Demonstration of Negative Group Delays in a Simple Electronic Circuit

Masao Kitano

kitano@kuee.kyoto-u.ac.jp, Room #1213

Kyoto University

Workshop on Quantum Optics, UCSB - p.1/34

Group Delays in Circuits

Group delays in lumped systems (L = 0 or $L \ll c/\omega$)

- Mitchell and Chiao: Am. J. Phys. 66, 14 (1998)
 - Bandpass Amplifier (LC + opamp)
 - Arbitrary Waveform Generator
- Nakanishi, Sugiyama, and MK: quant-ph/0201001 (to appear in Am. J. Phys.)
 - Highpass Amplifier (RC + opamp)
 - Baseband pulse (No carriers)
 - Band limited signal from rectangular pulser + lowpass filter

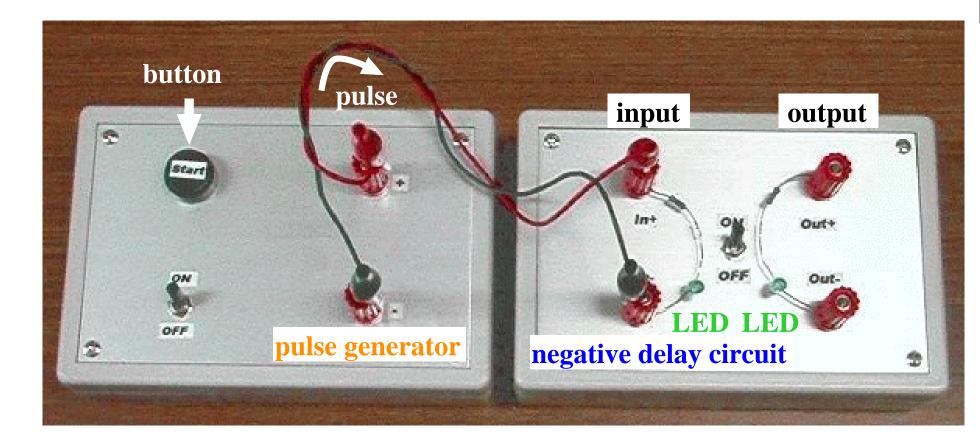
Negative delay circuit

The output LED is lit earlier than the input LED.
 — Negative delay

Time constants could be order of seconds.

— We can see it!

Experiment



- 1. rectangular pulse generator + low-pass filter
- 2. negative delay circuit

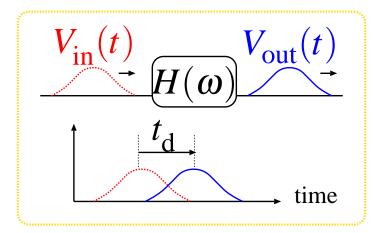
Group delays – ideal case

Group delay for base-band signals (delay time: t_d)

$$V_{\text{OUT}}(t) = (h * V_{\text{IN}})(t) = V_{\text{IN}}(t - t_{\text{d}})$$
$$h(t) = \delta(t - t_{\text{d}})$$

Fourier Transformed: $\tilde{V}_{OUT}(\omega) = H(\omega)\tilde{V}_{IN}(\omega)$

$$H(\boldsymbol{\omega}) = (\mathscr{F}h)(\boldsymbol{\omega}) = \int \mathrm{d}t \, h(t) \mathrm{e}^{-\mathrm{i}\boldsymbol{\omega}t} = \exp(-\mathrm{i}\boldsymbol{\omega}t_{\mathrm{d}})$$



Positive and Negative delays

t _d	Causality	Physical realization
> 0	causal	distributed system
=0	(locally, mutually) causal	lumped system
< 0	non causal	impossible

Positive delays are easy, if you have an appropriate space.

"Record and play" is also possible.

- No way to make ideal (unconditional) negative delays.
- No lumped systems (L = 0) can produce ideal positive or negative delays.

