, �)]E [F2∗ (G∗, �)]
+ cov (F1∗ (�∗, �) , F2∗ (G∗, �)) .

(46)

�eFF-model approximate predictive variance is the variance
of the summation of products of random variables plus the
FF-model likelihood noise:

var (H∗ (�∗, G∗))
= �2� + var( �∑

�=1
{F1∗ (�∗, �)F2∗ (G∗, �)}) . (47)

Writing out the expression completely gives

var (H∗ (�∗, G∗)) = �2� + �∑
�=1

var (F1∗ (�∗, �)F2∗ (G∗, �)) ⋅ ⋅ ⋅
+ 2∑

1≤�
∑
<��≤�

cov (F1∗ (�∗, �) F2∗ (G∗, �) , F1∗ (�∗, ��) F2∗ (G∗, ��)) .
(48)

Both (46) and (48) reveal the FF-model approximate pre-
diction depends on the covariance between all components
and all factors. �is covariance structure of the posterior test
latent variables is induced by the training dataset through the
posterior training latent variable covariance structure.

3.3.4. FFGP-Based Calibration. With the FFGP emulator
posterior predictive distribution approximated as a Gaus-
sian, a modi
ed likelihood can be formulated in much the

same way as the GP emulator-modi
ed likelihood function
described in Section 3.2.4. As stated earlier, a single case run
is being emulated at each MCMC iteration when calibrating
the uncertain inputs; therefore �∗ = 1. Any number of
points in time (or in general any number of control variable
locations, or predictions per case) can be predicted, but
for notational convenience it is assumed that the number
of predictions per case equals the number of observational
locations, �∗ = ��. At each MCMC iteration the FFGP
emulator predictions are therefore size�� × 1.
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�e joint posterior between the FFGP emulator predic-
tions and the uncertain input parameters is

� (H∗, 3 | y�,D, Ξ̂)
∝ � (y� | H∗) � (H∗ | {xcv,�, 3} ,D, Ξ̂) � (3) . (49)

�e likelihood function between the observational data
and the predictions is assumed to be Gaussian with a
known observational error matrix, just as in Section 3.2.4.
Integrating out the FFGP predictions gives the uncertain
input posterior distribution which looks very similar to the
expression in (21):

� (3 | y�,D, Ξ̂) ∝ � (y� | {xcv,�, 3} ,D, Ξ̂) � (3) . (50)

Assuming the observational error matrix Σ
 is diagonal, the
FFGP modi
ed likelihood function factorizes as

� (y� | {xcv,�, 3} ,D, Ξ̂)
= 	�∏
�=1
� (��,� | {�cv,�,�, 3} ,D, Ξ̂) . (51)

�e FFGP-modi�ed likelihood function for each observational
data point is then

� (��,� | {�cv,�,�, 3} ,D, Ξ̂)
≈ 	�∏
�=1

N (E [H∗ (�)] , var (H∗ (�)) + �2
 ) .
(52)

4. Calibration Demonstration:
Friction Factor Model

4.1. Problem Statement. A method of manufactured
solutions-type approach is used to verify that the emulator-
based calibration process is working as expected. �e metric
of success is that calibration based on the emulator replicates
the calibration results if the computer code itself is used in
the same MCMC procedure. �e “computer code” in this
context is a simple expression that would not actually require
an emulator and can therefore be easily used to calibrate any
of its inputs. Synthetic “observational” data are generated by
setting the uncertain inputs at true values and computing
the corresponding output. If the calibration process works
as intended, the true values of the uncertain inputs will be
learned from the synthetic observational data, within the
assumed measurement error tolerance.

