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Understanding how quantum resources can be quantified and distributed over many parties has profound

applications in quantum communication. As one of the most intriguing features of quantum mechanics,

Einstein-Podolsky-Rosen (EPR) steering is a useful resource for secure quantum networks. By reconstructing

the covariance matrix of a continuous variable four-mode square Gaussian cluster state subject to asymmetric

loss, we quantify the amount of bipartite steering with a variable number of modes per party, and verify

recently introduced monogamy relations for Gaussian steerability, which establish quantitative constraints on

the security of information shared among different parties. We observe a very rich structure for the steering

distribution, and demonstrate one-way EPR steering of the cluster state under Gaussian measurements, as

well as one-to-multimode steering. Our experiment paves the way for exploiting EPR steering in Gaussian

cluster states as a valuable resource for multiparty quantum information tasks.
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Schrödinger [1] put forward the term “steering” to

describe the “spooky action-at-a-distance” phenomenon

pointed out by Einstein, Podolsky, and Rosen (EPR) in

their famous paradox [2,3]. Wiseman, Jones, and Doherty

[4] rigorously defined the concept of steering in terms of

violations of a local hidden state model, and revealed that

steering is an intermediate type of quantum correlation

between entanglement [5,6] and Bell nonlocality [7,8],

where local measurements on one subsystem can appa-

rently adjust (steer) the state of another distant subsystem

[9–12]. Such correlation is intrinsically asymmetric with

respect to the two subsystems [13–19], and allows verifi-

cation of shared entanglement even if the measurement

devices of one subsystem are untrusted [11]. Because of

this intriguing feature, steering has been identified as a

physical resource for one-sided device-independent (1sDI)

quantum cryptography [20–24], secure quantum telepor-

tation [25–27], and subchannel discrimination [28].

Recently, experimental observation of multiparty EPR

steering was reported in optical networks [29] and photonic

qubits [30,31]. These experiments offer insights into

understanding whether and how this special type of

quantum correlation can be distributed over many different

systems, a problem which has been recently studied

theoretically by deriving so-called monogamy relations

[32–38]. It has been shown that the residual Gaussian

steering stemming from a monogamy inequality [36] can

act as a quantifier of genuine multipartite steering [39] for

pure three-mode Gaussian states, and acquires an opera-

tional interpretation in the context of a 1sDI quantum secret

sharing protocol [40]. However, beyond [29], no systematic

experimental exploration of monogamy constraints for

EPR steering has been reported to date.

As generated via an Ising-type interaction, a cluster

state features better persistence of entanglement than that of

a Greenberger-Horne-Zeilinger (GHZ) state, and, hence, is

considered as a valuable resource for one-way quantum

computation [41–45] and quantum communication [46–49].

Continuous variable (CV) cluster states [50,51], which can be

generated deterministically, have been successfully produced

for eight [52], 60 [53], and up to 10 000 quantummodes [54].

Several quantum logical operations based on prepared CV

cluster states have been experimentally demonstrated [55–58].

While the previous studies of multipartite steering mainly

focus on the CV GHZ-like states [59], comparatively little is

known about EPR steering and its distribution according to

monogamy constraints in CV cluster states.

In this Letter, we experimentally investigate properties of

bipartite steering within a CV four-mode square Gaussian

cluster state (see Fig. 1), and quantitatively test its

monogamy relations [33–37]. By reconstructing the covari-

ance matrix of the cluster state, we measure the quantifier

of EPR steering under Gaussian measurements introduced

in [15], for various bipartite splits. We find that the two- and
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three-mode steering properties are determined by the

geometric structure of the cluster state. Interestingly, a

given mode of the state can be steered by its diagonal mode

which is not directly coupled but cannot be steered even by

collaboration of its two nearest neighbors, although they

are coupled by direct interaction. These properties are

different from those of a CV four-mode GHZ-like state.

We further present for the first time an experimental

observation of a “reverse” steerability, where the party

being steered comprises more than one mode. With this

ability, we precisely validate four types of monogamy

relations recently proposed for Gaussian steering (see

Table I) in the presence of loss [33–37]. Our study helps

quantify how steering can be distributed among different

parties in cluster states and link the amount of steering to

the security of channels in a communication network.

The CV cluster quadrature correlations (so-called

nullifiers) can be expressed by [45,50,51]

 

p̂a −
X

b∈Na

x̂b

!

→ 0; ∀ a ∈ G ð1Þ

where x̂a ¼ âþ â† and p̂a ¼ ðâ − â†Þ=i stand for ampli-

tude and phase quadratures of an optical mode â, respec-
tively. The modes of a ∈ G denote the vertices of the graph

G, while the modes of b ∈ Na are the nearest neighbors of

mode â. For an ideal cluster state the left-hand side of

Eq. (1) tends to zero, so that the state is a simultaneous zero

eigenstate of these quadrature combinations in the limit of

infinite squeezing [45].

As a unit of a two-dimensional cluster state, a four-mode

square cluster state as shown in Fig. 1(a) can be used to

establish a quantum network [40,60]. The cluster state of

the optical field is prepared by coupling two phase-

squeezed and two amplitude-squeezed states of light on

an optical beam-splitter network, which consists of three

optical beam splitters with transmittance of T1 ¼ 1=5 and

T2¼T3¼1=2, respectively, as shown in Fig. 1(b) [61]. We

distribute mode Â of the state in a lossy channel [Fig. 1(a)].