Approximate delay with lumped systems

• Ideal response function $H(\omega)$

$$A(\boldsymbol{\omega}) = |H(\boldsymbol{\omega})| = 1,$$

$$\phi(\boldsymbol{\omega}) = \arg H(\boldsymbol{\omega}) = -t_{d}\boldsymbol{\omega}$$

Approximate realization #1 with lumped systems

$$H(\omega) = \frac{1 + i\omega T}{1 - i\omega T} \quad (1 \text{ pole, } 1 \text{ zero})$$
$$A(\omega) = 1 \quad (\text{flat response})$$
$$\phi(\omega) = 2\tan^{-1}\omega T \sim 2T\omega$$

Stability condition $\rightarrow T \leq 0$ (only positive delays)

Approximate delay (2)

Approximate realization #2 with lumped systems

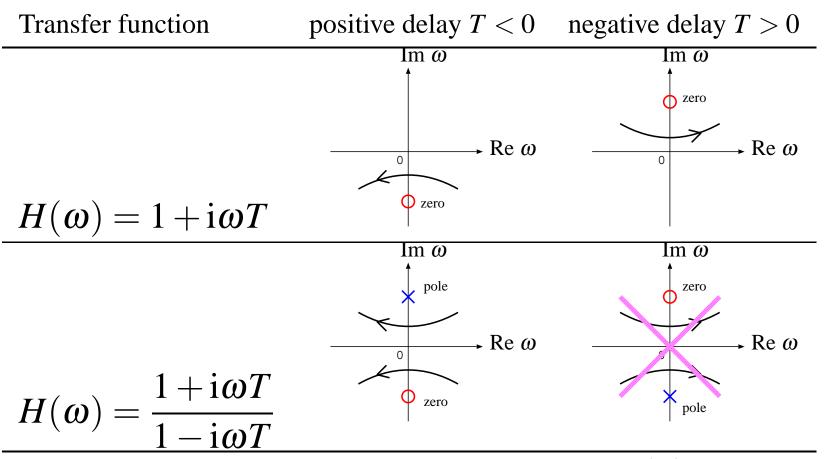
$$H(\omega) = 1 + i\omega T \quad (1 \text{ zero})$$

$$A(\omega) = \sqrt{1 + (\omega T)^2} \sim 1 + \frac{(\omega T)^2}{2} \quad (\rightarrow \text{ distortion})$$

$$\phi(\omega) = \tan^{-1} \omega T \sim T \omega$$

No sign restriction on *T* (positive and negative delay)

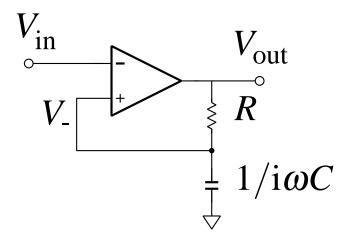
Asymmetry — positive / negative



The arrows shows the direction of the phase increase of $H(\omega)$.

Stability condition requires that poles can be only in the upperhalf plane, but zero can be anywhere.

Negative Group Delay Circuit



$$V_{-} = \frac{(\mathrm{i}\omega C)^{-1}}{R + (\mathrm{i}\omega C)^{-1}} V_{\mathrm{out}} = \frac{1}{1 + \mathrm{i}\omega CR} V_{\mathrm{out}}$$

 $V_{\rm in} \sim V_{-}$ for large gain of operational amplifier

$$V_{\rm out} = (1 + i\omega CR)V_{\rm in}$$

A pole is converted into a zero by the feedback circuit.