A simple friction factor expression is used as the com-
puter code:

� = exp (H)Re− exp(�). (53)

Note that � in (53) is the friction factor and not related to
any of the emulator latent variables. �e 
rst demonstration
below assumes that only H is uncertain, while the second
demonstration assumes that both H and I are uncertain. Note

that the friction factor expression in (53) is written in the
above form to facilitate specifying Gaussian priors on the
uncertain inputs. �e typical friction factor expression (� =J/Re�) can be recovered by substituting in J = exp(H)
and L = exp(I) into (53). Gaussian priors on H and I are
therefore equivalent to specifying log-normal priors on J
and L. �e prior means on H and I equal McAdam’s friction
factor correlation values: log(0.184) and log(0.2), respectively.
�e prior variances on each are set so that 95% of the prior
probability covers ±50% around the prior mean.

Each demonstration follows the emulator-based calibra-
tion steps outlined in Figure 1.

4.2. Demonstration for the Case of One Uncertain Parameter.
With only H uncertain, the friction factor expression can be
decomposed into the product of two separate functions. �e

rst is a function of the Reynolds number and the second is a
function of H:

� = P (H) P (Re) ,
P (H) = exp (H) ,
P (Re) = Re− exp(�).

(54)

�e 1-component FFGP emulator should be able to exactly
model this expression, within the desired noise level, because
the 1-component FFGP emulator is, by assumption, the
product of two functions.�e control variable is the Reynolds
number; therefore the two factors in the FFGP model are the
Reynolds number factor (factor 1) and the uncertain input
factor (factor 2). �e training data was generated assuming
15 case runs, � = 15, and 10 control variable locations
per case, � = 10. �ese numbers were chosen based on
the “rule of thumb” for GP emulators that requires at least
10 training points per input [5]. �e H training values were
selected at 15 equally spaced points in ±2�. �e Re training
inputs were selected at 10 equally spaced points over an
assumed Reynolds number range, between 5000 and 45000.
�e training data is shown in blue in Figure 2 along with the
synthetic observational data in red. �e measurement error
is assumed to be 10% of the mean value of the friction factor.
�e Reynolds number is shown in scaled terms where 0 and 1
correspond to the minimum and maximum training value,
respectively. Figure 2 clearly shows that the true value of H
falls between two of the training case runs.

Even with only one uncertain parameter, there are actu-
ally two inputs to the computer code: Re and H. If the standard
GP emulator was built, a space 
lling design would need to be
used, such as Latin Hypercube Sampling (LHS), to generate
input values that su�ciently cover the input space.�e FFGP
training set is simpler to generate for this demonstration
because each factor’s training input values can be generated
independent of the other factor.�is illustrates how the FFGP
emulator decomposes, or literally factorizes, the training set
into simpler, smaller subsets.

�e 2-factor 1-component FFGP emulator is built fol-
lowing the training algorithm outlined in Section 3.3.2. �e
posterior results of the observation space training points
are shown in Figure 3. �e red dots are the training output
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Figure 2: One uncertain parameter demonstration training set.
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Figure 3: Posterior observational training predictions.

data and although di�cult to see, the blue lines are the
posterior quantiles on the FFGP training output predictions
corresponding to the 5th, 25th, 50th, 75th, and 95th quantiles.
�e quantiles are tightly packed together representing that
the FFGP emulator has very little uncertainty. �is meets
expectations since by assumption the 2-factor 1-component
FFGP emulator should be able to exactly model the product
of two functions.

�e uncertain H input is calibrated using the FFGP
modi
ed likelihood function. �e input is scaled between 0
and 1, which corresponds to a prior scaled mean of 0.5 and
prior scaled variance of 0.25. Posterior samples were drawn
using the RWM algorithmwith the FFGP emulator-modi
ed

likelihood function. A total of 2 × 104 samples were drawn
with the 
rst half discarded as burn-in. Figure 4 shows the
scaled posterior samples in blue with the true value displayed
as the horizontal red line.�emixing rate is very high and the
posterior samples are tightly packed around the true value.
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Figure 4: Scaled H posterior samples.
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Figure 5: Estimated scaled H posterior and prior densities.

Figure 5 shows the estimated posterior distribution in blue
relative to the relatively uncertain prior in black. �e red line
is the true value. Figure 5 illustrates how precise the posteriorH distribution is, con
rming that the 2-factor 1-component
FFGP emulator is working as expected.

