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ABSTRACT

Posttranslational gene regulation requires a complex network of RNA–protein interactions. Cooperativity, which tunes re-
sponse sensitivities, originates from protein–protein interactions in many systems. For RNA-binding proteins, cooperativ-
ity can also be mediated through RNA structure. RNA structural cooperativity (RSC) arises when binding of one protein
induces a redistribution of RNA conformational states that enhance access (positive cooperativity) or block access (nega-
tive cooperativity) to additional binding sites. As RSC does not require direct protein–protein interactions, it allows coop-
erativity to be tuned for individual RNAs, via alterations in sequence that alter structural stability. Given the potential
importance of this mechanism of control and our desire to quantitatively dissect features that underlie physiological reg-
ulation, we developed a statistical mechanical framework for RSC and tested this model by performing equilibrium binding
measurements of the human PUF family protein PUM2. Using 68 RNAs that contain two to five PUM2-binding sites and
RNA structures of varying stabilities, we observed a range of structure-dependent cooperative behaviors. To test our abil-
ity to account for this cooperativity with known physical constants, we used PUM2 affinity and nearest-neighbor RNA sec-
ondary structure predictions. Our model gave qualitative agreement for our disparate set of 68 RNAs across two
temperatures, but quantitative deviations arise from overestimation of RNA structural stability. Our results demonstrate
cooperativity mediated by RNA structure and underscore the power of quantitative stepwise experimental evaluation
of mechanisms and computational tools.
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INTRODUCTION

RNA-binding proteins (RBPs) regulate gene expression
through the control of RNA stability, splicing, modification,
localization, and translation (Glisovic et al. 2008; Singh
et al. 2015). Since each RNA contains many protein-
binding sites, there is the potential for cooperative interac-
tions, which are responsible for sharpening and broaden-
ing regulatory responses throughout biology (Monod
et al. 1965; Weiss 1997; Ha and Ferrell 2016). In many cas-
es, RBPs exhibit cooperative binding to RNA, andmost co-
operative binding to RNA that has been studied is
generated via direct protein–protein interactions (Fig. 1A;
Samuels et al. 1994; Cartegni et al. 1996; Wei et al. 1998;
Fierro-Monti and Mathews 2000; Rakitina et al. 2006;

Lunde et al. 2007; Daugherty et al. 2010; Campbell et al.
2012; Cieniková et al. 2015; Arvola et al. 2017).

In addition to protein–protein cooperativity, coopera-
tive protein binding to RNA can also be generated through
RNA secondary structure, when binding of one protein re-
sults in a structural rearrangement that exposes or blocks
additional binding sites (Fig. 1B; Lin and Bundschuh
2015). An analogous mechanism has been proposed for
cooperativity between proteins and miRNAs (Kedde
et al. 2010; Xue et al. 2013; Hafezqorani et al. 2016).
RNA structural cooperativity (RSC) is particularly intriguing
as a biological regulatory mechanism as it allows
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cooperativity and site occupancy to be adjusted individu-
ally for each RNA target via sequence. In this work, we use
high-throughput quantitative binding data for the human
PUF family protein PUM2 to demonstrate such cooperative
binding in vitro.
An RSC model was previously developed for two sites

and applied to assess potential cooperativity in physiolog-
ical sequences (Lin and Bundschuh 2015). Here we devel-
oped a generalizable statistical mechanical framework for
RSC that calculates expected PUM2 binding from PUM2
affinity for fully accessible RNA sequences along with site
accessibility as calculated from nearest neighbor models.
We test whether our current understanding of RNA sec-
ondary structure and protein affinity can accurately predict
RSC via quantitative, controlled equilibrium binding ex-
periments. We found cooperativity, but weaker than pre-
dicted due to limitations in RNA structure predictions,
and intrinsic properties of RNA structuremay generally lim-
it cooperativity. Additionally, we identified factors critical
for understanding and engineering RSC, including tem-
perature effects, the number of sites, the specific arrange-
ment of sites, and RNA structure. Finally, we showed that
RNA structure can, paradoxically, both enhance and sup-
press cooperativity. Ultimately, analogous models, taking
into account cellular complexities and conditions, will be
required to predict in vivo RNA/protein interactions and
cooperativity, and their downstream consequences.