Finite bandwidth

Transfer Function

$$H(\omega) = 1 + i\omega T \ (T = CR > 0)$$

$$A(\omega) = 1 + O(\omega^2 T^2),$$

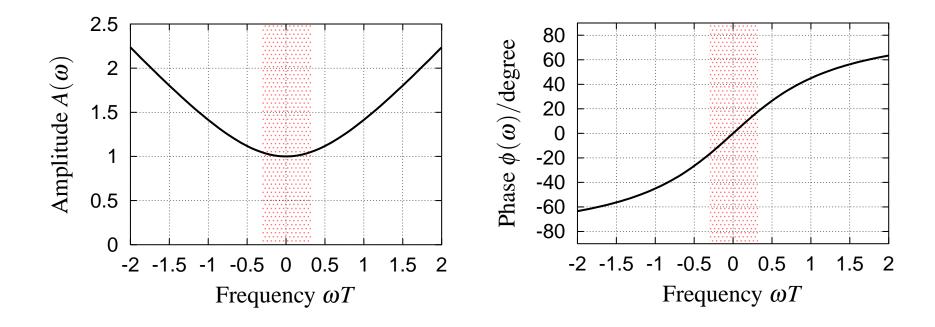
$$\phi(\omega) = \omega T + O(\omega^3 T^3)$$

Spectral condition for input signals

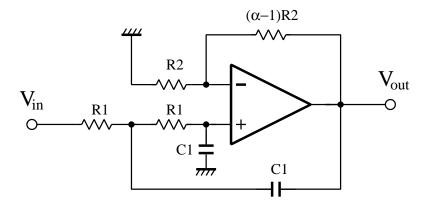
$$|\omega| < \frac{1}{T}$$

Bandwidth

Works only for band-limited signals — otherwise outputs are distorted.



Band-Limit Circuit (Low-pass filter)

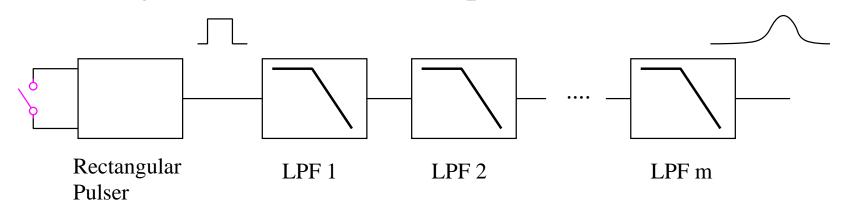


• Bessel filter (2nd order; m = 2)

$$H_{\text{LP}}(\omega) = \frac{\alpha}{1 + i\omega T_{\text{LP}}(3 - \alpha) + (i\omega T_{\text{LP}})^2}$$
$$T_{\text{LP}} = R_1 C_1, \quad \alpha = (1 + R_3/R_2) = 1.268$$
Cutoff frequency: $\omega_{\text{C}} = 0.7861/T_{\text{LP}}$

Low-pass filters

A rectangular pulser and a series of lowpass filters (*m* stages) are used to generate band-limited pulses.

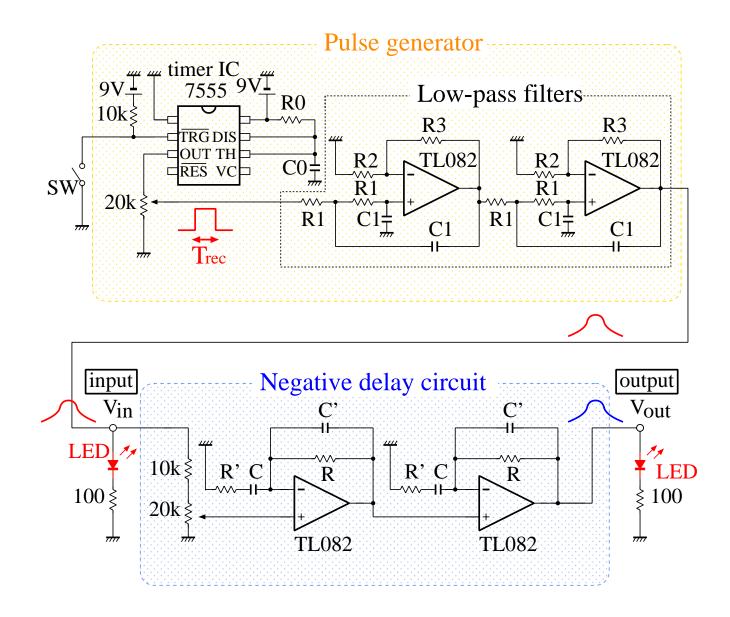


- Pushing the button (at t = 0) starts the event.
- The band-limited output has a smooth leading edge.
- A delay comparable to the pulse width is unavoidable.

