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Group Delays in Circuits

Group delays in lumped systems (L = 0 or L � c/ω)

Mitchell and Chiao: Am. J. Phys. 66, 14 (1998)
Bandpass Amplifier (LC + opamp)
Arbitrary Waveform Generator

Nakanishi, Sugiyama, and MK: quant-ph/0201001
(to appear in Am. J. Phys.)

Highpass Amplifier (RC + opamp)
Baseband pulse (No carriers)
Band limited signal from rectangular pulser +
lowpass filter

Workshop on Quantum Optics, UCSB – p.2/34



Negative delay circuit

The output LED is lit earlier than the input LED.
— Negative delay

Time constants could be order of seconds.
— We can see it!
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Experiment

button

LED

pulse

pulse generator
LED

 input  output 

negative delay circuit

1. rectangular pulse generator + low-pass filter

2. negative delay circuit
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Group delays – ideal case

Group delay for base-band signals (delay time: td)

VOUT(t) = (h∗VIN)(t) = VIN(t − td)

h(t) = δ (t − td)

Fourier Transformed: ṼOUT(ω) = H(ω)ṼIN(ω)

H(ω) = (Fh)(ω) =
∫

dt h(t)e−iωt = exp(−iωtd)

time

Vin(t) Vout(t)
H(ω)
td
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Positive and Negative delays

td Causality Physical realization
> 0 causal distributed system
= 0 (locally, mutually) causal lumped system
< 0 non causal impossible

Positive delays are easy, if you have an appropriate
space.

“Record and play” is also possible.

No way to make ideal (unconditional) negative delays.

No lumped systems (L = 0) can produce ideal positive
or negative delays.
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Approximate delay with lumped systems

Ideal response function H(ω)

A(ω) = |H(ω)| = 1,

φ(ω) = argH(ω) = −tdω

Approximate realization #1 with lumped systems

H(ω) =
1+ iωT
1− iωT

(1 pole, 1 zero)

A(ω) = 1 (flat response)

φ(ω) = 2tan−1 ωT ∼ 2T ω

Stability condition → T ≤ 0 (only positive delays)
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Approximate delay (2)

Approximate realization #2 with lumped systems

H(ω) = 1+ iωT (1 zero)

A(ω) =
√

1+(ωT )2 ∼ 1+
(ωT )2

2
(→ distortion)

φ(ω) = tan−1 ωT ∼ T ω

No sign restriction on T (positive and negative delay)
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Asymmetry — positive / negative

Transfer function positive delay T < 0 negative delay T > 0

H(ω) = 1+ iωT

0

zero

Re ω

Im ω

0

zero

Re ω

Im ω

H(ω) =
1+ iωT
1− iωT

0

pole

zero

Re ω

Im ω

0

pole

zero

Re ω

Im ω

The arrows shows the direction of the phase increase of H(ω).

Stability condition requires that poles can be only in the upper-

half plane, but zero can be anywhere.
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Negative Group Delay Circuit

Vin Vout

V- R

1/iωC

V− =
(iωC)−1

R+(iωC)−1
Vout =

1
1+ iωCR

Vout

Vin ∼V− for large gain of operational amplifier

Vout = (1+ iωCR)Vin

A pole is converted into a zero by the feedback circuit.
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Finite bandwidth

Transfer Function

H(ω) = 1+ iωT (T = CR > 0)

A(ω) = 1+O(ω2T 2),

φ(ω) = ωT +O(ω3T 3)

Spectral condition for input signals

|ω | < 1
T
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Bandwidth

Works only for band-limited signals
— otherwise outputs are distorted.
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Band-Limit Circuit (Low-pass filter)

Vout

R1 R1

C1
C1

(α−1)R2

R2

Vin

Bessel filter (2nd order; m = 2)

HLP(ω) =
α

1+ iωTLP(3−α)+(iωTLP)2

TLP = R1C1, α = (1+R3/R2) = 1.268

Cutoff frequency: ωC = 0.7861/TLP
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Low-pass filters

A rectangular pulser and a series of lowpass filters (m stages)
are used to generate band-limited pulses.

Rectangular
Pulser

LPF 1 LPF 2 LPF m

....

Pushing the button (at t = 0) starts the event.

The band-limited output has a smooth leading edge.