The output mode is given by Â0 ¼ ffiffiffi

η
p

Âþ ffiffiffiffiffiffiffiffiffiffiffi

1 − η
p

υ̂, where

η and υ̂ represent the transmission efficiency of the

quantum channel and the vacuum mode induced by loss

into the quantum channel, respectively.

The properties of a (nA þmB)-mode Gaussian state ρAB
of a bipartite system can be determined by its covariance

matrix

σAB ¼
�

A C

C⊤ B

�

; ð2Þ

with elements σij ¼ hξ̂iξ̂j þ ξ̂jξ̂ii=2 − hξ̂iihξ̂ji, where ξ̂≡

ðx̂A
1
; p̂A

1
;…; x̂An ; p̂

A
n ; x̂

B
1
; p̂B

1
;…; x̂Bm; p̂

B
mÞ is the vector of the

amplitude and phase quadratures of optical modes. The

submatrices A and B are corresponding to the reduced

states of Alice’s and Bob’s subsystems, respectively. The

partially reconstructed covariance matrix σA0BCD, which

corresponds to the distributed mode Â0 and modes B̂, Ĉ and

D̂, is measured by four homodyne detectors [61,66].

The steerability of Bob by Alice (A → B) for a

(nA þmB)-mode Gaussian state can be quantified by [15]

GA→BðσABÞ ¼ max

(

0; −
X

j∶ν̄
ABnA
j

<1

lnðν̄ABnAj Þ
)

; x ð3Þ

where ν̄
ABnA
j ðj ¼ 1;…; mBÞ are the symplectic eigenvalues

of σ̄ABnA ¼ B − CTA−1C, derived from the Schur comple-

ment of A in the covariance matrix σAB. The quantity G
A→B

is a monotone under Gaussian local operations and

classical communication [37] and vanishes iff the state

described by σAB is nonsteerable by Gaussian measure-

ments [15]. The steerability of Alice by Bob [GB→AðσABÞ]
can be obtained by swapping the roles of A and B.

FIG. 1. Scheme of the experiment. (a) An optical mode (Â) of a
four-mode square cluster state is distributed over a lossy quantum

channel. (b) The experimental setup. The squeezed states with

−3 dB squeezing at the sideband frequency of 3 MHz are

generated from two nondegenerate optical parametric amplifiers

(NOPAs). T1, T2, and T3 are the beam splitters used to generate

the cluster state. The lossy channel is composed by a half-wave

plate (HWP) and a polarization beam splitter (PBS). HD1–4

denote homodyne detectors; LO denotes the local oscillator; and

DM denotes dichroic mirror.

TABLE I. Classification of monogamy relations for the bipar-

tite quantifier Gj→k of EPR steerability of party k by party j under
Gaussian measurements, in a tripartite ðnA þ nB þ nCÞ-mode

system ABC. Note: I⊑II and III⊑IV, where “⊑” indicates being

generalized by; the relations in types II and IVb can be violated

for nC > 1.

Type Ref. Inequality Specifications

I [33] GA→C > 0⇒ GB→C ¼ 0 nA ¼ nB ¼ nC ¼ 1

II [34,35] GA→C > 0⇒ GB→C ¼ 0 nA, nB ≥ 1; nC ¼ 1

IIIa [36] GC→ðABÞ−GC→A−GC→B ≥ 0 nA ¼ nB ¼ nC ¼ 1

IIIb [36] GðABÞ→C−GA→C−GB→C ≥ 0 nA ¼ nB ¼ nC ¼ 1

IVa [37] GC→ðABÞ−GC→A−GC→B ≥ 0 nA, nB, nC ≥ 1

IVb [37] GðABÞ→C − GA→C − GB→C ≥ 0 nA, nB ≥ 1; nC ¼ 1
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Figure 2 shows a selection of results for the steerability

between any two modes [i.e., (1þ 1)-mode partitions] of the

cluster state under Gaussian measurements. Surprisingly, as

shown in Fig. 2(a) and Fig. S2 in [61], we find that steering

does not exist between any two neighboring modes, as one

might have expected due to the direct coupling as shown in

the definition of a cluster state in Eq. (1). Instead, two-mode

steering is present between diagonal modes which are not

directly coupled, as shown in Fig. 2. This observation can be

understood as a consequence of the monogamy relation

(type-I) derived from the two-observable (x̂ and p̂) EPR

criterion [33]: two distinct modes cannot steer a third mode

simultaneously by Gaussian measurements. In fact, as shown

in Fig. 1, mode Ĉ and mode D̂ are completely symmetric in

the cluster state. Thus, if Â0 could be steered by Ĉ, it should

be equally steered by D̂ too, which, on the contrary, is

forbidden by the type-I monogamy relation. However, there

is no such constraint for mode B̂. As a comparison, in a CV

GHZ-like state, pairwise steering is strictly forbidden

between any two modes based upon the same argument

as the state is fully symmetric under mode permutations

[32,67]. Thus, we conclude that a cluster state features richer

steerability properties, due to the inherent asymmetry

induced by its geometric configuration.