Low-pass filters(2)



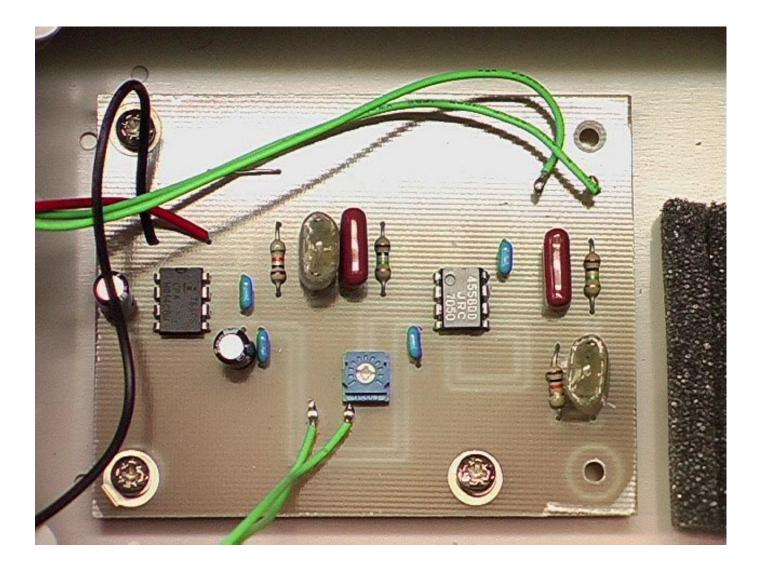
Circuit Diagram



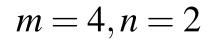
Circuit parameters

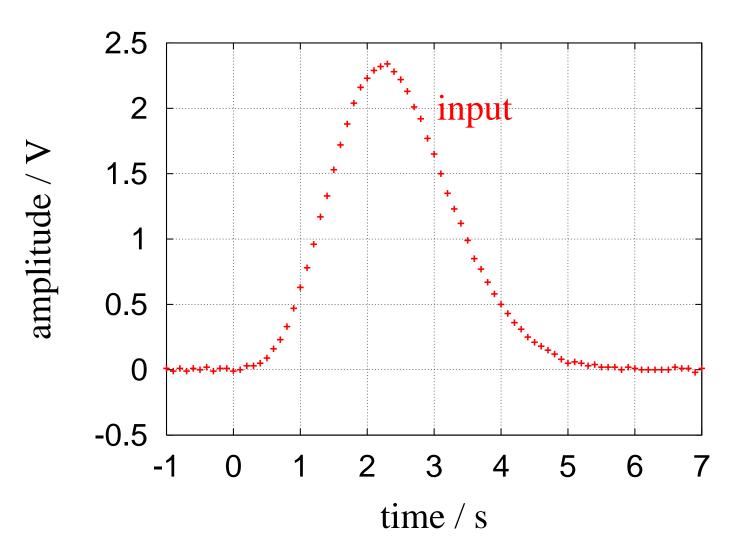
Pulse generator		Negative delay circuit		
R_0	6.8MΩ			
C_0	$0.22\mu\mathrm{F}$	\overline{R}	1 MΩ	
$T_{\rm rec}$	1.5 s	C C	$0.22 \mu\text{F}$	
R_1	$2.2 M\Omega$	R'	$10k\Omega$	
C_1	$0.22 \mu F$	C'	22 nF	
R_2	$10k\Omega$	T (= RC)	0.22 s	
R_3	$2.2 \mathrm{k}\Omega$			
$\omega_{\rm c}$	1.6Hz			