RESULTS

A statistical mechanical model for structure-
mediated cooperativity

To quantitatively describe RSC, we developed a general
model for the binding of multiple proteins to a structured
RNA, starting with two binding sites (Fig. 1B). Briefly, in
our thermodynamic model, a single-stranded RBP requires
fullyaccessibleRNAsites that areunoccludedbysecondary
structure. As a result, the formation of RNA structure involv-
ing the RBP sites destabilizes protein binding to an extent
determined by the stability of RNA structure. Conversely,
as the fraction of bound RNA increases with increasing pro-

tein concentration and/or affinity, the
RNA folding equilibrium is shifted
toward the unfolded, binding-compe-
tent state. The destabilization of RNA
structure by RBP binding to one of
the sites in turn makes the second
site more accessible, resulting in ap-
parent cooperativity (Fig. 1B). This co-
operative behavior can be modeled
using Kd values for single accessi-
ble sites, measured independently
(Jarmoskaite et al. 2018), and free en-

ergies of RNA folding, computed from nearest neighbor
rules (e.g., by Vienna RNAfold) (Lorenz et al. 2011).
For simplicity, the complete model for two binding

sites is presented here and the extension to account for
additional binding sites is described in Materials and
Methods. To construct our model, we began by defining
substates for the RNA and RNA–protein complexes.
Each RNA has two protein-binding sites, and each site
can either be structured and unavailable for RBP binding
or unstructured and thus available for RBP binding. This
unstructured state can occur either with or without the pro-
tein bound, corresponding to a total of nine possible states
(Fig. 2A).
As RNA molecules exist in an ensemble of RNA struc-

tures at equilibrium (Fig. 2B), each of the distinct substates
in our model represents an ensemble of underlying struc-
tures that share the specified structural properties (Fig.
2B,C). For each RNA with two protein-binding sites, we
define the four structural substates (Fig. 2C): a substate
where both binding sites are structurally inaccessible
([A0]), two substates where one binding site is accessible
and the other is not ([A1 and A2]), and the substate of struc-
tures where both sites are available for binding ([A12]).
Tomakequantitative predictionswith thismodel, the rel-

ative populations of each substate were calculated. The
RNAfold partition functionwasused to assign freeenergies
to each ensemble of RNAmolecules that occupy each sub-
state relative to an unstructured substate (Fig. 2B; Lorenz
et al. 2011). For example, ΔGA2 represents the free energy
of the ensemble of RNA states where only site 2 is unin-
volved in secondary structure, relative to the unstructured
RNA alone; analogous descriptions apply to ΔGA0, ΔGA1,
and ΔGA12. The relative free energies of the different sub-
ensembles were translated into equilibrium unfolding con-
stants for the different substates (Fig. 2C, Ku1, Ku2, K[u2],u1,
K[u1],u2), using the standard relationship: K=e−ΔG/RT. Thus,
Ku1 denotes the equilibriumconstant for site 1being acces-
sible and site 2 being inaccessible, relative to both sites be-
ing involved in structure and inaccessible (i.e., large values
mean the unfolded state is favored).
The dissociation constants (Fig. 2A, Kd1, Kd2, etc.), de-

fined from PUM2 binding to single unstructured binding
sites, were used to determine the relative populations of

BA

FIGURE 1. Schematics of cooperative mechanisms. (A) Direct protein–protein cooperativity,
where physical contacts between two proteins increase RNA affinity. (B) Indirect cooperativity,
where RNA secondary structure changes upon binding to one protein increases the binding
affinity for the next protein. (RSC) RNA structural cooperativity.
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bound and unbound RNA substates. Kd1 and Kd2 refer to
the global dissociation constants for PUM2 binding to sites
1 and 2, respectively, and were used to define the micro-
scopic equilibrium between the different substates, for
example:

K[d1],d2 = [A12P1][P2]
[A12P1P2]

. (1)

Next we defined the fraction of sites bound, fbound, as the
sum of the sites with a protein bound divided by the sum
of all binding sites.

(2)

fbound = 2A12 · P1 · P2 + A12 · P1 + A12 · P2 + A1 · P1 + A2 · P2

2(A12 · P1 · P2 + A12 · P1 + A12 · P2 + A1 · P1 + A2 · P2 + A12 + A1 + A2 + A0)
.

In our experiments, we are studying the binding of a sin-
gle protein species to multiple binding sites, such that P1
and P2 in the above equation can be replaced by a single
protein term, P0.

(3)

fbound = 2A12 · P0 · P0 + A12 · P0 + A12 · P0 + A1 · P0 + A2 · P0

2(A12 · P0 · P0 + A12 · P0 + A12 · P0 + A1 · P0 + A2 · P0 + A12 + A1 + A2 + A0)
.

In the process of deriving the model, we assumed that
dissociation constants were identical for the binding of a
protein to a given site regardless of RNA structure outside
of the binding site or whether another PUM2 was bound to
an adjacent site in the same RNA (i.e., Kd1 =K[d2],d1).
Substituting the microscopic equilibrium relationships, as
in Equation 1, into Equation 3 allows us toderive the follow-
ing equation for structure-mediated cooperative binding
of two identical proteins to an RNA:

(4)

fbound =

2P2
0
K [u1],u2Ku1

Kd1Kd2
+ P0

K [u1],u2Ku1

Kd1
+ P0 + K [u1],u2Ku1

Kd2
+ P0

Ku1

Kd1
+ P0

Ku2

Kd2

2 P2
0
K [u1],u2Ku1

Kd1Kd2
+ P0

K [u1],u2Ku1

Kd1
+ P0

K [u1],u2Ku1

Kd2
+ P0

Ku1

Kd1
+ P0

Ku2

Kd2
+ 1+ Ku1 + Ku2 + K [u1],u2Ku1

( )

Tests and simulations of this equation allowedus to confirm
that this equation predicts the expected behavior in limit-
ing scenarios For example, if one of the dissociation con-
stants is set to be infinite (i.e., no binding), then, as
expected, Equation 4predicts binding to anRNAwith a sin-
gle binding site.

