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Demonstration of quantum advantage in machine learning
Diego Ristè1, Marcus P. da Silva 1, Colm A. Ryan1, Andrew W. Cross2, Antonio D. Córcoles2, John A. Smolin2, Jay M. Gambetta2,
Jerry M. Chow2 and Blake R. Johnson 1

The main promise of quantum computing is to efficiently solve certain problems that are prohibitively expensive for a classical
computer. Most problems with a proven quantum advantage involve the repeated use of a black box, or oracle, whose structure
encodes the solution. One measure of the algorithmic performance is the query complexity, i.e., the scaling of the number of oracle
calls needed to find the solution with a given probability. Few-qubit demonstrations of quantum algorithms, such as Deutsch–Jozsa
and Grover, have been implemented across diverse physical systems such as nuclear magnetic resonance, trapped ions, optical
systems, and superconducting circuits. However, at the small scale, these problems can already be solved classically with a few
oracle queries, limiting the obtained advantage. Here we solve an oracle-based problem, known as learning parity with noise, on a
five-qubit superconducting processor. Executing classical and quantum algorithms using the same oracle, we observe a large gap in
query count in favor of quantum processing. We find that this gap grows by orders of magnitude as a function of the error rates
and the problem size. This result demonstrates that, while complex fault-tolerant architectures will be required for universal
quantum computing, a significant quantum advantage already emerges in existing noisy systems.
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INTRODUCTION
The limited size of engineered quantum systems and their
extreme susceptibility to noise sources have made it hard so far
to establish a clear advantage of quantum over classical
computing. Although the classical success probability has been
exceeded in two-qubit demonstrations of the Deutsch–Jozsa1 and
Grover2 algorithms, the required number of oracle queries has so
far remained comparable. A promising avenue to highlight a
quantum advantage is offered by a new family of algorithms
designed for machine learning.3–6 In this class of problems,
artificial intelligence methods are employed to discern patterns in
large amounts of data, with little or no knowledge of underlying
models. A particular learning task, known as binary classification, is
to identify an unknown mapping between a set of bits onto 0 or 1.
An example of binary classification is identifying a hidden parity
function,7, 8 defined by the unknown bit-string k, which computes
f(D,k) =D · k mod 2 on a register of n data bits D = {D1,D2…,Dn}
(Fig. 1a). The result, i.e., 0 (1) for even (odd) parity, is mapped onto
the state of an additional bit A. The learner has access to the
output register of an example oracle circuit that implements f on
random input states, on which he/she has no control. Repeated
queries of the oracle allow the learner to reconstruct k. However,
any physical implementation suffers from errors, both in the
oracle execution itself and in readout of the register. In the
presence of errors, the problem becomes hard. Assuming that
every bit introduces an equal error probability, the best known
algorithms have a number of queries growing as O(n) and runtime
growing almost exponentially with n.7–9 In view of the classical
hardness of learning parity with noise (LPN), parity functions have
been suggested as keys for secure and computationally easy
authentication.10, 11

The picture is different when the oracle is implemented by a
quantum circuit and the algorithm can process quantum

superpositions of input states. In this case, applying a coherent
operation on all qubits after an oracle query ideally creates the
entangled state
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In particular, when A is measured to be in |1〉, |D〉 will be

projected onto |k〉. With constant error per qubit, learning from a
quantum oracle requires a number of queries that scales as O(log
n), and has a total runtime that scales as O(n).12 This gives the
quantum algorithm an exponential advantage in query complexity
and a super-polynomial advantage in runtime.
In this work, we implement a LPN problem in a super-

conducting quantum circuit using up to five qubits, realizing the
experiment proposed in Ref. 12. We construct a parity function
with bit-string k using a series of CNOT gates between the ancilla
and the data qubits (Fig. 1b). We then present two classes of
learners for k and compare their performance. The first class
simply measures the output qubits in the computational basis and
analyzes the results. The measurement collapses the state into a
random {D, f(D,k)} basis state, reproducing an example oracle of
the classical LPN problem. The second class performs some
quantum computation (coherent operations), followed by classical
analysis, to infer the solution. We show that, beyond a minimum
complexity of the problem, the quantum approach outperforms
the classical one. Furthermore, as the classical problem becomes
rapidly intractable as noise is added to the output register, the
performance gap widens.