Circuit Board

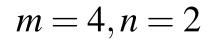


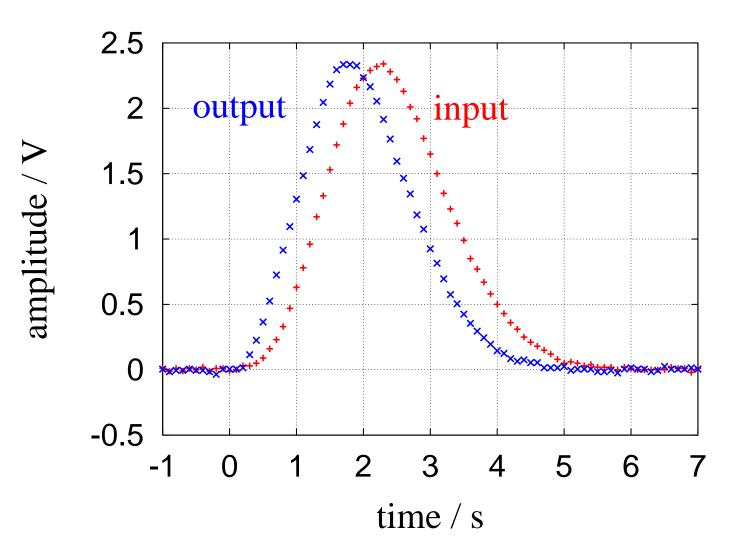
Experimental result





Experimental result



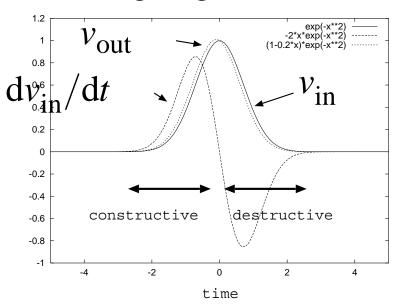


Interference in time domain

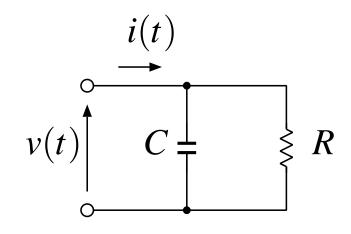
In time domain (cf. $H(\omega) = 1 + i\omega T$)

$$v_{\text{out}}(t) = \left(1 + T\frac{\mathrm{d}}{\mathrm{d}t}\right)v_{\text{in}}(t) = v_{\text{in}}(t) + T\frac{\mathrm{d}v_{\text{in}}}{\mathrm{d}t}(t)$$

Two terms interfere — constructively at the leading edge and destructively at the trailing edge.



All-passive circuit

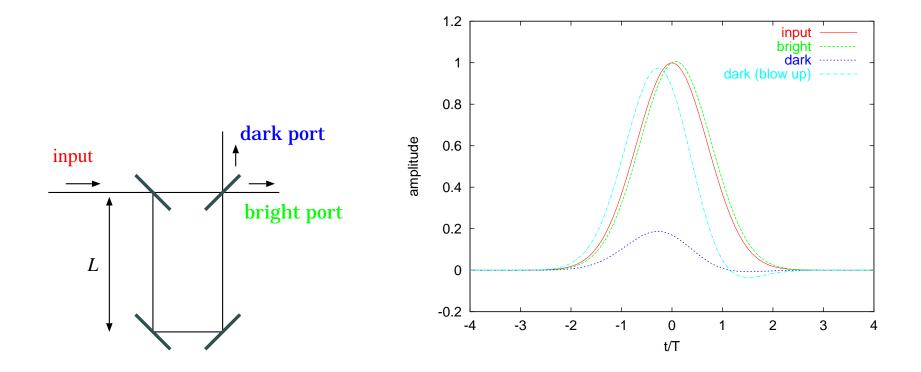


$$i(t) = \frac{1}{R}v(t) + C\frac{\mathrm{d}}{\mathrm{d}t}v(t) = \frac{1}{R}\left(1 + RC\frac{\mathrm{d}}{\mathrm{d}t}\right)v(t)$$

This circuit gives negative group delays, if we consider v(t) as the input and i(t) as the output.