We further investigate quantitatively the robustness of

the two-mode steering when transmission loss is imposed

on one of the two parties. In Fig. 2(b), we show the steering

parameter defined in Eq. (3) by varying the transmission

efficiency η of the lossy channel. When the lossy mode Â0 is
the steered party, we find that the nonlossy steering party B̂

can always steer Â0, although the steerability is reduced

with increasing loss. However, the presence of loss plays a

vital role if Â0 is the steering party. In fact, if the

transmission efficiency η is lower than a critical value of

∼0.772, the Gaussian steering of Â0 upon B̂ is completely

destroyed. This leads to a manifestation of “one-way”

steering within the region of η ∈ ð0; 0.772Þ, as previously
noted in other types of entangled states [17–19,29].

However, we remark that in our experiment we are limited

to Gaussian measurements for the steering party, which

leaves open the possibility that A0
→ B steering could still

be demonstrated for smaller values of η by resorting to

suitable non-Gaussian measurements [18,68].

Since mode Â0 is coupled to its two nearest neighbors Ĉ

and D̂ on each side, one may wonder whether the two

neighboring modes can jointly steer Â0. Figures 3 and S3 in
[61] show the steerability between one mode and any two

other modes of the cluster state [i.e., (1þ 2)-mode and

(2þ 1)-mode partitions] under Gaussian measurements.

Interestingly, we find that mode Â0 still cannot be steered

even by the collaboration of modes Ĉ and D̂ (GCD→A0 ¼ 0)

[Fig. 3(a)] but can be steered so long as the diagonal mode

B̂ is involved (GBC→A0 ¼ GBD→A0
> 0) [Fig. 3(b)]. This

phenomenon is determined unambiguously from a gener-

alized monogamy relation applicable to the case of the

steering party consisting of an arbitrary number of modes

(type-II) [34,35]. As mode B̂ can always steer Â0 [shown in
Fig. 2(b)], the other group fĈ; D̂g is forbidden to steer the

same mode simultaneously. We stress that this property is

again in stark contrast to the case of a CV four-mode

GHZ-like state, where any two modes f{̂; ĵg can collec-

tively steer another mode k̂ [67] as there is no two-mode

steering to rule out this possibility. Similarly, mode Ĉ can

only be steered by a group comprising the diagonal mode D̂

[GBD→C > 0 shown in Fig. 3(a), and GA0D→C > 0 shown in

Fig. 3(c)]. We also show that the collective steerability

GBCðDÞ→A0
[solid curve in Fig. 3(b)] is significantly higher

than the steerability by B̂ mode alone GB→A0
[solid curve in

Fig. 2(b)], suggesting that although the neighboring modes

Ĉ and D̂ cannot steer Â by themselves, their roles in

assisting collective steering with mode B̂ are nontrivial.

We further measure, for the first time, the steerability

when the steered party comprises more than one mode, i.e.,

steering parameters of (1þ 2)-mode configurations, which

are shown in Fig. 3 and in Fig. S3 in [61]. The loss imposed

on Â also leads to asymmetric steerability GBC→A0
≠ GA0

→BC,

and a parameter window for one-way steering (under the

restriction of Gaussian measurements) with η ∈ ð0; 0.5�, as
shown in Fig. 3(b). In addition, our results GD→BC > 0

[GD→BC ¼ GC→BD, Fig. 3(a)] and GA0
→BC > 0 when η > 0.5

[Fig. 3(b)] also confirm experimentally that, when the

steered system is composed of at least two modes, it can

be steered by more than one party simultaneously; i.e., the

type-II monogamy relation is lifted [35].

Using the results of (1þ 2)-mode steerability, we also

present the first experimental examination of the type-III

FIG. 2. Gaussian EPR steering between two modes of the cluster

state. (a) There is no EPR steering between neighboring modes Â0

and D̂ under Gaussian measurements, while diagonal modes Ĉ and

D̂ can steer each other with equal power. (b) One-way EPR

steering between modes Â0 and B̂ under Gaussian measurements.

Additional (1þ 1)-mode partitions are shown in Fig. S2 in [61]. In

all the panels, the quantities plotted are dimensionless. The lines

and curves represent theoretical predictions based on the theoreti-

cal covariance matrix as calculated in [61]. The dots and squares

represent the experimental data measured at different transmission

efficiencies. Error bars represent � one standard deviation and are

obtained based on the statistics of the measured noise variances.
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monogamy relation, called Coffman-Kundu-Wootters

(CKW)-type monogamy in reference to the seminal study

on monogamy of entanglement [32], which quantifies how

the steering is distributed among different subsystems [36].

For a three-mode scenario, the CKW-type monogamy

relation reads

Gk→ði;jÞðσijkÞ − Gk→iðσijkÞ − Gk→jðσijkÞ ≥ 0; ð4Þ

where i; j; k ∈ fÂ0; B̂; Ĉ; D̂g in our case. We have exper-

imentally verified that this monogamy relation is valid for

all possible types of (1þ 2)-mode steering configurations;

some of them are shown in Fig. 3(d).

Next, we study the steerability between one and the

remaining three modes within the cluster state, i.e.,

(1þ 3)- and (3þ 1)-mode partitions. As shown in Figs. 4(a)

and 4(b), one-way EPR steering (under Gaussian measure-

ments) is observed for bipartitions ðÂ0 þ B̂ Ĉ D̂Þ and

ðB̂þ Â0Ĉ D̂Þ when η ≤ 0.5 and η ≤ 0.228, respectively.