Application of the RSC model to experimental data

This statistical mechanical model allows us to make quan-
titative predictions of RSC that can be tested experi-
mentally. Using known PUM2 affinity to accessible sites
and predicted equilibrium unfolding constants, we can
define all equilibrium constants in the binding scheme of
Figure 2A, resulting in a predictive model with no free pa-
rameters. We applied the RNA-MaP method (Fig. 3A;
Buenrostro et al. 2014; She et al. 2017; Denny et al.

2018; Jarmoskaite et al. 2018) to make precise equilibrium
measurements for binding of the PUF-domain of human
PUM2 to 68 RNA constructs with two to five PUF binding
sites designed to probe RSC. These oligonucleotides
were tested as a subset of a larger library of >30,000
constructs used to investigate independent questions,
and the results for other constructs are reported elsewhere
(Jarmoskaite et al. 2018; Becker et al. 2019). PUM2, which
binds to a UGUA[ACU]AUA consensus sequence in mRNA
transcripts to promote decay and repress translation, was
chosen for its well-defined sequence specificity and appar-
ent lack of oligomerization (Fig. 3B; Galgano et al. 2008;
Hafner et al. 2010; Miller and Olivas 2011; Van Etten
et al. 2012; Bohn et al. 2018).

Our model makes multiple assumptions that must hold
for its application to experimental data. These assump-
tions include that there is no direct protein cooperativity,
that the system is at equilibrium, and that PUM2 does
not bind structured RNA. We assess the validity of each
of these assumptions below.

First, we tested our assumption of no direct protein
cooperativity. PUM2 binding to an RNA with two accessi-
ble binding sites was fit well by a model with two indepen-
dent binding sites andwith an affinity within twofold of that
for an RNA containing a single unstructured binding site of
the same sequence (Kd = 3.3 and 2.3 nM, respectively
for binding to two and one UGUAUAUU sites; Fig. 3C).
This result is consistent with lack of direct cooperativity.
(We note that throughout RNA-MaP experiments, report-
ed here and elsewhere [Jarmoskaite et al. 2018], it was
necessary to incorporate a constant nonspecific binding
term to account for continued increase in fluorescence af-
ter saturation [Fig. 3C], suggesting nonspecific binding of
an additional PUM2 monomer to the RNA/protein com-
plex at high concentrations. This term had a negligible ef-
fect on measured affinities for >10,000 single-site variants
[Jarmoskaite et al. 2018], though it was incorporated
throughout the fits presented herein tomaximize precision
[Materials andMethods].) Another prediction for structure-
mediated cooperativity versus direct cooperativity is that
there should be no change in the dissociation rate for con-
structs with any number of identical binding sites, as the
RNA structure should slow protein association rates but
not alter dissociation rates. Indeed, we observed similar
dissociation rate constants for RNAs with two to five iden-
tical binding sites (Supplemental Fig. S1).

Second, we confirmed that the system was at equilibri-
um, as equilibrium between all of the folded states and
protein-bound states is required for application of the sta-
tistical mechanical model. At 25°C, PUM2 binding equili-
brates within minutes (Vaidyanathan et al. 2017), and our
observation times were sufficiently long to ensure equili-
bration of PUM2 binding (Materials andMethods). If stable
RNA structures did not interconvert on the time scale of
the experiment, amplitudes would decrease at apparent
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saturation, as a fraction of the RNA would remain inacces-
sible for protein binding. However, we observe consistent
amplitudes regardless of predicted structural stability
across RNAs with the same number of PUM2-binding sites
(Supplemental Fig. S2).
Third, we confirmed that PUM2 showed no appreciable

binding to structured RNA. Structural and biochemical ev-
idence indicates that PUM2 binds the Watson–Crick face
of the RNA, which is incompatible with base-pairing.

Indeed, we observe no binding to
RNAs containing single PUM2-bind-
ing sites involved in stable RNA struc-
ture (Supplemental Fig. S3; Becker
et al. 2019).