Unbalanced interferometer

Reflectivity of beam splitters: $R = 1/2 - \rho$, Delay: $\tau = 2L/c$ $E_{\text{dark}}(t) = (1-R)E_{\text{in}}(t) - RE_{\text{in}}(t-\tau) \sim 2\rho \left(1 + \frac{\tau}{4\rho}\frac{d}{dt}\right)E_{\text{in}}(t)$



 $\rho = 0.08, \tau = 0.15T, T$: gaussian pulse width

Cascading — for larger advancement

Transfer function for *n* stages: $H^n(\omega) = (1 + i\omega T)^n$

 $A^{n}(\omega) \sim 1 + \frac{n(\omega T)^{2}}{2} = 1 + \frac{(\sqrt{n}\omega T)^{2}}{2}, \quad n\phi(\omega) \sim n\omega T$ 1.5 80 n = 3*n* = 3 60 1.4 Amplitude $A(\omega)$ Phase $\arg[\phi(\omega)]$ 40 n =1.3 20 1.2 n = 10 1.1 $n = \overline{1}$ -20 1 -40 0.9 -60 0.8 -80 -0.4 0.2 0.4 -0.4 -0.2 0.4 -0.6 -0.2 0 0.6 -0.6 0 0.2 0.6 Frequency ωT Frequency ωT

Bandwidth is reduced as *n* increased.

Cascading (2)

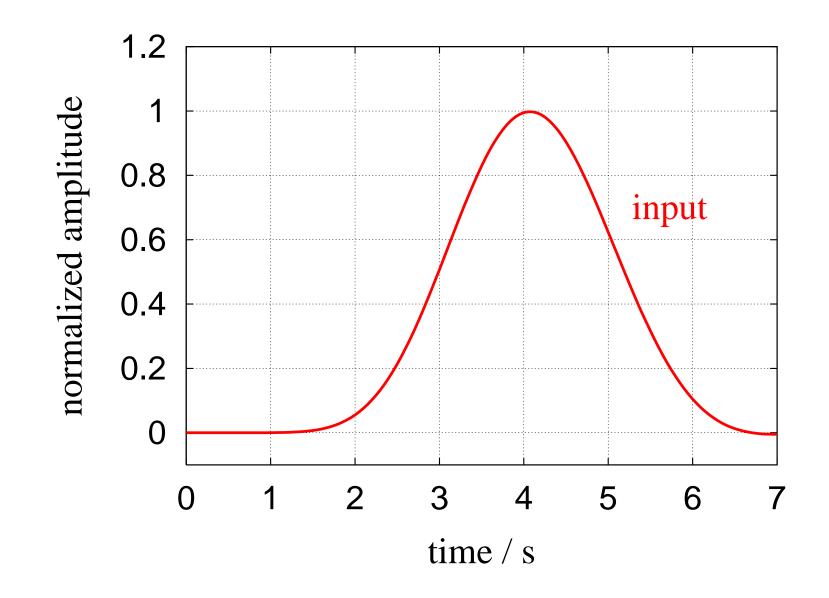
- Usable bandwidth decreases as $1/\sqrt{n}$, if T is given.
- For a given input pulse (T_w) , T = CR must be reduced as T_w/\sqrt{n} .
- Total advancement scales $1/\sqrt{n}$;