RESULTS
The quantum device used in our experiment consists of five
superconducting transmon qubits, A, D1, …, D4, and seven
microwave resonators (Fig. 1c). Five of the resonators are used
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for individual control and readout of the qubits, to which they are
dispersively coupled.13 The center qubit A plays the role of the
result and is coupled to the data register {Di} via the remaining
two resonators. This coupling allows the implementation of cross-
resonance (CR) gates14 between A (used as control qubit) and
each Di (target), constituting the primitive two-qubit operation for
the circuit in Fig. 1b (full gate decomposition in the Supplementary
Information). Each qubit is measured by probing its respective
readout resonator with a near-resonant microwave pulse. The
output signals are then demodulated and integrated at room
temperature to produce the homodyne voltages fVD1 ; ¼ VDn ; VAg
(see Supplementary Information for the detailed experimental
setup).
To implement a uniform random example oracle for a particular

k, we first prepare the data qubits in a uniform superposition
(Fig. 1b). Preparing such a state ensures that all parity examples
are produced with equal probability and is also key in generating
a quantum advantage. We then implement the oracle as a series
of CNOT gates, each having the same target qubit A and a
different control qubit Di for each ki = 1. Finally, the state of all
qubits is read out (with the optional insertion of Hadamard gates,
see discussion below). The oracle mapping to the device is limited
by imperfections in the two-qubit gates, with average fidelities
88–94%, characterized by randomised benchmarking15 (see
Supplementary Table S1). Readout errors in the register ηDi

,
defined as the average probability of assigning a qubit to the
wrong state, are limited to 20–40% by the onset of inter-qubit
crosstalk at higher measurement power (see data in

the Supplementary Information). A Josephson parametric ampli-
fier16 in front of the amplification chain of A suppresses its low-
power readout error to ηA = 5%.
Having implemented parity functions with quantum hardware,

we now proceed to interrogate an oracle N times and assess our
capability to learn the corresponding k. We start with oracles with
register size n = 2, involving D1, D2, and A. We consider two classes
of learning strategies, classical (C) and quantum (Q). In C, we
perform a projective measurement of all qubits right after
execution of the oracle. This operation destroys any coherence
in the oracle output state, thus making any analysis of the result
classical. The measured homodyne voltages fVD1 ; ¼ VDn ; VAg are
converted into binary outcomes, using a calibrated set of
thresholds (see Methods). Thus, for every query, we obtain a
binary string {a,d1,d2}, where each bit is 0 (1) for the corresponding
qubit detected in |0〉 (|1〉). Ideally, a is the linear combination of d1,
d2 expressed by the string k (Fig. 1a). However, both the gates
comprising the oracle and qubit readout are prone to errors (see
values in the Supplementary Information). To find the k that is
most likely to have produced our observations, at each query m
we compute the expected ãk,m = dm·k mod 2 for the measured
D = {d1,d2}m and the 4 possible values of k. We then select the
k which minimizes the Hamming distance to the measured results
a1,…,aN of N queries, i.e.,

PN
m¼1jam � ~ak;mj.7 In the case of a tie,

k is randomly chosen among those producing the minimum
distance. As expected, the error probability p of obtaining
the correct answer decreases with N (Fig. 2a). Interestingly, the
difficulty of the problem depends on k and increases with the
number of ki = 1. This can be intuitively understood as needing to
establish a higher correlation between data qubits when the
weight of k increases.
Our second approach (Q) takes advantage of the quantum

correlations between ancilla and data qubits at the output of the
oracle. Instead of directly measuring the qubits as above, we first
apply a Hadamard gate on each. These local operations generate
quantum interference between terms in the superposition state,
ideally producing the desired result (Eq. (1)). This technique is
widely used in quantum algorithms to increase the probability of
obtaining the desired outcomes.17 In this case, whenever A is
measured to be in |1〉 (with 50% probability), the data register will
ideally be projected onto the solution, |D1,D2〉 = |k1,k2〉. We
therefore digitize and postselect our results on the outcomes
where a = 1 and perform a bit-wise majority vote on fd1; d2g1¼ ~N .
Despite every individual query being subject to errors, the
majority vote is effective in determining k (Fig. 2b). We assess

