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Demosaicing: Image Reconstruction
from Color CCD Samples

Ron Kimmel

Abstract— A simplified color image formation model is used
to construct an algorithm for image reconstruction from CCD
sensors samples. The proposed method involves two successive
steps. The first is motivated by Cok’s template matching tech-
nique, while the second step uses steerable inverse diffusion
in color. Classical linear signal processing techniques tend to
oversmooth the image and result in noticeable color artifacts
along edges and sharp features. The question is how should the
different color channels support each other to form the best
possible reconstruction. Our answer is to let the edges support
the color information, and the color channels support the edges,
and thereby achieve better perceptual results than those that are
bounded by the sampling theoretical limit.

Index Terms—Color enhancement, image reconstruction, mul-
tichannel nonlinear image processing, steerable inverse diffusion.

I. INTRODUCTION

I
N RECENT years, digital cameras for still images and

movies became popular. There are many obvious advan-

tages to digital images comparing to classical film based

cameras, yet there are limitations as well. For example, the

spatial resolution is limited due to the physical structure of

the sensors. “Superresolution” beyond the sensors resolution

can be achieved by considering a sequence of images.

In this work, we deal with the reconstruction of a single

color digital image from its color CCD sensors’ information.

We limit our discussion to Bayer color filter array (CFA)

pattern as presented in Fig. 1. We will start with a simple

color image formation model and explore the relation between

the different color channels such that the channels support the

edges, and the edges support the colors. This relation with a

simple color image formation model enables a reconstruction

beyond the linear optimal signal processing approach that is

limited by the Nyquist sampling rate.

We follow Cok’s [1] exposition for constructing the first

step of the algorithm: the reconstruction stage. The green

component is reconstructed first with the help of the red and
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Fig. 1. Bayer CFA (color filter array) pattern (U.S. Patent 3 971 065, 1976).

blue gradients. Then the red and blue are reconstructed using

the green values, edge approximations, and a simple color ratio

rule: Within a given “object” the ratio is locally

constant (the same is true for ). This rule falls apart

across edges where the color gradients are high, which are the

interesting and problematic locations from our reconstruction

point of view.

Next, the green, red, and blue pixels are adjusted to fit

the color cross ratio equivalence. The interpolation and the

adjustment are weighted by a function of the directional

derivatives to reduce the influence of ratios across edges. This

is the main difference from Cok’s [1] method, who try to

match templates that predict the local structure of the image

for a bilinear interpolation.

The second step, the enhancement stage, involves an

anisotropic inverse diffusion flow in color space, which is an

extension of Gabor’s geometric filter [6], and is based on the

geometric framework for color introduced in [8] and [11]. It is

also related to Weickert’s texture enhancement method [12],

and to the recent results of Sapiro and Ringach [10], and Cottet

and El Ayyadi [2]. The idea is to consider the color image

as a two-dimensional (2-D) surface in five-dimensional (5-D)

( ) space, extract its induced metric and smooth

the metric in order to sense the structure of the image surface

beyond the local noise. Then diffuse the different channels

along the edges and simultaneously enhance the image by

applying an “inverse heat” operator across the edges.

The structure of this paper is as follows. Section II intro-

duces a simple model for color images. Next, Section III uses

this model for the reconstruction of a one-dimensional (1-D)

image. Section IV presents the first step of the algorithm,

the reconstruction stage, that involves weighted interpola-

tion subject to constant cross ratio of the spectral channels.

Section V presents the second step of the algorithm. It is a
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Fig. 2. Red and green components of a 1-D image. This figure can been
seen in color at www.cs.technion.ac.il/ ron/demosaic.html.

nonlinear enhancement filter based on steerable anisotropic

inverse diffusion flow in color space. Section V concludes with

experimental results on a set of benchmark images.1

II. SIMPLE COLOR IMAGE FORMATION MODEL

A simplified model for color images is a result of viewing

Lambertian nonflat surface patches. Such a scene is a general-

ization of what is known as a “Mondriaan world.” According

to the model, each channel may be considered as the projection

of the real three-dimensional (3-D) world surface normal

onto the light source direction , multiplied by the albedo

. The albedo captures the characteristics of the 3-D

object’s material, and is different for each of the spectral

channels. That is, the three color channels may be written as

(1)

This means that the different colors capture the change in

material via (where stands for ) that multiplies the

normalized shading image . The Mondriaan

color image formation model [4] was used for color based

segmentation [7] and shading extraction from color images

[5]. Let us follow the above generalization of this model and

assume that the material, and therefore the albedo, are the same

within a given object in the image, e.g., , where

is a given constant. Thus, within the interior of a given object

the following constant ratio holds:

constant (2)

That is, the color ratio within a given object is constant. We

note, that this is an oversimplified assumption for general

analysis of color images. However, its local nature makes it

valid and useful for our technological purpose.