The asymmetry between the two steering directions for the

bipartition ðĈþ Â0B̂ D̂Þ grows with increasing transmission

efficiency, but no one-way property is observed in this case

[Fig. 4(c)], since mode Ĉ and mode D̂ can always steer each

other independently. Quantitatively, the (1þ 3)- and (3þ 1)-

mode steerability degrees are further enhanced in comparison

to the (1þ 2) and (2þ 1) mode cases, even when the newly

addedmodealone cannot steer or be steeredby theother party.

We also confirm that the generalized CKW-type monogamy

inequality Gk→ði;j;lÞ − Gk→i − Gk→j − Gk→l ≥ 0 holds in this

four-mode scenario, as shown in Fig. 4(d).

Finally, our experiment also validates for the first time

general monogamy inequalities for Gaussian steerabilitywith

an arbitrary number of modes per party (type-IV) [37]. As a

typical example of (2þ 2)-mode steering, our experimental

results demonstrate that the steerability of ðÂ0B̂þ Ĉ D̂Þ-
mode partitions satisfies the following inequalities

GA0B→CD − GA0B→C − GA0B→D ≥ 0; ð5aÞ

GCD→A0B − GC→A0B − GD→A0B ≥ 0; ð5bÞ

as indicated in Fig. 4(d). We have verified that both these

monogamy relations are also valid for all possible (2þ 2)-

mode configurations in this cluster state. Note that, in general,

Eq. (5b) can be violated on other classes of states [37].

FIG. 3. Gaussian EPR steering between one and twomodes of the

cluster state. (a) Mode Â0 cannot be steered by the collaboration of

twonearest neighboringmodesfĈ; D̂g even though they are directly
coupled; while Ĉ and fB̂; D̂g can steer each other. (b) One-wayEPR
steering between modes Â0 and fB̂; Ĉg under Gaussian measure-

ments. (c) Ĉ andfÂ0; D̂g can steer eachother asymmetrically and the

steerability grows with increasing transmission efficiency, reflecting

the different effect when loss happens on steering or a steered

channel. (d) Validation of CKW-type monogamy for steering (type-

III). Additional partitions are shown in Fig. S3 in [61]. In all the

panels, the quantities plotted are dimensionless. The lines and curves

represent theoretical predictions based on the theoretical covariance

matrix as calculated in [61]. The dots and squares represent the

experimental data measured at different transmission efficiencies.

Error bars represent� one standard deviation and are obtained based

on the statistics of the measured noise variances.

FIG. 4. Gaussian EPR steering between one and three modes in

the cluster state. (a) One-way EPR steering under Gaussian

measurements between modes Â0 and fB̂; Ĉ; D̂g with directional

property. (b) One-way EPR steering under Gaussian measurements

between modes B̂ and fÂ0; Ĉ; D̂g. (c) Asymmetric steering

between modes Ĉ and fÂ0; B̂; D̂g. (d) Monogamy of steering

quantifier for (1þ 3)- and (2þ 2)-mode partitions. In all the

panels, the quantities plotted are dimensionless. The lines and

curves represent theoretical predictions based on the theoretical

covariance matrix as calculated in [61]. The dots and squares

represent the experimental data measured at different transmission

efficiencies. Error bars represent � one standard deviation and are

obtained based on the statistics of the measured noise variances.
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In summary, the structure and sharing of EPR steering

distributed over two-, three-, and four-mode partitions have

been demonstrated and investigated quantitatively for a CV

four-mode square Gaussian cluster state subject to asym-

metric loss. By generating the cluster state deterministically

and reconstructing its covariance matrix, we obtain a full

steering characterization for all bipartite configurations. For

general cases with arbitrary numbers of modes in each

party, we quantify the bipartite steerability by Gaussian

measurements, and provide experimental confirmation for

four types of monogamy relations which bound the dis-

tribution of steerability among different modes, as sum-

marized in Table I. Even though our state does not display

genuine multipartite steering [39], several innovative fea-

tures are observed, including the steerability of a group of

two or three modes by a single mode, and the fact that a

given mode of the state can be steered by its diagonal mode

which is not directly coupled but cannot be jointly steered

by its two directly coupled nearest neighbors.

Our work thus provides a concrete in-depth understand-

ing of EPR steering and its monogamy in paradigmatic

multipartite states such as cluster states. In turn, this can be

useful to gauge the usefulness of these states for quantum

communication technologies. For instance, secure CV

teleportation with fidelity exceeding the no-cloning thresh-

old requires two-way Gaussian steering [26], which arises

in various partitions in our state, e.g. between Â0 and B̂ for

sufficiently large transmission efficiency [see Fig. 2(b)].

Furthermore, the amount of Gaussian steering directly

bounds the secure key rate in CV 1sDI quantum key

distribution and secret sharing [22,36,40]. Combined with a

stronger initial squeezing level, the techniques used here

could be adapted to demonstrate these protocols among

many sites over lossy quantum channels.

This research was supported by the National Natural

Science Foundation of China (Grants No. 11522433,

No. 11622428, No. 61475092, and No. 61475006) and

the Ministry of Science and Technology of China (Grants

No. 2016YFA0301402 and No. 2016YFA0301302). X. S.

thanks the program of Youth Sanjin Scholar; Q. H. thanks

the Cheung Kong Scholars Programme (Youth) of China;

G. A. thanks the European Research Council (ERC)

Starting Grant GQCOP (Grant No. 637352) and the

Foundational Questions Institute Physics of the Observer

Programme (Grant No. FQXi-RFP-1601).