Finally, the application of ourmodel
depends on correctly being able to
assign energies for the ensembles of
each folded state, which are predicted
using a nearest-neighbor algorithm
(Lorenz et al. 2011). However, inde-
pendent tests of nearest neighbor
based RNA structure prediction algo-
rithms revealed that the RNA struc-
tural ensembles are less stable than
predicted at our conditions (110 mM
monovalent cations [K+, Na+] and
2 mM magnesium ions [Mg2+]), which
differ from the conditions used to
collect the parameters for nearest
neighbor models (Becker et al. 2019).
To account for the discrepancy in
predicted structural stability, we intro-
duced a stability correction parame-
ter, Sunfold. This scaling factor allowed
the unfolding energies to float while
still taking advantage of nearest
neighbor rules and only introducing
one free parameter. This parameter
altered each Ku term in Equation 4 as
follows:

Ku1 = Ku1 ∗ Sunfold, Ku2

= Ku2 ∗ Sunfold, etc. (5)

RNA structure produces
cooperative interactions

Measurements of PUM2binding to ol-
igonucleotides containing two to five
sites indicated varying degrees of
cooperativity (as indicated by Hill co-
efficients up to 2.11); nevertheless,
the data showed systematic devia-
tions from the predictions without

the structure correction term, with binding consistently oc-
curring at lower PUM2 concentrations than predicted (Fig.
4A–F [circles vs. black solid lines] and Supplemental Fig.
S4). By including a single structure correction term for
each RNA, we capture the shape and offset of binding ob-
served in RSC constructs (Supplemental Fig. S4), and rep-
resentative fits are shown for RNA constructs with two
identical binding sites (Fig. 4A), two different binding sites
(Fig. 4B), three identical binding sites (Fig. 4C,D), and four

A

B

C

FIGURE 2. Statistical mechanical model for RNA structural cooperativity (RSC). (A) Framework
for protein binding to a structured RNA with two binding sites. Transitions between different
folded RNA states are specified by unfolding equilibrium constants where superscripts “u1”
and “u2” correspond to unfolding of binding sites 1 and 2, respectively; similarly, transitions
for protein binding are described with equilibrium dissociation constants specified with sub-
scripts “d1” and “d2.” Brackets are placed around terms to specify that a folding transition
or protein binding has already occurred (e.g., a [u1] superscript indicates that site 1 is accessi-
ble and a [d1] subscript indicates that a protein is bound to site 1). (B) Representative ensemble
of RNA secondary structures for a single RNAmolecule at equilibrium. (C ) Structural substates
with varying numbers of accessible protein-binding sites. The free energies of the ensemble of
structures in each substate are computed relative to an unstructured reference. The relative
free energies of each substate determine the relative occupancies of the substates, and the
corresponding equilibrium unfolding constants (Ku).
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identical binding sites (Fig. 4E,F); the remainder of the 203
total fits can be seen in Supplemental Figure S4.

To compare our best-fit values for RNA structural stabil-
ity to those predicted by RNAfold, themultiple equilibrium
unfolding constants and the single adjustment factor ap-
plied to each unfolding equilibrium constant were com-
bined to define the equilibrium between the state with
all sites involved in structure and the state with no sites in-
volved in structure as follows:

Ku12 = Ku2 ∗ Sunfold ∗K [u2], u1 ∗ Sunfold. (6)

We then defined a corresponding free energy change
for this process as

DGfold = DGA0 − DGA12 = −RT ∗ ln 1
Ku12

( )
. (7)

To test the reproducibility of these experimentally deter-
mined values, we compared the ΔGfold values computed

from replicate experiments (Fig. 5A) and found that they
were highly correlated (R=0.95 for RNAs with ΔGfold < 1
kcal/mol). We also found that PUM1, the second human
Pumilio protein with identical sequence specificity
(Galgano et al. 2008), also gave fit ΔGfold values in good

A

B

C

D

E

F

FIGURE 4. PUM2 binding to a series of RNAs. PUM2 binding at 25°C
(left) and 37°C (right) to RNAs with two identical binding sites (A), two
different binding sites (B), three identical binding sites (C,D), and four
identical binding sites (E,F). The binding sites are indicatedwith differ-
ent coloring in the most stable predicted secondary structure for each
RNA.

A

B

C

FIGURE 3. PUM2/RNA-binding measurements. (A) RNA-MaP meth-
od to quantitatively determine PUM2-binding affinity to RNA con-
structs on a sequencing chip (Buenrostro et al. 2014). (B) PUM2
consensus binding motif based on PAR-CLIP-derived motif from
Hafner et al. (2010). (C ) PUM2binding to an RNAwith a single unstruc-
tured binding site (UGUAUAUU; blue, left axis) and an RNA with two
identical binding sites but little intramolecular structure (red, right
axis) giving dissociation constants of 2.3 nM and 3.3 nM, respectively.
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agreement with those based on PUM2 data (Supplemental
Fig. S6). Together, these results demonstrate that these
measurements are highly reproducible across different ex-
periments and proteins.
Next, we compared our corrected ΔGfold values derived