$$-t_{\rm d} \propto n \times (T_{\rm w}/\sqrt{n}) = \sqrt{n}T_{\rm w}$$

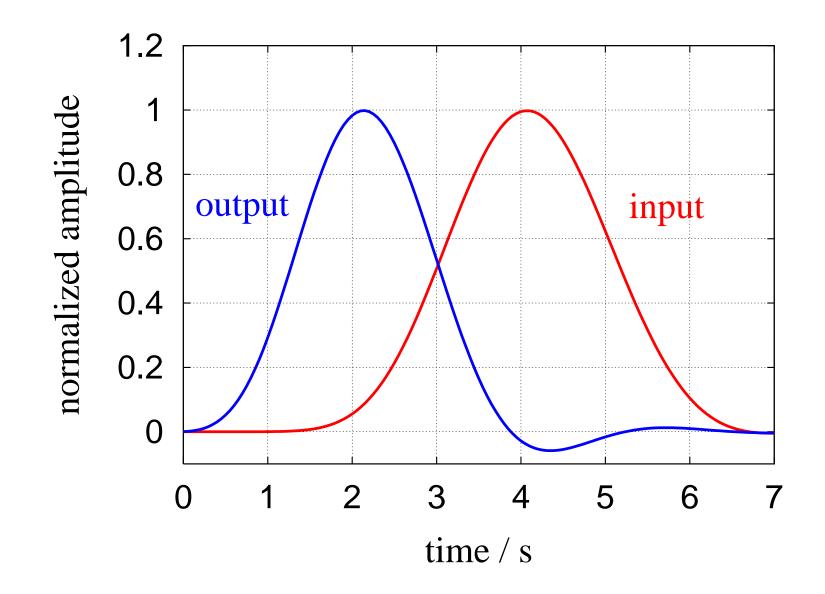
Order *m* of lowpass filters must be increased accordingly;

m > n

Cascading, n = 10



Cascading, n = 10

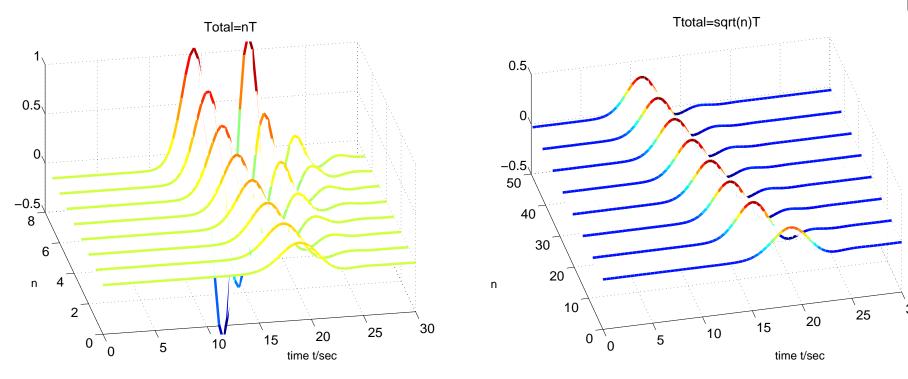


Problems in cascading

It is possible to increase the advancement as large as the pulse width or more, but

- The advancement increases slowly; $1/\sqrt{n}$.
- The order *m* of lowpass filters must be increased.
- The system becomes very sensitive to noises. (A huge gain outside of the band)

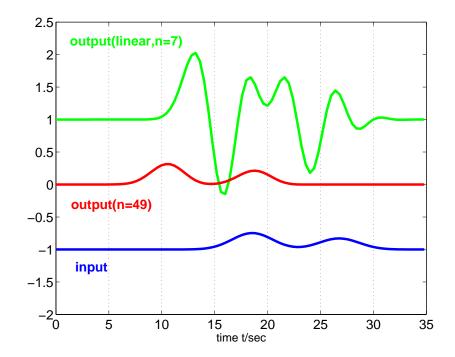
Pushing the limit



Simple-minded cascading

 $1/\sqrt{n}$ cascading

Pushing the limit — two pulse case



Out-of-band gain

Outside gain — Significant obstacle toward large *n*.