Fig. 1 Implementation of a parity function in a superconducting
circuit. a Conceptual diagram of parity learning. The (classical or
quantum) oracle f ideally maps the parity of a subset of n data bits
(or qubits), defined by the bit string k, into bit A. Repeated queries of
the oracle allow the reconstruction of k by reading the output
register. b Gate sequence implementing a quantum parity oracle
with k= 11…1. Random examples are generated by preparing the
data qubits {D1,…,Dn} in a uniform superposition. Vertical lines
indicate CNOT gates between each Di (control) and the ancilla qubit
A (target). Quantum learning differs from classical learning only by
the addition of single-qubit gates (dashed boxes) applied before
measurement (see also Supplementary Information). c Optical image
of the superconducting quantum processor (qubits in red). A is
coupled to each Di by means of two bus resonators (blue). Each
qubit is also coupled to a dedicated resonator for control and
readout (green)27

ba

Fig. 2 Error probability p to identify a 2-bit oracle k as a function of
the number of queries N. For both classical a and quantum b
learners, one of the four oracles k is applied, followed by the
simultaneous measurement of all qubits. Hadamard gates are
applied prior to measurement in the quantum case (Fig. 1b). See
text for a description of the solvers in the two scenarios. Inset:
number of queries N1%(k) required to reach 1% error for the classical
(empty bars) and quantum (solid) solver
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the performance of the two solvers by comparing the number of
queries N1% required to reach p = 0.01 (Fig. 2c). Whereas
Q performs comparably or worse than C for k = 00, 01 or 10,
Q requires less than half as many queries as C for the hardest
oracle, k = 11. We note that, while these results are specific to the
lowest oracle and readout errors we can achieve, a systematic
advantage of quantum over classical learning will become clear in
the following.
So far we have adhered to a literal implementation of the

classical LPN problem, where each output can only be either
0 or 1. However, the actual measurement results are the
continuous homodyne voltages fVD1 ; ¼ VDn ; VAg, each having
mean and variance determined by the probed qubit state and by
the measurement efficiency.13 This additional resource can be
exploited to improve the learner’s capabilities. A more effective
strategy for C uses Bayesian estimation to calculate the probability
of any possible k for the measured output voltages, and select the
most probable (see Methods). This approach is expensive in
classical processing time (scaling exponentially with n), but
drastically reduces the error probability p, averaged over all k, at
any N (Fig. 3). To improve on Q, we still postselect the oracle
queries on the digitized outcome a = 1. Then, instead of digitizing
the corresponding fVDig as above, we digitize their averages
fhVDi ig, obtaining our best guess for k (see Methods). This
procedure simply replaces the majority vote between multiple
noisy observations with a single observation, with variance
reduced by the number of postselected queries. Using the analog
results, not only does Q retain an advantage over C (smaller p for
given N), but it does so without introducing an overhead in
classical processing.
The superiority of Q over C becomes even more evident when

the oracle size n grows from 2 to 3 data qubits (Fig. 3b). Whereas
Q solutions are marginally affected, the best C solver demands
almost an order of magnitude higher N to achieve a target error.
Maximizing the resources available in our quantum hardware, we
observe an even larger gap for oracles with n = 4 (data in
the Supplementary Information), suggesting a continued increase
of quantum advantage with the problem size.
As predicted, quantum parity learning surpasses classical