4.3. Demonstration for the Case of Two Uncertain Parameters.
With both H and I uncertain, the uncertain input functionP(H, I) cannot be written explicitly. It is expected that the 2-
factor 1-component FFGP model will no longer be able to
exactly model this relationship since the friction factor is no
longer a product of two simple functions. A 3-factor model
could be used, but this work focused on 2-factor models for
convenience. �e 2-factor FFGP model requires additional
components to gain the necessary �exibility to handle this.
�e downside of using only 2-factors requires the uncertain
parameter factor (factor 2) to be trained with space 
lling
designs, such as LHS. �is work did not focus on 
nding
the absolute “best” training set, which is an active area of
research.

�e LHS generated training dataset is shown in Figure 6.
Fi�y case runs were made with 25 points taken per case,� = 50 and � = 25. Using more training points helped
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Figure 6: Two uncertain input demonstration training sets.

guarantee the training dataset would “surround” or cover the
observational data. For comparison purposes a standard GP
emulator was built for this dataset. �e GP emulator training
points are shown as circles in Figure 6 and correspond to
one point taken per case. �e Reynolds numbers selected for
the GP emulator training set were chosen as part of the LHS
process. �e FFGP emulator uses a total of �� = 1250
training points but the two factor covariance matrices are
sizes (� × �) = (25 × 25) for factor 1 and (� × �) =(50 × 50) for factor 2. �e GP emulator covariance matrix
is size (� × �) = (50 × 50) because only 50 points were
used by assumption. If all of the training points were used,
the GP emulator covariance matrix would be size (�� ×��) = (1250 × 1250). �e FFGP emulator setup can
therefore drastically reduce the computational burden and
facilitate using as many training points as possible.

Examining Figure 6 also shows that both the FFGP and
GP emulator training sets are quite poor compared to the
training set used in the one uncertain input demonstration.
Only a few case runs lie within the error bars of the data
and there are very few GP emulator training points near the
observational data. It would be relatively easy to keep adding
new training points manually for this demonstration to yield
a training set that is closer to the observational data.However,
in a real problem with many uncertain inputs it may be very
di�cult to do that manually. �is demonstration problem
was set up this way to show that the FFGP emulator would
outperform the GP emulator due to the pattern recognition
capabilities.

A total of 3 emulators were constructed, the standard
GP and a 2-factor 1-component and 2-factor 2-component
FFGP emulators. Due to di	erent output scaling it is di�cult
to compare the training results between the GP and FFGP
emulators, but a simple approach to compare FFGP perfor-
mance at the end of the training algorithm is to compare
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Figure 7: FFGP 2-factor 1-component likelihood noise hyperpa-
rameter samples.
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Figure 8: FFGP 2-factor 2-component likelihood noise hyperpa-
rameter samples.

the likelihood noise hyperparameter. �e �2� hyperparameter

was reparameterized during the RWM sampling as �2� =
exp(2#�). �e more negative #� is, the smaller the likelihood
noise will be for that particular emulator. Figures 7 and 8
show the sample histories for #� for the 1-component and
2-component FFGP models, respectively. In each 
gure, the
gray line is the initial guess, the blue line shows the samples,
and the red line shows the point estimate. It is very clear that
the 2-component FFGP emulator is far more accurate relative
to the training set.�e #� point estimate for the 1-component
model gives a likelihood standard deviation (��) that is over
45x that of the 2-component emulator. �is illustrates the
point that the 1-component FFGP emulator is no longer an
exact representation of the computer code. �e additional
componentwithin the 2-component FFGP emulator provides
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Figure 9: FFGP 2-factor 1-component calibrated posterior predictions ((a) covers entire training set; (b) zoom in on the observational data).
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Figure 10: FFGP 2-factor 2-component calibrated posterior predictions ((a) covers entire training set; (b) zoom in on the observational data).

the extra �exibility needed to match the training set more
accurately.