■ Realistic transfer function (finite gain at $\omega = \infty$):

$$H(\omega) = \frac{1 + i\omega T}{1 + i\omega T/\alpha}, \quad \alpha > 1$$

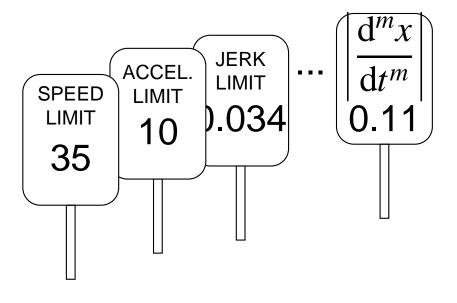
$$\phi(\omega) = \omega(1 - \alpha^{-1})T$$

$$A(\omega) = \sqrt{\frac{1 + (\omega T)^2}{1 + (\omega T/\alpha)^2}} \sim \begin{cases} 1 & (\omega = 0) \\ \alpha & (\omega = \infty) \end{cases}$$

• For
$$\alpha = 0.5$$
, $n = 50$; $A^n(\infty) = \alpha^n = 2^{50} = 10^{15}$

Role of lowpass filters

Predictability — Your move will be predicted if some restrictions are imposed.

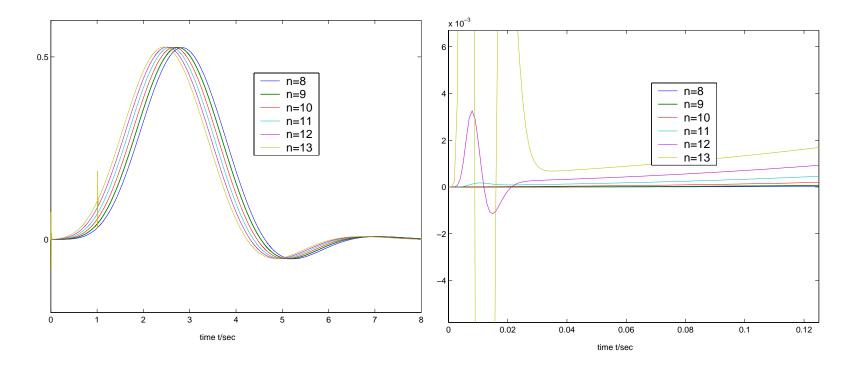


Resemblance of functions — A negative delay circuit reveals the difference.

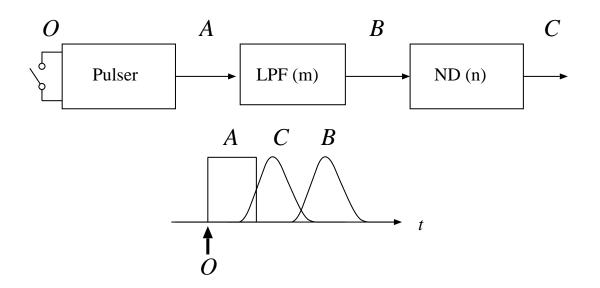
$$\operatorname{dist}(f,g) = \max_{0 \le j \le m} \left\| \frac{\mathrm{d}^{j} f}{\mathrm{d}t^{j}} - \frac{\mathrm{d}^{j} g}{\mathrm{d}t^{j}} \right\|$$

Role of filters (2)

On the condition m > n



Causality



Causal relation in a casual sense

$$O \rightarrow A \rightarrow B \xrightarrow{?} C$$

Causal relation in a strict sense

$$A \Leftrightarrow B \Leftrightarrow C \quad (\Leftrightarrow A)$$

Conclusion

A stand-alone (battery-operated) demonstration box

- Battery operated
- No extra equipment such as an oscilloscope or a function generator needed
- Large negative delays ~ 0.5 s are achieved experimentally.

25% of pulse width

- Larger delay with cascading is possible (in priciple).
 Advancement can be larger than the pulse width.
- Filter stage plays an essential role.
 The start of event (cause) is located before the filters.