learning in the presence of noise. To investigate the impact of
noise on learning, we introduce additional readout error on either
A or on all Di. This can be easily done by tuning the amplitude of
the readout pulses, effectively decreasing the signal-to-noise
ratio.18 When the ancilla assignment error probability ηA grows
(Fig. 4a), the number of queries N1% (the average of N1% over all k)
required by the C solver increases by up to 2 orders of magnitude
in the measured range (see also data in the Supplementary
Information). Conversely, using Q, N1% only changes by a factor of
~3. Key to this performance gap is the optimization of the
digitization threshold for fhVDi ig at each value of ηA (see
Methods). When ηA is increased, an interesting question is
whether postselection on VA remains always beneficial. In fact,
for ηA > 0.25, it becomes more convenient to ignore VA and use
the totality of the queries (Q′ in Fig. 4a).
Similarly, we step the readout error of the data qubits, with

average ηD, while setting ηA to the minimum. Not only does Q
outperform C at every step, but the gap widens with increasing ηD.
The computational advantage of quantum learning, which

appears in the reduction of the number of oracle calls, is even
more significant when accounting for the post-processing time.
For example, finding k at ηA = 0.44 with 1% error (Fig. 4a) takes C
about 10 times longer in post-processing relative to Q. Moreover,
the processing time for C grows exponentially with n, as the
Bayesian solver must track probabilities for each possible k.
Conversely, Q consists only of binary comparisons (for postselec-
tion on A), averages, and a final digitization (for D), thus scaling
linearly with n.

Finally, to verify that our results are not limited to highly noisy
systems, we have implemented all 4-bit k on a second device with
lower gate and readout errors, particularly for ηDi

. Whereas the
required number of queries is greatly reduced for both learners,
the performance gap remains in favor of Q (see Supplementary
Information).

DISCUSSION
A numerical model including the measured ηA,ηD, qubit deco-
herence, and gate errors (see Supplementary Information)
modeled as depolarization noise is in very good agreement with
the measured N1% at all ηA,ηD. This model allows us to extrapolate
N1% to the extreme cases of zero and maximum noise. Obviously,
when ηD = 0.5, readout of the data register contains no

a b

Fig. 3 Learning error probability p averaged over all the n-bit
oracles k, for different n and solvers. a n= 2, b n= 3. Making use of
the analog measurements fVD1 ; ¼ VDn ; VAg (squares) improves over
the digital solvers in Fig. 2 (circles) for both classical (empty symbols)
and quantum (solid symbols) learning. The analog solver in Q proves
to be the most efficient solution. Moreover, the gap between Q and
C grows with n. The same dataset is used in Figs 2 and 3, with D3
ignored in the analysis for n= 2. See Supplementary Information for
the p(N) corresponding to each 3-bit k

ba

Fig. 4 Robustness of quantum parity learning to noise. Number of
queries N1% for p¼ 0:01 for variable readout error η of ancilla a or
data b qubits, with n= 3. η is tuned by setting the readout power of
the corresponding qubit(s). Empty (solid) circles correspond to the
analog C (Q) solver. a, N1% diverges for ηA→0.5 for C, while it stays
limited for Q. When ηA\0:25, it is preferable to ignore VA altogether
(Q′, triangles). b Whereas both C and Q are severely affected by a
noisy data register, Q remains superior and the performance gap
increases with ηD. Results are out of scale for C and ηD\0:4. The
corresponding N1% are not computed, due to the processing time of
several hours that would be required. See Methods for an
explanation of the error bars
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information, and N1% consequently diverges. On the other hand a
random ancilla result (ηA = 0.5) does not prevent a quantum
learner from obtaining k. In this limit, the predicted factor of ~2 in
N1% between Q and Q′ can be intuitively understood as Q
indiscriminately discards half of the queries, while Q′ uses all of
them. (See Supplementary Information for theoretical bounds on
the scaling of N1% for different solvers.)
It is worth noting that the quantum advantage here demon-

strated is not limited to a noisy realization of the oracle. Lower
gate errors, as achieved by a future fault-tolerant processor,
will reduce N1% for both Q and C solvers. Nevertheless, for a
given oracle, classical learning will remain more susceptible
to measurement errors (ηA,ηD), preserving the performance gap
with Q.12