from our single parameter fits with the original values from
RNAfold (Fig. 5B). Overall, less structure than predicted
was consistently observed for all RNA constructs tested,
consistent with the need for a structure correction factor.
The need for this factor may arise from differences in salt
conditions or errors in secondary structure prediction
(Becker et al. 2019). Despite these quantitative differences,
the overall strong correlation (R=0.85 for constructs with
ΔGfold < 1 kcal/mol) between predicted structural stability
and observed structural stability supports the RSC model.
At higher temperature, our model predicts lower RSC

due to a weaker structure. The model also predicts that,
for structured PUM2 sites, binding will be tighter than ex-
pected from enthalpic effects on binding alone, as weak-
ened PUM2/RNA interactions will be offset by structured
sites becoming more accessible. Indeed, while increased
temperature weakens PUM2 binding to unstructured
UGUAUAUA RNA-binding sites, from a Kd of 0.40 nM to
3.9 nM (ΔΔG=0.89 kcal/mol), and to unstructured
UGUAUAUU RNA-binding sites, from a Kd of 2.11 nM to
15.5 nM (ΔΔG=0.75 kcal/mol), binding to our structured
RNAs was reduced by less. When we carried out the fitting
procedure described above for the 25°C data, we found
that the values of ΔGfold at 37°Cwere offset from the values
at 25°C essentially as predicted by RNAfold (Fig. 5C).

Extension of model to three or more sites

As RNA secondary structure can generate cooperative
behavior between many proteins at once, we extended
the model to predict the binding behavior of RBPs to

RNAs with an arbitrary number of
binding sites. When modeling these
constructs, a single factor was intro-
duced to adjust all folding equilibrium
constants predicted by RNAfold, as
described above. The model predicts
that having greater than two binding
sites can result in either shallow,
multiphasic binding curves or steep
binding curves, depending on the
structural arrangement of the RNA,
and this is what we observed experi-
mentally. RNAs in which subsets of
PUM2 sites have different accessibility
(such as in Fig. 4D, where two sites are
predicted to pair with each other and
are inaccessible, while a third one is
fully accessible) give multiphasic
PUM2 concentration dependence.

Analogous behavior is observed in the four-site RNA in Fig-
ure 4E, where two pairs of sites each form distinct hairpins,
yielding a shallow, biphasic response to changes in PUM2
concentration. In contrast, in Figure 4F, when four binding
sites are involved in the same secondary structure, there is a
very steep binding response to protein concentration. At
higher temperature, we observed, as predicted by amodel
where cooperativity arises from the secondary structure,
that cooperativity decreases and that more of the binding
curves can be explained as a simple sum of three (or
more) independent, unstructured binding sites (Fig. 4C–
F; Supplemental Fig. S4). The ability of the model to cap-
ture these complex binding curves demonstrates the value
of considering the ensemble of RNA secondary structures,
as shown in Figure 2, to analyze cooperative binding to
complex structured RNAs.

Apparent Hill slopes and RSC

To place these behaviors in familiar terms and to further
explore the range of observed behaviors, we calculated
best-fit Hill slopes (nHill) for each construct. While in prin-
ciple, it is possible to achieve a Hill slope of two with
two binding sites, and our five constructs with two iden-
tical sites were predicted to exhibit Hill slopes of up to
1.8 (1.67–1.80 at 25°C), in practice the maximum Hill
slope we obtained for a two-site construct was 1.21.
As the number of binding sites is increased, our model
predicts that it should be possible to obtain a higher
Hill slope. Indeed, our four-site RNA construct that had
all four binding sites involved in an apparently single,
highly stable structure gave the highest Hill slope
(nHill = 2.11) (Fig. 4F). The observation of Hill slopes lower
than the theoretical maximum and lower than predicted
may indicate that engineering high cooperativity in RNA
structure is more difficult than it appears, perhaps due

BA C

FIGURE5. Comparisons of ΔGfold values determined from fits with one free parameter, Sunfold.
(A) Replicate values for ΔGfold for independent PUM2-binding experiments (25°C) to RNA con-
structs with two identical binding sites (red), two different binding sites (blue), three binding
sites (purple), four binding sites (green), and five binding sites (black). The deviations were
the greatest for positive ΔGfold values because the shapes of binding curves of constructs
with ΔGfold values greater than zero are minimally affected by even large changes in ΔGfold

(Supplemental Fig. S5). (B) RNA stability (ΔGfold) predicted by RNAfold compared to the
ΔGfold computed when fitting the statistical mechanical model with one free parameter.
(C ) Relationship between ΔGfold at 25°C (x-axis) and ΔGfold at 37°C (y-axis) as predicted by
RNAfold and fit with the model.
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to weaker than expected structure formation and due
to the ability of RNA to readily form multiple, partially
folded, quasistable states, often involving noncanonical
interactions.