X. D. and Y. X. contributed equally to this work.

*
qiongyihe@pku.edu.cn

†
suxl@sxu.edu.cn

[1] E. Schrödinger, Discussion of probability relations between

separated systems, Proc. Cambridge Philos. Soc. 31, 555

(1935).

[2] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-

mechanical description of physical reality be considered

complete?, Phys. Rev. 47, 777 (1935).

[3] M. D. Reid, Demonstration of the Einstein-Podolsky-Rosen

paradox using nondegenerate parametric amplification,

Phys. Rev. A 40, 913 (1989).

[4] H. M. Wiseman, S. J. Jones, and A. C. Doherty, Steering,

Entanglement, Nonlocality, and the Einstein-Podolsky-

Rosen Paradox, Phys. Rev. Lett. 98, 140402 (2007).

[5] E. Schrödinger, Die gegenwärtige Situation in der Quan-

tenmechanik, Die Naturwissenschaften 23, 807 (1935).

[6] R.Horodecki, P.Horodecki,M.Horodecki, andK.Horodecki,

Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).

[7] J. S. Bell, On the Einstein Podolsky Rosen paradox, Physics

1, 195 (1964).

[8] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.

Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014).

[9] S. J. Jones, H. M. Wiseman, and A. C. Doherty, Entangle-

ment, Einstein-Podolsky-Rosen correlations, Bell nonlocal-

ity, and steering, Phys. Rev. A 76, 052116 (2007).

[10] M. D. Reid, P. D. Drummond,W. P. Bowen, E. G. Cavalcanti,

P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs,

Colloquium: The Einstein-Podolsky-Rosen paradox: From

concepts to applications, Rev. Mod. Phys. 81, 1727 (2009).

[11] E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D.

Reid, Experimental criteria for steering and the Einstein-

Podolsky-Rosen paradox, Phys. Rev. A 80, 032112 (2009).

[12] D. Cavalcanti and P. Skrzypczyk, Quantum steering: a

review with focus on semidefinite programming, Rep. Prog.

Phys. 80, 024001 (2017).

[13] S. L. W. Midgley, A. J. Ferris, and M. K. Olsen, Asymmetric

Gaussian steering: When Alice and Bob disagree; Phys.

Rev. A 81, 022101 (2010); S. P. Walborn, A. Salles, R. M.

Gomes, F. Toscano, and P. H. S, Ribeiro, Revealing Hidden

Einstein-Podolsky-Rosen Nonlocality, Phys. Rev. Lett. 106,

130402 (2011); J. Schneeloch, C. J. Broadbent, S. P. Wal-

born, E. G. Cavalcanti, and J. C. Howell, Einstein-Podolsky-

Rosen steering inequalities from entropic uncertainty rela-

tions, Phys. Rev. A 87, 062103 (2013); J. Bowles, T.Vertesi,

M. T. Quintino, and N. Brunner, One-way Einstein-

Podolsky-Rosen Steering, Phys. Rev. Lett. 112, 200402

(2014); B. Opanchuk, L. Arnaud, and M. D. Reid, Detecting

faked continuous-variable entanglement using one-sided

device-independent entanglement witnesses, Phys. Rev. A

89, 062101 (2014).

[14] Q. Y. He, Q. H. Gong, and M. D. Reid, Classifying Direc-

tional Gaussian Entanglement, Einstein-Podolsky-Rosen

Steering, and Discord, Phys. Rev. Lett. 114, 060402 (2015).

[15] I. Kogias, A. R. Lee, S. Ragy, and G. Adesso, Quantification

of Gaussian Quantum Steering, Phys. Rev. Lett. 114,

060403 (2015).

[16] L. Rosales-Zárate, R. Y. Teh, S. Kiesewetter, A. Brolis, K.

Ng, and M. D. Reid, Decoherence of Einstein-Podolsky-

Rosen steering, J. Opt. Soc. Am. B 32, A82 (2015).

[17] V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T.

Franz, R. F. Werner, and R. Schnabel, Observation of one-

way Einstein-Podolsky-Rosen steering, Nat. Photonics 6,

596 (2012).

[18] S. Wollmann, N. Walk, A. J. Bennet, H. M. Wiseman,

and G. J. Pryde, Observation of Genuine One-Way

PRL 118, 230501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
9 JUNE 2017

230501-5

https://doi.org/10.1017/S0305004100013554
https://doi.org/10.1017/S0305004100013554
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRevA.40.913
https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1007/BF01491891
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/PhysRevA.76.052116
https://doi.org/10.1103/RevModPhys.81.1727
https://doi.org/10.1103/PhysRevA.80.032112
https://doi.org/10.1088/1361-6633/80/2/024001
https://doi.org/10.1088/1361-6633/80/2/024001
https://doi.org/10.1103/PhysRevA.81.022101
https://doi.org/10.1103/PhysRevA.81.022101
https://doi.org/10.1103/PhysRevLett.106.130402
https://doi.org/10.1103/PhysRevLett.106.130402
https://doi.org/10.1103/PhysRevA.87.062103
https://doi.org/10.1103/PhysRevLett.112.200402
https://doi.org/10.1103/PhysRevLett.112.200402
https://doi.org/10.1103/PhysRevA.89.062101
https://doi.org/10.1103/PhysRevA.89.062101
https://doi.org/10.1103/PhysRevLett.114.060402
https://doi.org/10.1103/PhysRevLett.114.060403
https://doi.org/10.1103/PhysRevLett.114.060403
https://doi.org/10.1364/JOSAB.32.000A82
https://doi.org/10.1038/nphoton.2012.202
https://doi.org/10.1038/nphoton.2012.202


Einstein-Podolsky-Rosen Steering, Phys. Rev. Lett. 116,

160403 (2016).