A delay comparable to the pulse width is unavoidable.
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Low-pass filters(2)
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Circuit Diagram
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Circuit parameters

Pulse generator Negative delay circuit
R0 6.8MΩ
C0 0.22 µF
Trec 1.5s
R1 2.2MΩ
C1 0.22 µF
R2 10kΩ
R3 2.2kΩ
ωc 1.6Hz

R 1MΩ
C 0.22 µF
R′ 10kΩ
C′ 22nF
T (= RC) 0.22s
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Circuit Board
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Experimental result

m = 4,n = 2
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Experimental result

m = 4,n = 2
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Interference in time domain

In time domain (cf. H(ω) = 1+ iωT )

vout(t) =
(

1+T
d
dt

)
vin(t) = vin(t)+T

dvin

dt
(t)

Two terms interfere — constructively at the leading edge and
destructively at the trailing edge.
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All-passive circuit

i(t)

v(t) C R

i(t) =
1
R

v(t)+C
d
dt

v(t) =
1
R

(
1+RC

d
dt

)
v(t)

This circuit gives negative group delays, if we consider v(t) as

the input and i(t) as the output.
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Unbalanced interferometer

Reflectivity of beam splitters: R = 1/2−ρ , Delay: τ = 2L/c

Edark(t)= (1−R)Ein(t)−REin(t−τ)∼ 2ρ
(

1+
τ

4ρ
d
dt

)
Ein(t)

L

dark port

bright port

input
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Cascading — for larger advancement

Transfer function for n stages: Hn(ω) = (1+ iωT )n

An(ω) ∼ 1+
n(ωT )2

2
= 1+

(
√

nωT )2

2
, nφ(ω) ∼ nωT

-80

-60

-40

-20

0

20

40

60

80

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

n = 1

n = 1

n = 2

n = 2

n = 3n = 3

A
m

pl
itu

de
A
(ω

)

Frequency ωT Frequency ωT

Ph
as

e
ar

g[
φ(

ω
)]

Bandwidth is reduced as n increased.
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Cascading (2)

Usable bandwidth decreases as 1/
√

n, if T is given.

For a given input pulse (Tw), T = CR must be reduced as
Tw/

√
n.

Total advancement scales 1/
√

n;

−td ∝ n× (Tw/
√

n) =
√

nTw

Order m of lowpass filters must be increased
accordingly;

m > n
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Cascading, n = 10
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Cascading, n = 10
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Problems in cascading

It is possible to increase the advancement as large as the
pulse width or more, but

The advancement increases slowly; 1/
√

n.

The order m of lowpass filters must be increased.

The system becomes very sensitive to noises. (A huge
gain outside of the band)
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Pushing the limit
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Pushing the limit — two pulse case
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Out-of-band gain

Outside gain — Significant obstacle toward large n.

Realistic transfer function (finite gain at ω = ∞):

H(ω) =
1+ iωT

1+ iωT/α
, α > 1

φ(ω) = ω(1−α−1)T

A(ω) =

√
1+(ωT )2

1+(ωT/α)2
∼

{
1 (ω = 0)
α (ω = ∞)

For α = 0.5, n = 50; An(∞) = αn = 250 = 1015!
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Role of lowpass filters

Predictability — Your move will be predicted if some
restrictions are imposed.

JERK
LIMIT

0.034
ACCEL.
LIMIT

10 0.11
SPEED
LIMIT

35

...

∣∣∣∣dmx
dtm

∣∣∣∣

Resemblance of functions — A negative delay circuit
reveals the difference.

dist( f ,g) = max
0≤ j≤m

∥∥∥∥d j f
dt j

− d jg
dt j

∥∥∥∥
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Role of filters (2)

On the condition m > n
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Causality

Pulser LPF (m) ND (n)

A B C

O

O

A BC

t

Causal relation in a casual sense

O → A → B
?→C

Causal relation in a strict sense

A ⇔ B ⇔C (⇔ A)
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Conclusion

A stand-alone (battery-operated) demonstration box
Battery operated
No extra equipment such as an oscilloscope or a
function generator needed

Large negative delays ∼ 0.5s are achieved
experimentally.

25% of pulse width

Larger delay with cascading is possible (in priciple).
Advancement can be larger than the pulse width.

Filter stage plays an essential role.
The start of event (cause) is located before the
filters.
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