With the FFGP emulators built, they were used to cali-
brate the uncertain H and I inputs using the FFGP modi
ed
likelihood function within the AM-MCMC routine. A total
of 105 samples were drawn with the 
rst half discarded
as burn-in. �e calibrated posterior predictions for the 1-
and 2-component FFGP emulators are shown in Figures 9
and 10, respectively. In both 
gures, the plot on the le�
shows the posterior calibrated predictions along with all of
the training data. �e plot on the right zooms in on the
posterior calibrated predictions and the observational data.
�e gray lines are the training data. In both 
gures, the blue
lines are the posterior quantiles (the 5th, 25th, 50th, 75th,
and 95th quantiles) of the predictive means and although

di�cult to see, the black line is the mean of the predictive
means. �e blue lines therefore represent what the emulator
thinks the computer code’s posterior predictive quantiles
would be if the computer code had been used. �e green
band is the total predictive uncertainty band of the emulator,
spanning 95% of the emulator prediction probability, and
is ±2� around the mean of the predictive means. �us, the
green band represents the emulator’s con
dence. If the edge
of the green band falls directly on top of the outer blue
lines, the emulator is essentially perfect and contributes no
additional uncertainty to the posterior predictions. A gap
between the outer blue lines and the edge of the green band,
however, illustrates that the emulator has some associated
uncertainty when it makes predictions. �e emulator is not
perfect, as described in the previous sections, and therefore
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Figure 11: GP calibrated posterior predictions ((a) covers entire training set; (b) zoom in on the observational data).

some spacing between the green band’s edge and the outer
blue lines is expected. However, if the gap width is large, the
emulator’s own predictive uncertainty starts to dominate the
total predictive uncertainty. Considering these conventions,
the 1- and 2-component FFGP emulators can be visually
compared quite easily. As shown in Figure 10 the green
band is very close to the spread in the blue lines; thus
the 2-component FFGP emulator adds very little additional
uncertainty in the predictions. �e 2-component FFGP
emulator’s higher posterior predictive precision relative to
the 1-component FFGP emulator is in line with the training
results shown in Figures 7 and 8. �e 1-component FFGP
emulator required more noise to match the training data,
which was always propagated through onto the predictions,
yielding more uncertain predictions.

Reducing the emulator predictive uncertainty allowed the
2-component FFGP emulator to be more accurate relative
to the observational data. As shown in Figure 9, the 1-
component FFGP emulator predictions seem to regress the
observational data, within the total predictive uncertainty.
�e 2-component FFGP emulator’s reduced total predictive
uncertainty allows the data trend to be captured more
accurately.

�e H and I inputs were also calibrated using the GP
emulator. Once constructed the GP modi
ed likelihood
function was used within the AM-MCMC scheme. �e
same number of samples was drawn as was done for the
FFGP case, to provide a direct comparison between the GP-
modi
ed and FFGP-modi
ed likelihood functions. �e GP-
based calibrated posterior predictions are shown in Figure 11
using the same format as the FFGP predictions. �e GP
emulator adds less uncertainty to the predictions than the 1-
component FFGP emulator but is more uncertain and less
accurate relative to the data than the 2-component FFGP
emulator. �e predictions over the 
rst half of the (scaled)
Reynolds numbers are very accurate and are similar to the
2-component FFGP emulator predictions. �e latter half
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Figure 12: GP-based uncertain input posterior distributions (black:
prior, blue: emulator-based posterior, green: computer code-based
posterior, and red: true value).

of the Reynolds number predictions, however, are worse
relative to the 2-component FFGP emulator predictions. �e
reasons for the di	erence are best explained by examining the
posterior distributions on the H and I parameters.