[19] K. Sun, X. J. Ye, J. S. Xu, X. Y. Xu, J. S. Tang, Y. C. Wu,

J. L. Chen, C. F. Li, and G. C. Guo, Experimental Quanti-

fication of Asymmetric Einstein-Podolsky-Rosen Steering,

Phys. Rev. Lett. 116, 160404 (2016).

[20] M. Tomamichel and R. Renner, Uncertainty Relation for

Smooth Entropies, Phys. Rev. Lett. 106, 110506 (2011).

[21] C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani,

and H. M. Wiseman, One-sided device-independent quan-

tum key distribution: security, feasibility, and the connection

with steering, Phys. Rev. A 85, 010301 (2012).

[22] N. Walk, S. Hosseini, J. Geng, O. Thearle, J. Y. Haw, S.

Armstrong, S. M. Assad, J. Janousek, T. C. Ralph, T. Symul,

H. M. Wiseman, and P. K. Lam, Experimental demonstra-

tion of Gaussian protocols for one-sided device-independent

quantum key distribution, Optica 3, 634 (2016).

[23] T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C.

Pacher, R. F. Werner, and R. Schnabel, Implementation of

continuous-variable quantum key distribution with compos-

able and one-sided-device independent security against

coherent attacks, Nat. Commun. 6, 8795 (2015).

[24] R. Gallego and L. Aolita, Resource Theory of Steering,

Phys. Rev. X 5, 041008 (2015).

[25] M. D. Reid, Signifying quantum benchmarks for qubit

teleportation and secure quantum communication using

Einstein-Podolsky-Rosen steering inequalities, Phys. Rev.

A 88, 062338 (2013).

[26] Q. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid,

Secure Continuous Variable Teleportation and Einstein-

Podolsky-Rosen Steering, Phys. Rev. Lett. 115, 180502

(2015).

[27] C.-Y. Chiu, N. Lambert, Teh-Lu Liao, F. Nori, and C.-M. Li,

No-cloning of quantum steering, npj Quantum Inf. 2, 16020

(2016).

[28] M. Piani and J. Watrous, Necessary and Sufficient Quantum

Information Characterization of Einstein-Podolsky-Rosen

Steering, Phys. Rev. Lett. 114, 060404 (2015).

[29] S. Armstrong, M.Wang, R. Y. Teh, Q. H. Gong, Q. Y. He,

J. Janousek, H. A. Bachor, M. D. Reid, and P. K. Lam,

Multipartite Einstein-Podolsky-Rosen steering and genuine

tripartite entanglement with optical networks, Nat. Phys. 11,

167 (2015).

[30] D. Cavalcanti, P. Skrzypczyk, G. H. Aguilar, R. V. Nery,

P. H. S. Ribeiro, and S. P. Walborn, Detection of entangle-

ment in asymmetric quantum networks and multipartite

quantum steering, Nat. Commun. 6, 7941 (2015).

[31] C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and

J.-W. Pan, Genuine High-Order Einstein-Podolsky-Rosen

Steering, Phys. Rev. Lett. 115, 010402 (2015).

[32] V. Coffman, J. Kundu, and W. K. Wootters, Distributed

Entanglement, Phys. Rev. A 61, 052306 (2000).

[33] M. D. Reid, Monogamy inequalities for the Einstein-

Podolsky-Rosen paradox and quantum steering, Phys.

Rev. A 88, 062108 (2013).

[34] S-W. Ji, M. S. Kim, and H. Nha, Quantum steering of

multimode Gaussian states by Gaussian measurements:

Monogamy relations and the Peres conjecture, J. Phys. A

48, 135301 (2015).

[35] G. Adesso and R. Simon, Strong subadditivity for log-

determinant of covariance matrices and its applications, J.

Phys. A 49, 34LT02 (2016).

[36] Y. Xiang, I. Kogias, G. Adesso, and Q. Y. He, Multipartite

Gaussian steering: monogamy constraints and quantum

cryptography applications, Phys. Rev. A 95, 010101(R)

(2017).

[37] L. Lami, C. Hirche, G. Adesso, and A. Winter, Schur

Complement Inequalities for Covariance Materices and

Monogamy of Quantum Correlations, Phys. Rev. Lett.

117, 220502 (2016).

[38] S. Cheng, A. Milne, M. J. W. Hall, and H.M. Wiseman,

Volume monogamy of quantum steering ellipsoids for

multiqubit systems, Phys. Rev. A 94, 042105 (2016).

[39] Q. Y. He and M. D. Reid, Genuine Multipartite Einstein-

Podolsky-Rosen Steering, Phys. Rev. Lett. 111, 250403

(2013).

[40] I. Kogias, Y. Xiang, Q. Y. He, and G. Adesso, Unconditional

security of etanglement-based continuous variable quantum

secret sharing, Phys. Rev. A 95, 012315 (2017).