In conclusion, we have implemented a LPN algorithm in a
quantum setting. We have demonstrated a superior performance
of quantum learning compared to its classical counterpart, where
the performance gap increases with added noise in the query
outcomes. A quantum learner, with the ability of physically
manipulating the output of a quantum oracle, is expected to find
the hidden k with a logarithmic number of queries and linear
runtime as function of the problem size, whereas a passive
classical observer would require a linear number of queries and
nearly exponential runtime. We have shown that the difference in
classical and quantum queries required for a target error rate
grows with the oracle size in the experimentally accessible range,
and that quantum learning is much more robust to noise. We
expect that future experiments with increased oracle size will
further demarcate a quantum advantage, in support of the
predicted asymptotic behavior. Furthermore, our experiment
provides a novel method to benchmark the performance of a
quantum algorithm using the same hardware to construct the
equivalent classical problem. As prototype quantum computers
continue to grow, we expect this approach to become increas-
ingly useful in determining the quantum advantage attainable in
complex problems.

METHODS
Pulse calibration
Single- and two-qubit pulses are calibrated by an automated routine,
executed periodically during the experiments. For each qubit, first the
transition frequency is calibrated with Ramsey experiments. Second, π and
π/2 pulse amplitudes are calibrated using a phase estimation protocol.19

The pulse amplitudes, modulating a carrier through an I/Q mixer (diagram
in the Supplementary Information) are adjusted at every iteration of the
protocol until the desired accuracy or signal-to-noise limit is reached.
Pulses have a Gaussian envelope in the main quadrature and derivative-of-
Gaussian in the other, with DRAG parameter20 calibrated beforehand using
a sequence amplifying phase errors.21 A CRi gate

14, 22 on qubits {A,Di}
consists of two pulses applied on A at the Di frequency, separated by a
refocusing π pulse on A. For some frequency conditions (mainly that the
qubit-qubit detuning is smaller than their anharmonicity), this sequence
implements a Di rotation, controlled by A. The gate is calibrated in a two-
step procedure, determining first the optimum duration and then the
optimum phase corresponding to the unitary CRi ¼ ZAXDi ðπ=2Þ.

Experimental setup
A detailed schematic of the experimental setup is illustrated in
the Supplementary Information. For each qubit, signals for readout and
control are delivered to the corresponding resonator through an individual
line through the dilution refrigerator. For an efficient use of resources, we
apply frequency division multiplexing23 to generate the five measurement
tones by sideband modulation of three microwave sources. Moreover, the
same pair of BBN APS (arbitrary waveform generators) channels produce
the readout pulses for {D1,D2}, and another one for {D3,D4}. Similarly, the
output signals are pairwise combined at base temperature, limiting
the number of HEMTs and digitizer channels to three. The attenuation on
the input lines, distributed at different temperature stages, is a
compromise between suppression of thermal noise impinging on the

resonators (affecting qubit coherence) and the input power required for CR
gates.

Gate sequence
CNOT gates can be decomposed in terms of CR gates using the relation
CNOT12 ¼ ðZ�

90 � X�
90ÞCR12.24 Moreover, the role of control and target

qubits are swapped, using CNOT12 = (H1⊗H2)CNOT21(H1⊗H2). The first of
these H gates is absorbed into state preparation for the LPN sequence
(Fig. 1a and Supplementary Information). Similarly, when two CNOTs are
executed back to back, two consecutive H gates on A are canceled out. In
order to maintain the oracle identical in C and Q, we do not compile the H
gates in the CNOTs with those applied before measurement in Q.

Sample size
For each set of oracle k, readout errors ηA,ηD, solver type, and register size
n, we measure the result of 100,000 oracle queries. Each set is
accompanied by n+2 calibration points (averaged 10,000 times), providing
the distributions of VA; VD1 ; ¼ ; VDn for the collective ground state and for
single-qubit excitations (n data and 1 ancilla qubit). These distributions are
then used to determine the optimum digitization threshold (for digital
solvers) or as input to the Bayesian estimate in C. To obtain p(N), we
resample the full data set with 2000–4000 random subsets of each size N.