Applying our statistical mechanical model, we can fur-
ther illustrate that, perhaps counterintuitively, RNA sec-
ondary structure can both increase and decrease the
sharpness of protein binding. In panel A of Figure 6,
two proteins bind independently to an unstructured con-
struct, leading to a response that is simply the sum of two
individual binding curves, with the same shape but twice
the amplitude of a binding curve to a single site. In panel
B, one site is tied up in structure (ΔGfold = –2.0 kcal/mol),
which prevents protein binding at that site until the pro-
tein concentration is high enough so that the protein-
bound state becomes more stable than the structured
RNA. As a result, the protein binds to one site with a
high effective affinity (Kd2) and to the other site with a
much lower effective affinity (Kd1), giving an observed
binding response across a wide range of protein concen-
trations and apparent negative cooperativity (nHill = 0.34).
Finally, panel C of Figure 6 shows an example with both
sites strongly sequestered in the same structure (ΔGfold =
–8.0 kcal/mol). Once the concentration of protein is high

enough that the bound state is energetically favorable
relative to the unbound structured state, both protein-
binding sites become available, leading to a sharp re-
sponse to protein concentration with a calculated Hill
slope of 1.98.

We see evidence for these disparate behaviors in our
data. For example, whereas the four-site RNA described
above has a steep response (Fig. 4F, nHill = 2.11), the RNA
shown in Figure 4E has its four binding sites involved in
two different hairpins and a broader response with an ap-
parentHill slopeof 0.62. Thus, in addition to creating sharp,
ultrasensitive responses, RNA structure can lead to the
generation of a steady increase in binding across a wide
range of concentrations.

DISCUSSION

RNA structure has been widely implicated in cellular regu-
lation through structured elements such as riboswitches,
internal ribosome entry sites (IRES), and the iron-respon-
sive element (Piccinelli and Samuelsson 2007; Garst
et al. 2011; Serganov and Nudler 2013; Sherwood and
Henkin 2016; Yamamoto et al. 2017). Here we describe a
predictivemodel for and quantitatively test another poten-

tially widespread structure-depen-
dent regulatory mechanism, RSC.
The ability of RNA to readily form lo-

cal stable secondary structures gener-
ates a panoply of opportunities for
crafting and tuning cooperative con-
trol throughout RNA processing. For
example, certain mammalian miRNA-
binding sites co-occur with PUF-bind-
ing sites and contain seed sequences
that are the reverse complement of
the PUF-binding site. For these com-
binatorial sites, the binding of PUF
proteins hasbeenproposed to release
the miRNA site from the secondary
structure, rendering it accessible to
the RNA induced silencing complex
and leading to accelerated transcript
decay (Kedde et al. 2010; Jiang and
Coller 2012; Miles et al. 2012; Jiang
et al. 2013). PUM sites also often exist
in clusters in vivo, suggesting that co-
operative regulation via RNA structure
may occur (Galgano et al. 2008). RNA
structure-mediated cooperativity has
also been described for other RBPs
and miRNAs (Xue et al. 2013).
Our model studies demonstrate

that RNA secondary structure can
engender cooperative RBP binding,
a process we refer to as RSC. A

A

B

C

FIGURE 6. Modes of binding of two proteins to RNA: (A) Binding of an unstructured RNA
leads to independent protein binding (nHill = 1). (B) Binding of a partially structured RNAwhere
one protein binds with lower affinity because its binding site is involved in structure (nHill =
0.34). (C ) Binding of a structured RNA where both proteins bind to sites involved in the
same structure leading to cooperative binding (nHill = 1.98).
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key advantage of RSC over direct cooperativity is that RSC
can be tuned via changes in the RNA sequence alone, and
thus can be tailored individually for each RBP target.
Furthermore, the RSC thermodynamic framework can be
applied to any sequence-specific, single-stranded RBP,
provided there is no direct cooperativity.
Our studies reveal several features that will inform future

RSC design and applications. First, as we have shown, the
precise configuration of neighboring sites can lead to var-
iable RSC. Indeed, depending on the arrangement of RBP
sites, RNA structure can either enhance or suppress coop-
erativity. We find that cooperativity is generally weaker
than might be expected for a given number of RBP sites,
likely reflecting the intrinsic complexity of RNA folding
and its ability to form complex structural ensembles that
are not fully accounted for by nearest-neighbor predic-
tions. Finally, we demonstrate temperature as a way of
modulating RSC.
In vivo, RSC may be further tuned temporally by RNA

modifications that can increase or decrease secondary
structure stability or alter protein affinities (Liu et al.
2015; Lewis et al. 2017; Vaidyanathan et al. 2017). Ulti-
mately, these structural effects along with cellular condi-
tions, such as temperature, salt, and helicase activity,
must be incorporated into a statistical mechanical model
to predict cooperativity in Nature.
While we do not know the extent or dynamics of RNA