[41] R. Raussendorf and H. J. Briegel, A One-way Quantum

Computer, Phys. Rev. Lett. 86, 5188 (2001).

[42] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H.

Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger,

Experimental one-way quantum computing, Nature

(London) 434, 169 (2005).

[43] N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C.

Ralph, and M. A. Nielsen, Universal Quantum Computation

with Continuous-Variable Cluster States, Phys. Rev. Lett.

97, 110501 (2006).

[44] P. van Loock, Examples of Gaussian cluster computation,

J. Opt. Soc. Am. B 24, 340 (2007).

[45] M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and

P. van Loock, Quantum computing with continuous-variable

clusters, Phys. Rev. A 79, 062318 (2009).

[46] J. Zhang, G. Adesso, C. Xie, and K. Peng, Quantum

Teamwork for Unconditional Multiparty Communication

with Gaussian States, Phys. Rev. Lett. 103, 070501 (2009).

[47] S. Muralidharan and P. K. Panigrahi, Quantum-information

splitting using multipartite cluster states, Phys. Rev. A 78,

062333 (2008).

[48] Y. Qian, Z. Shen, G. He, and G. Zeng, Quantum-cryptog-

raphy network via continuous-variable graph states, Phys.

Rev. A 86, 052333 (2012).

[49] H.-K. Lau and C. Weedbrook, Quantum secret sharing with

continuous-variable cluster states, Phys. Rev. A 88, 042313

(2013).

[50] J. Zhang and S. L. Braunstein, Continuous-variable Gaus-

sian analog of cluster state, Phys. Rev. A 73, 032318 (2006).

[51] P. van Loock, C. Weedbrook, and M. Gu, Building Gaussian

cluster states by linear optics, Phys. Rev. A 76, 032321

(2007).

[52] X. L. Su, Y. P. Zhao, S. H. Hao, X. Jia, C. Xie, and K. Peng,

Experimental preparation of eight-partite cluster state for

photonic qumodes, Opt. Lett. 37, 5178 (2012).

[53] M. Chen, N. C. Menicucci, and O. Pfister, Experimental

Realization of Multipartite Entanglement of 60 Modes of a

Quantum Optical Frequency Comb, Phys. Rev. Lett. 112,

120505 (2014).

PRL 118, 230501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
9 JUNE 2017

230501-6

https://doi.org/10.1103/PhysRevLett.116.160403
https://doi.org/10.1103/PhysRevLett.116.160403
https://doi.org/10.1103/PhysRevLett.116.160404
https://doi.org/10.1103/PhysRevLett.106.110506
https://doi.org/10.1103/PhysRevA.85.010301
https://doi.org/10.1364/OPTICA.3.000634
https://doi.org/10.1038/ncomms9795
https://doi.org/10.1103/PhysRevX.5.041008
https://doi.org/10.1103/PhysRevA.88.062338
https://doi.org/10.1103/PhysRevA.88.062338
https://doi.org/10.1103/PhysRevLett.115.180502
https://doi.org/10.1103/PhysRevLett.115.180502
https://doi.org/10.1038/npjqi.2016.20
https://doi.org/10.1038/npjqi.2016.20
https://doi.org/10.1103/PhysRevLett.114.060404
https://doi.org/10.1038/nphys3202
https://doi.org/10.1038/nphys3202
https://doi.org/10.1038/ncomms8941
https://doi.org/10.1103/PhysRevLett.115.010402
https://doi.org/10.1103/PhysRevA.61.052306
https://doi.org/10.1103/PhysRevA.88.062108
https://doi.org/10.1103/PhysRevA.88.062108
https://doi.org/10.1088/1751-8113/48/13/135301
https://doi.org/10.1088/1751-8113/48/13/135301
https://doi.org/10.1088/1751-8113/49/34/34LT02
https://doi.org/10.1088/1751-8113/49/34/34LT02
https://doi.org/10.1103/PhysRevA.95.010101
https://doi.org/10.1103/PhysRevA.95.010101
https://doi.org/10.1103/PhysRevLett.117.220502
https://doi.org/10.1103/PhysRevLett.117.220502
https://doi.org/10.1103/PhysRevA.94.042105
https://doi.org/10.1103/PhysRevLett.111.250403
https://doi.org/10.1103/PhysRevLett.111.250403
https://doi.org/10.1103/PhysRevA.95.012315
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1038/nature03347
https://doi.org/10.1038/nature03347
https://doi.org/10.1103/PhysRevLett.97.110501
https://doi.org/10.1103/PhysRevLett.97.110501
https://doi.org/10.1364/JOSAB.24.000340
https://doi.org/10.1103/PhysRevA.79.062318
https://doi.org/10.1103/PhysRevLett.103.070501
https://doi.org/10.1103/PhysRevA.78.062333
https://doi.org/10.1103/PhysRevA.78.062333
https://doi.org/10.1103/PhysRevA.86.052333
https://doi.org/10.1103/PhysRevA.86.052333
https://doi.org/10.1103/PhysRevA.88.042313
https://doi.org/10.1103/PhysRevA.88.042313
https://doi.org/10.1103/PhysRevA.73.032318
https://doi.org/10.1103/PhysRevA.76.032321
https://doi.org/10.1103/PhysRevA.76.032321
https://doi.org/10.1364/OL.37.005178
https://doi.org/10.1103/PhysRevLett.112.120505
https://doi.org/10.1103/PhysRevLett.112.120505


[54] S.Yokoyama,R.Ukai, S. C.Armstrong,C.Sornphiphatphong,

T. Kaji, S. Suzuki, J.-i. Yoshikawa, H. Yonezawa, N. C.

Menicucci, and A. Furusawa, Optical generation of ultra-

large-scale continous-variable cluster states, Nat. Photonics 7,

982 (2013).