1Some of the techniques we present were developed as a result of
discussions with Prof. J. A. Sethian, University of California—Berkeley, and
Dr. Y. Hel-Or, IDC Israel.

Fig. 3. Red and green components painted as surfaces in with the
inverse diffusion (across the edge) and diffusion (along the edge) directions.

III. THE 1-D CASE

Let us start with a simple 1-D example with two colors;

see Fig. 2. Our assumption is that the colors are smooth

within a given object and go through a sudden jump at the

boundaries. Define the central difference approximation to be

, where is the value of

the function at the point , and is the spatial

discretization interval.

Given the samples (odd points for the red and even points

for the green) we use the gradient to construct an edge

indicator for the interpolation. Let the edge indicator be

, where is a decreasing function, e.g.,

, and, respectively, . One simple

reconstruction procedure is as follows.

• Init: Interpolate for the green at the missing points

• Repeat for three times:

• Interpolate the red values via the ratio rule weighted by

the edge indicator

• Correct the green values to fit the ratio rule

• End of loop.

Note that this is a numerically consistent procedure for the

proposed color image formation model. It means that as the

sampling grid is refined, the result converges to the continuous

solution.

Here again we recognize the importance of segmentation

in computer vision. An accurate segmentation procedure, that

gives the exact locations of the objects boundaries, would have

allowed an image reconstruction far beyond the sampling limit

(under the assumption that within a given object there are no

high spatial frequencies).

IV. FIRST STEP: RECONSTRUCTION

For real 2-D images with three color channels the recon-

struction is less trivial. Edges now become curves rather
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Fig. 4. Top left: original statue image. Top right: result of a bilinear interpolation for the missing points for each channel. Bottom left: result
of the first reconstruction by weighted interpolation step. Bottom right: second step enhancement result. This figure can been seen in color at
www.cs.technion.ac.il/ ron/demosaic.html.

than points, and in many cases one needs to interpolate

missing points along the edges. We would still like to avoid

interpolating across edges.

Based on the simplified color image formation model, the

three channels go through a sudden jump across the edges.

Thus, the gradient magnitude can be used as an edge indicator,

and its direction can approximate the edge direction [it is easy

to verify that the gradient is normal to the level set curves

of , i.e., const.]

The directional derivatives are approximated at each point

based on its eight nearest neighbors on the grid. Define

the finite difference approximation for the directional deriva-

tives, central , forward , and backward , as in

(3), shown at the bottom of p. 1225. At the green points
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Fig. 5. Top left: original sailboat image. Top right: result of a bilinear interpolation for the missing points for each channel. Bottom left: result
of the first reconstruction by weighted interpolation step. Bottom right: second step enhancement result. This figure can been seen in color at
www.cs.technion.ac.il/ ron/demosaic.html.

use for the magnitude of the

directional derivative along the direction (and similarly for

). For the rest of the points and the and directions use

central differences. We thereby construct an approximation

for the directional derivatives at each and every point. De-

note these approximations as and ,

respectively.

Next, we generalize an edge indicator function. When a

point at location is taking part in the interpo-

lation at the location, we use the following weight

as an edge indicator: .

Based on the edge indicators as weights for the interpolation

we follow similar steps as for the 1-D case to reconstruct the

2-D image.
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Fig. 6. Top left: original window image. Top right: result of a bilinear interpolation for the missing points for each channel. Bottom left: re-
sult of the first reconstruction by weighted interpolation step. Bottom right: second step enhancement result. This figure can been seen in color at
www.cs.technion.ac.il/ ron/demosaic.html.
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• Init: Interpolate for the green at the missing points as in

(3a), shown at the bottom of the page. Interpolate for the

blue and red in Steps 1 and 2, shown at the bottom of the

page. Interpolate the red with two similar steps.