Statistical analysis
Error bars are obtained by first computing the credible intervals for p at
each set {N,k,ηA,ηD}. These intervals are computed with Jeffreys beta
distribution prior Betað12 ; 12Þ for Bernoulli trials, with a credible level of 100%
−(100–95%)/8≈99.36%. This ensures that, under a union bound, the
average of estimates for 8 different k is inside the credible interval with a
probability of at least 95%. We then perform antitonic regression on the
upper and lower bounds of the credible intervals to ensure monotonicity
as function of N, and find the intercept to p = 0.01 for each k. The bounds
on the value N1% averaged over k is computed by interval arithmetic on
the credible intervals of N1% for each k.

Classical solver with Bayesian estimate
An improved classical solver for the LPN problem can be constructed when
the oracle provides an analog output. Approximating the distributions of
each bit value as Gaussian25 (neglecting qubit transitions during readout),
this solver corresponds to a Bayesian estimate of k after a series of
observations of the data and ancilla bits. More formally, taking a uniform
prior distribution for all binary strings produced by the oracle, one
computes the (unnormalized) posterior p(Di) distribution for each data bit
Di the output of the oracle,

pðDi ¼ bjVDi Þ ¼
1
2
exp �ðVDi � bÞ2

2σ2i

" #

The (unnormalized) posterior distribution pmðkjVD; VAÞ for k after the
mth query, on the other hand, is given by

pmðkjVD; VAÞ ¼ exp �ðVA � D � kÞ2
2σ2A

" #
pðDjVDÞpm�1ðkÞ;

where p0(k) is the prior distribution. Here and above, fVD1 ; ¼ VDn ; VAg are
rescaled to have mean 0 and 1 for the corresponding qubit in |0〉 and |1〉,
respectively. Iterating this procedure (while updating p(k) at each
iteration), and then choosing the most probable kBayes ¼ argmaxkpðkÞ,
one obtains an estimate for k.

Analog quantum solver with postselection on A
While postselection on A is performed equally on both digital (Fig. 2) and
analog (Figs. 3 and 4) Q solvers, in the analog case all postselected fVDig
are averaged together. Finally, the results fhVDi ig are digitized to
determine the most likely k. The choice of digitization threshold for each
Di depends on: a) the readout voltage distributions ρ0 and ρ1 for the two
basis states, each characterized by a mean μ and a variance σ2; b) ηA.
Ideally (ηA = 0 and perfect oracle), the distribution of each query output VDi

matches ρ0 (ρ1) for ki = 0(1). When ηA > 0, the distribution for ki = 1
becomes the mixture ρki¼1 ¼ ηAρ0 þ ð1� ηAÞρ1. This mixture has mean
(1−ηA)μ1+ηAμ0 and variance ð1� ηAÞσ21 þ ηAσ

2
0 � 2ηAð1� ηAÞμ0μ1.

Instead, ρki¼0 ¼ ρ0 independently of ηA. We approximate the expected
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distribution of the mean hVDi i with a Gaussian having average and
variance obtained from ρki¼0ðρki¼1Þ for ki = 0(1). Finally, we choose the
digitization threshold for VDi which maximally discriminates these two
Gaussian distributions. We note that the number of queries scales the
variance of both distributions equally and therefore does not affect the
optimum threshold. Furthermore, this calibration protocol is independent
of the oracle (see Supplementary Information).

Analog quantum solver without postselection
The analysis without ancilla (Q′) closely follows the steps outlined in the
last paragraph. For the purpose of extracting the optimum digitization
thresholds, we consider ηA = 0.5 in the expressions above. This corre-
sponds to an equal mixture of ρ0 and ρ1 when ki = 1.

Data deposition and code availability
The full dataset and the Julia26 code used for this analysis are available at
https://doi.org/10.5281/zenodo.268731.
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