�e posterior distributions from each of the three
emulator-based calibration processes are shown in Figures 12,
13, and 14. In all three 
gures, the black line is the estimated
prior, blue is the emulator-based estimated posterior, red is
the true value, and green is the estimated posterior when
the computer code (the friction factor expression) is used in
the AM-MCMC scheme instead of the emulators. Each of
the 
gures is shown over the scaled input ranges, so 0.5 is
the scaled prior mean. �e computer code-based calibration
results 
nd the true values very well, with the posterior
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Figure 13: 1-component FFGP-based uncertain input posterior
distributions (black: prior, blue: emulator-based posterior, green:
computer code-based posterior, and red: true value).
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Figure 14: 2-component FFGP-based uncertain input posterior
distributions (black: prior, blue: emulator-based posterior, green:
computer code-based posterior, and red: true value).

mode lining up nearly exactly with the true values. �e
posterior variance is limited by the assumed measurement
error. Although not shown, the posterior variance decreases
as the assumed measurement error is decreased.

Although the GP emulator is capable of 
nding the
correct posterior modes, the (marginal) posterior distri-
butions do not match the computer code-based posterior
distributions. Smaller second modes are present in both
input parameters. As described in detail in [12], the relatively
sparse GP training set is impacting the posterior results. �e
GP is only able to resolve the overall trend, as illustrated
by the GP-based posterior mode roughly corresponding
to the computer code-based posterior mode. �e posterior
tails however cannot be resolved since the emulator’s own
predictive variance starts to impact predictions far from the

overall trend. �e variation in the output data can therefore
be explained by the additional noise from the emulator, rather
than variation in either of the inputs.�e inputs can therefore
take on values they would not normally have, since from the
emulator’s point of view the prediction overlaps the data’s
own error. �e 1-component FFGP emulator-based results
also support this concept, since the posterior distributions
in Figure 13 are still quite broad. �e emulator is capable
of shi�ing the (marginal) posterior distributions in the
correct directions, but the additional emulator uncertainty
prevents the MCMC sampling from resolving any additional
information about the input values. �e 2-component FFGP
emulator, however, is so accurate relative to the actual friction
factor “computer code,” that its uncertain input (marginal)
posterior distributions, as shown in Figure 14, are almost
identical to the computer code-based results.

In more complex problems, it is not expected that the
FFGP-based results will always be as accurate as in this
simple demonstration. However, the FFGP emulator-based
calibration is capable of matching the computer code-based
calibration results as shown here. In more complex, and
realistic situations, the computer code-based results will not
be available for comparison, so it was important to verify
through this method of manufactured solution problem that
the emulator-based process works as expected.

5. Conclusions

�e emulator-based calibration approach with the FFGP
model was shown above to be capable of reproducing the
calibration results obtained when the actual computer code
is used in the MCMC sampling. As explored in [11, 17], the
e�cacy of the FFGP in this application can depend on how
the model is structured, but, in cases explored, the additional
FFGP emulator was shown to outperform the standard
GP emulator, on the given friction factor demonstration
problem, because it is capable of e�ciently using more
training data. �is is an important feature because safety
analysis problems produce time series predictions which
could prove to be computationally expensive for standard
GP emulators. Reducing the computational burden would
require choosing a limited subset of all of the training
runs, which might negatively impact the GP emulator-based
results as described in [12]. �e friction factor calibration
GP-based results presented in this work con
rmed those
issues. �e FFGP emulator however uses pattern recognition
techniques to e�ciently decompose the training data. �e
latent or hidden patterns allow more training data to be used
which can drastically improve the predictive accuracy of the
emulator.

�is paper speci
cally covered the theory and formu-
lation of the FFGP-based calibration approach. Work to
presented in a subsequent paper, applies the FFGP-based
calibration approach to a more realistic safety analysis sce-
nario, an EBR-II loss of �ow transientmodeledwith RELAP5.
As will be shown in that paper, the FFGP-based calibration
approach is over 600 times faster than if the RELAP5 model
was used directly. Moreover, the FFGP approach is needed,
because the standard GP emulator does not provide the
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necessary �exibility to emulate the RELAP5 time series
predictions.
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