[55] Y. Wang, X. Su, H. Shen, A. Tan, C. Xie, and K. Peng,

Toward demonstrating controlled-X operation based on

continuous-variable four-partite cluster states and quantum

teleporters, Phys. Rev. A 81, 022311 (2010).

[56] R. Ukai, N. Iwata, Y. Shimokawa, S. C. Armstrong, A.

Politi, J.-i. Yoshikawa, P. van Loock, and A. Furusawa,

Demonstration of Unconditional One-Way Quantum Com-

putations for Continuous Variables, Phys. Rev. Lett. 106,

240504 (2011).

[57] R. Ukai, S. Yokoyama, J. I. Yoshikawa, P. van Loock, and

A. Furusawa, Demonstration of a Controlled-Phase Gate for

Continuous-Variable One-Way Quantum Computation,

Phys. Rev. Lett. 107, 250501 (2011).

[58] X. Su, S. Hao, X. Deng, L. Ma, M. Wang, X. Jia, C. Xie,

and K. Peng, Gate sequence for continuous variable one-

way quantum computation, Nat. Commun. 4, 2828

(2013).

[59] P. van Loock and S. L. Braunstein, Multipartite Entangle-

ment for Continuous Variables: A Quantum Teleportation

Network, Phys. Rev. Lett. 84, 3482 (2000); , Greenberger-

Horne-Zeilinger nonlocality in phase space, Phys. Rev. A

63, 022106 (2001).

[60] H. Shen, X. Su, X. Jia, and C. Xie, Quantum communi-

cation network utilizing quadripartite entangled states of

optical field, Phys. Rev. A 80, 042320 (2009).

[61] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.118.230501 for details

of the experimental setup, preparation and verification of

the cluster state, measurement of the covariance matrix, and

additional figures. The Supplemental Material contains

additional references [62–65].

[62] Y. Zhou, X. Jia, F. Li, C. Xie, and K. Peng, Experimental

generation of 8.4 dB entangled state with an optical cavity

involving a wedged type-II nonlinear crystal, Opt. Express

23, 4952 (2015).

[63] X. Su, A. Tan, X. Jia, J. Zhang, C. Xie, and K. Peng,

Experimental Preparation of Quadripartite Cluster and

Greenberger-Horne-Zeilinger Entangled States for Continu-

ous Variables, Phys. Rev. Lett. 98, 070502 (2007).

[64] P. van Loock and A. Furusawa, Detecting genuine multi-

partite continuous-variable entanglement, Phys. Rev. A 67,

052315 (2003).

[65] G. Adesso and F. Illuminati, Entanglement in continuous-

variable systems: recent advances and current perspectives,

J. Phys. A 40, 7821 (2007).

[66] S. Steinlechner, J. Bauchrowitz, T. Eberle, and R. Schnabel,

Strong Einstein-Podolsky-Rosen steering with uncondi-

tional entangled states, Phys. Rev. A 87, 022104 (2013).

[67] M. Wang, Y. Xiang, Q. Y. He, and Q. H. Gong, Detection of

quantum steering in multipartite continuous-variable Green-

berger-Horne-Zeilinger-like states, Phys. Rev. A 91, 012112

(2015).

[68] S.-W. Ji, J. Lee, J. Park, and H. Nha, Quantum steering of

Gaussian states via non-Gaussian measurements, Sci. Rep.

6, 29729 (2016).

PRL 118, 230501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
9 JUNE 2017

230501-7

https://doi.org/10.1038/nphoton.2013.287
https://doi.org/10.1038/nphoton.2013.287
https://doi.org/10.1103/PhysRevA.81.022311
https://doi.org/10.1103/PhysRevLett.106.240504
https://doi.org/10.1103/PhysRevLett.106.240504
https://doi.org/10.1103/PhysRevLett.107.250501
https://doi.org/10.1038/ncomms3828
https://doi.org/10.1038/ncomms3828
https://doi.org/10.1103/PhysRevLett.84.3482
https://doi.org/10.1103/PhysRevA.63.022106
https://doi.org/10.1103/PhysRevA.63.022106
https://doi.org/10.1103/PhysRevA.80.042320
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.230501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.230501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.230501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.230501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.230501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.230501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.230501
https://doi.org/10.1364/OE.23.004952
https://doi.org/10.1364/OE.23.004952
https://doi.org/10.1103/PhysRevLett.98.070502
https://doi.org/10.1103/PhysRevA.67.052315
https://doi.org/10.1103/PhysRevA.67.052315
https://doi.org/10.1088/1751-8113/40/28/S01
https://doi.org/10.1103/PhysRevA.87.022104
https://doi.org/10.1103/PhysRevA.91.012112
https://doi.org/10.1103/PhysRevA.91.012112
https://doi.org/10.1038/srep29729
https://doi.org/10.1038/srep29729