secondary structure in cells, and there are some indica-
tions that there may be different extents of structure in dif-
ferent organisms, with more evidence for control via
structural elements in plants and bacteria (Breaker 2012;
Serganov and Nudler 2013; Vandivier et al. 2016), it
would be surprising if Nature has not taken advantage
of RNA structure to generate RSC, given the opportunistic
and creative qualities of natural selection and evolution.
Rather than requiring specific cooperative interactions to
evolve between proteins, RSC can be developed from
sequence-level changes that alter the secondary structure
and thus may be more evolvable than new protein–
protein interactions. It is possible that secondary structure
conservation in the 3′-UTRs of some RNA transcripts is
partly a result of regulatory functions of the RNA second-
ary structure in RSC.
Our experimental tests of the RSC model also under-

score limitations in the accuracy of RNA secondary struc-
ture prediction algorithms under our experimental
conditions (Becker et al. 2019). Because of the central
role of RNA structure and stability in RSC, the overestima-
tion of RNA secondary structure stability represents a key
limitation to quantitative applications of the RSC model.
The observed discrepancies emphasize the need for fur-
ther development of structural models, and we anticipate
that improved in vitro modeling will be foundational for
probing and better understanding RNA structure and
manifestations such as RSC in vivo.

MATERIALS AND METHODS

Collection and quantification of experimental data

Experimental data were collected as a subset of a large PUM2 tar-
get library on an Illumina MiSeq flow cell using the RNA-MaP
method (Fig. 3A; Buenrostro et al. 2014; Sheet al. 2017). Thebind-
ing experiments were performed at 20 mM Na-HEPES (pH 7.4),
100 mM KOAc, 0.1% Tween-20, 5% glycerol, 0.1 mg/ml BSA,
2 mM MgCl2, and 2 mM DTT, at 25°C or 37°C, as indicated. At
25°C, PUM2 binding equilibrates within minutes (halftime≤ 5.3
min; see also Vaidyanathan et al. 2017), and our observation times
ranged from33min for the lowest concentrations to 19min for the
highest protein concentrations (25°C; 15–23 min at 37°C) to en-
sure equilibration of PUM2. The full details of the PUM2 protein
expression and purification and the RNA-MaP experiments are
reported elsewhere (Jarmoskaite et al. 2018). Here, a set of RNA
sequences, which contain two to five UGUAUAUA- or UGUA
UAUU-binding sites, were analyzed. These constructs were
probed as a subset of a larger RNA library, with other sets used
to address independent questions. The RNA constructs studied
here contained either two to five identical binding sites
(UGUAUAUA or UGUAUAUU) or two different sites (UGUAUAUA
and UGUAUAUU), which varied in affinity by approximately five-
fold (full list of sequences in Supplemental Tables S1, S2).
Following the experiments, normalized fluorescence intensity for
each RNA cluster and protein concentration was computed and
normalized as previously described (Buenrostro et al. 2014; She
et al. 2017; Jarmoskaite et al. 2018). The affinity for unstructured
single binding sites was rigorously determined via 408 measure-
ments of unstructuredUGUAUAUAsequence in varying sequence
contexts. All Kd values and concentrations reported are based on
experiments performed with 57% active fraction of PUM2.
To measure PUM2 dissociation, the RNA array was incubated

with 12.8 nM PUM2 for 18 min (by flowing 320 µL of 12.8 nM
PUM2 solution). Dissociation was initiated by rapidly (150 µL/
min) flowing 150 µL of 3 µMof an RNAoligonucleotide chase con-
taining the PUM2 consensus sequence (UCUUGUAUAUAUA) in
the binding buffer, with simultaneous imaging. 170 µL of the
chase solution was then flowed at 15 µL/min with continuous im-
aging. Because of the rapid dissociation and the time required to
image all 16 tiles of the RNA array, only one tile (6% of the library)
was imaged.

Structure predictions

Structure prediction was performed using RNAfold version 2.3.3.
For cases with no constraints, the following command was used:
RNAfold -T 37 C -p0 –noPS -i inputfile.fa
and for cases with constraints, the following command was

used:
RNAfold -T 37 C -p0 –noPS -C -i inputfile.fa
For the second command, constraints were provided as follows:

UCUCUUUGUAGAUAUCUCUU

......xxxxxxxx......

where the x’s represent positions that were not allowed to form
structure. Each command calculates the minimum free energy
(mfe), the free energy of the ensemble, which is computed from
the partition function, and the frequency of the mfe structure in
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the ensemble. As indicated in Figure 2, the ensemble stabilities
were used in all modeling and figures in the paper.