• Repeat for three times:

• Correct the green values to fit the ratio rule

(4)

and average between the blue and red interpolation results

• Correct the blue and red values via the ratio rule weighted

by the edge indicator

(5)

• End of loop.

Up to this point, the original values given as samples

were not modified. We have interpolated the missing points

weighted by edge indicator functions subject to the constant

cross ratio. Next, we apply inverse diffusion in color to the

whole image as an enhancement filter.

V. SECOND STEP: ENHANCEMENT

This section is a brief description of one of the nonlinear

filters introduced in [8] that we apply as a second step for

enhancing the color image.

In [6], Gabor considered an image enhancement procedure

based on an anisotropic flow via the inverse second directional

derivative in the “edge” direction and the geometric heat

equation as a diffusion along the edge, see also [9]. Cottet and

Germain [3] used a smoothed version of the image to direct

the diffusion. Weickert [12] smoothed the “structure tensor”

and then manipulated its eigenvalues to steer the

smoothing direction, while Sapiro and Ringach [10] eliminated

one eigenvalue from the structure tensor in color space without

smoothing its coefficients.

Motivated by all of these results, a new color enhancement

filter was introduced in [8]. The inverse diffusion and diffusion

directions are deduced from the smoothed metric coefficients

of the image surface. The color image is considered as a

2-D surface in the 5-D space, as suggested

in [11]. The induced metric coefficients are extracted for the

image surface and used as a natural structure tensor for the

color case.

The induced metric is a symmetric matrix that cap-

tures the geometry of the image surface. Let and be

the largest and the smallest eigenvalues of , respectively.

Since is a symmetric positive matrix its corresponding

eigenvectors and can be chosen orthonormal. Let

, and , then we readily have the equality

(6)

(3a)

Step 1—Interpolate Missing Blue at Red Locations:

Step 2—interpolate at the rest of the missing blue points:
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Fig. 7. Top left: original lighthouse image. Top right: result of a bilinear interpolation for the missing points for each channel. Bottom left: re-
sult of the first reconstruction by weighted interpolation step. Bottom right: second step enhancement result. This figure can been seen in color at
www.cs.technion.ac.il/˜ron/Demosaic/.

Note also that

(7)

and that

(8)

Let us use the image metric as a structure tensor. We extract

the structure from the metric and then modify it to be

a nonsingular symmetric matrix with one positive and one

negative eigenvalues. That is, instead of diffusion we introduce

an inverse diffusion in the edge direction (across the edge).

This is an extension of Gabor’s idea [6] of inverting the

diffusion along the gradient direction; see Fig. 3.
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(10)

The proposed inverse diffusion enhancement for color im-

ages is then given as follows.

1) Compute the metric coefficients .

(9)

or explicitly as in (10), shown at the top of the page.

2) Diffuse the coefficients by convolving with a Gauss-

ian of variance , thereby

(11)

where .

3) Change the eigenvalues of such that the largest

eigenvalue is now and , for

some given positive scalar . This yields a new

matrix that is given by

(12)

A single scalar is chosen for simplicity of the pre-

sentation. Different eigenvalues can be chosen, like

eigenvalues that depend on the original ones. The im-

portant idea is to set the original largest eigenvalue to

a negative value. This operation inverts the diffusion

direction across the color edge and thereby enhance it.

4) Evolve the th channel via the flow

div (13)

Inverting the heat equation is an inherently unstable process.

However, if we keep smoothing the metric coefficients, and

apply the diffusion along the edge (given the positive eigen-

value), we get a coherence-enhancing flow that yields sharper

edges and is stable for a short duration of time.

VI. EXPERIMENTAL RESULTS

We tested the proposed method on four benchmark images

that were sampled with Bayer color filter array pattern (see

Figs. 4–7). The following examples demonstrate the recon-

struction and enhancement results for four benchmark images:

statue, sails, window, and lighthouse. For each case, the

top left is the original image. As a reference, we present

the result of a bilinear interpolation for the missing points

for each channel separately at the top right of each figure.

The bottom left is the result of the first reconstruction by

weighted interpolation step, and the bottom right is the second

step enhancement result. To view these images in color, see

www.cs.technion.ac.il/ ron/demosaic.html. The same param-

eters were used for the reconstruction in all the examples, i.e.,

case dependent tuning was not used for the different images.
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