Fitting of normalized fluorescence data

For all fits, the median fluorescence values of all clusters repre-
senting a specific sequence at a given concentration were used.
Prior to determining the medians of the experimental data, the
data were filtered by removing any unreasonable values for a
given concentration or time point. These points were identified
conservatively to only exclude points that clearly reflected exper-
imental artifacts. The criteria used to exclude these points were
(i) fluorescence values for a cluster that were greater than what
would be expected for 10 bound proteins or (ii) fluorescence
values that were 6 or more median standard deviations from the
median fluorescence. After filtering the data, the median fluores-
cence and bootstrapped 95% confidence intervals on themedian
fluorescence values (shown as error bars) were computed for each
time point. In addition to fitting the true medians, the values ob-
tained from the bootstrapped 95% confidence interval on theme-
dian were fit to estimate error on the fit parameters.

When fitting the data, it was necessary to incorporate a con-
strained parameter to account for variability in the maximum fluo-
rescence as well as a constant nonspecific parameter to account
for nonspecific binding of the protein to RNA–protein complexes
(Jarmoskaite et al. 2018). In our experiments, the maximum fluo-
rescence increased linearly with the total number of proteins ex-
pected to bind to an RNA (Supplemental Fig. S2), indicating
that we can track the number of proteins bound with this experi-
mental system. When fitting different models to the experimental
data, the maximum fluorescence was constrained based on this
observation by forcing the value to be within 25% of the number
of binding sites times the median maximum fluorescence for sin-
gle binding sites. The observed minimum fluorescence was tight-
ly constrained to values between zero and the greater of the
minimum fluorescence value observed and 1% of the maximum
fluorescence value observed.

The nonspecific binding contribution was fit as a constant mul-
tiplied by the concentration of protein and the fraction of RNA
molecules in a cluster bound by the protein. A value for this non-
specific binding term was determined by fitting a range of values
for the nonspecific binding to the RNA constructs with two sites.
The values for the nonspecific term that maximized the R2 values
of the fits were determined for each temperature and then ap-
plied for all fits at that temperature (Supplemental Fig. S7A,B).
At 25°C, a nonspecific value of 0.001 was used and at 37°C, a val-
ue of 0.0005 was used.We compared the sensitivity of the folding
energies obtained to the value of the nonspecific term and found
that, for ΔGfold values less than zero, the value chosen for the non-
specific term had a minimal effect on the final ΔGfold values deter-
mined by fitting the data to themodel (Supplemental Fig. S7C–E),
indicating that our fit values were not sensitive to the values cho-
sen for the nonspecific contribution.

Incorporating the fluorescence and nonspecific parameters
gives the following equation for the observed fluorescence as a
function of the fraction of protein-binding sites bound by the pro-
tein fbound:

Fluorescence = (fmax − fmin) ∗ (1+ q ∗ [P0]) ∗ fbound + fmin, (8)

where fbound is defined from the binding model being fit to
the data. For the two-site case, fbound is given by Equation 4.
For the Hill equation and the higher-order models, fbound is
described below. All equations were fit in Python 2.7 using the
differential evolution algorithm implemented in the lmfit pack-
age. The fmax, fmin and nonspecific (q) variables were constrained
as described above. All unfolding constants used in fitting were
defined from RNAfold. Other structure prediction algorithms
gave similar agreement as observed for RNAfold (data not
shown).

Dissociation data were fit to a single exponential to determine
the dissociation rate.

Derivation of fbound equations for three or more
binding sites

As was done for the two-site model above, to fit the data col-
lected for RNAs with three to five protein-binding sites, we de-
rived analogous statistical mechanical equations for the fraction
of sites bound. To derive these equations, we first enumerated
all of the possible states that could be occupied by a given
RNA molecule (e.g., 27 states for three sites, etc.). We then de-
fined the microscopic equilibrium between the different sub-
states. Next, we defined the fraction of sites bound, fbound, as
the sum of the sites with a protein bound divided by the sum
of all of the binding sites. The microscopic equilibrium equa-
tions were then substituted into this equation to give an equa-
tion for the fraction of sites bound as a function of protein
concentration, dissociation constants, and equilibrium unfolding
constants. Dissociation constants were defined from PUM2 bind-
ing to unstructured RNA-binding sites and unfolding constants
were defined with RNAfold following the procedure outlined
for two binding sites.

Hill equation

The following equation for fbound was used when fitting the Hill
equation:

fbound = [P]n

Kd + [P]n
. (9)

Parameters for models in Figure 6:
For Figure 6, panel A, the following parameters were

used: Kd1 =Kd2 =0.1 nM, ΔG01=ΔG02= 0 kcal/mol, and ΔG12=
ΔG21=10 kcal/mol. For Figure 6, panel B, the following
parameters were used: Kd1 =Kd2 = 0.1 nM, ΔG01= –2.0 kcal/mol,
ΔG02=0 kcal/mol, and ΔG12=0, and ΔG21= –2.0 kcal/mol.
For Figure 6, panel C, the following parameters were used: Kd1 =
Kd2 =0.1 nM, ΔG01=ΔG02= –8.0 kcal/mol, and ΔG12=ΔG21= 0
kcal/mol. After generating the sample data, the binding curves
were fit to the Hill equation as described above.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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