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Abstract
The power of high-level languages lies in their abstraction over
hardware and software complexity, leading to greater security, bet-
ter reliability, and lower development costs. However, opaque ab-
stractions are often show-stoppers for systems programmers, forc-
ing them to either break the abstraction, or more often, simply give
up and use a different language. This paper addresses the challenge
of opening up a high-level language to allow practical low-level
programming without forsaking integrity or performance.

The contribution of this paper is three-fold: 1) we draw together
common threads in a diverse literature, 2) we identify a frame-
work for extending high-level languages for low-level program-
ming, and 3) we show the power of this approach through con-
crete case studies. Our framework leverages just three core ideas:
extending semantics via intrinsic methods, extending types via un-
boxing and architectural-width primitives, and controlling seman-
tics via scoped semantic regimes. We develop these ideas through
the context of a rich literature and substantial practical experience.
We show that they provide the power necessary to implement sub-
stantial artifacts such as a high-performance virtual machine, while
preserving the software engineering benefits of the host language.

The time has come for high-level low-level programming to
be taken more seriously: 1) more projects now use high-level lan-
guages for systems programming, 2) increasing architectural het-
erogeneity and parallelism heighten the need for abstraction, and
3) a new generation of high-level languages are under development
and ripe to be influenced.

Categories and Subject Descriptors D.3.4 [Programming Languages]:
Processors—Code generation; Compilers; Memory management (garbage collection);
Optimization; Run-time environments

General Terms Design, Experimentation, Languages, Performance, Reliability
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1. Introduction
While on the one hand systems programmers strive for reliability,
security, and maintainability, on the other hand they depend on per-
formance and transparent access to low-level primitives. Abstrac-
tion is the key tool for enabling the former but it typically obstructs
the latter. This conundrum is the focus of our paper. Our response
is part survey, part experience report, and part manifesto. Our credo
is Ken Kennedy’s goal of abstraction without guilt [43].

Hardware and software complexity is making it harder and
harder to reason about the environment in which code is written,
frustrating the objective of reliable, secure, and maintainable soft-
ware [2]. A standard strategy is to fortify C or C++ with a set of
idioms, macros, tools, and conventions that step around the most
conspicuous shortcomings of the language [31, 63, 66]. However,
there are significant limits to this approach. Conventions and id-
ioms are hard to enforce, rules such as not using threads [66] may
become untenable, and some abstractions will demand non-existent
native support from the base language [14]. Furthermore, while
transparent access to low-level primitives is often touted as essen-
tial to performance, this argument depends on the user being able
to effectively reason about hardware which is increasingly com-
plex and subtle. Finally, we conjecture that most code written by
systems programmers does not require transparent access to low-
level primitives, which brings into question the use of C as a rule
rather than as an exception.

An alternative and less common strategy is to write systems
code in a high-level language. The remainder of this paper focuses
on this objective. While this approach does not currently enjoy uni-
versal support, it is interesting to note striking similarities to the
debate over moving away from assembly language programming
in the mid 1970s [26, 27, 28, 38]. In that case increases in hard-
ware and software complexity—alongside improvements in pro-
gramming language technology—ultimately decided the issue, and
we feel this will be the case again. For the purposes of this paper,
we start by loosely defining a high-level language as one that is type
safe, memory safe, and that provides strong abstractions over hard-
ware. We then define low-level programming as that which requires
transparent, efficient access to the underlying hardware and/or op-
erating system, unimpeded by abstractions.

There are at least four distinct approaches to low-level program-
ming in a high-level language. (a) The language could directly sup-
port low-level coding [16]. (b) The language could be extended
piecemeal to support the necessary low-level features [5]. (c) Low-
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level coding could be expressed in a different language, accessible
from the high-level language via calls through a foreign function
interface (FFI) such as Java’s JNI [47]. (d) The language could be
extended to support low-level coding via an extensible framework.

If, as we believe, low-level coding is the exception for systems
programmers rather than the rule, then approaches such as (a) and
(b) are to be avoided since they uniformly lower all coding con-
texts to one for low-level coding. Approach (a) suffers further be-
cause it depends on all necessary features being directly supported
by the language specification, yet languages are notoriously slow to
change and systems programmers must deal with hardware which
can change abruptly. Approach (b) is only possible when the sys-
tems programmers have a means to extend the language or the
language platform [5], which is not generally the case. The use
of an FFI (approach (c)) is common, but must contend with the
impedance mismatch between the two languages and the conse-
quent performance impact. Furthermore, code written in the for-
eign language may in principle completely abandon the advantages
of the high-level language; an all-or-nothing approach to security
and reliability. We therefore argue that the high-level language be
extended via an extensible framework. We also argue that the (ex-
ceptional) use of those extensions be well contained/scoped, leav-
ing the majority of code to be written in the original, unadulterated,
unextended high-level language.

We present an extensible framework for low-level programming
in high-level languages. The framework is based on three funda-
mental requirements. 1) The ability to introduce unboxed types
when the required types are not supported by the language (for
example, bit fields or an architectural word). 2) The ability to in-
troduce semantics that may not be supported by the language (for
example, low-level memory fences [46]). 3) The ability to bypass
built-in abstractions (for example, bypassing the scheduler when
implementing an scheduler [5]). Furthermore, the framework lever-
ages the idea of containment; minimizing the reach of unsafe op-
erations and maximizing the scope of untainted high-level code.
We will make the case that this approach maximizes the advan-
tages of a high-level language; maximizing safety and reliability
while also maximizing opportunities for optimization of the low-
level code by the language runtime. Furthermore, we show that this
approach allows the extensions to be virtualized. For example, an
Address type (which provides operations over raw memory, simi-
lar to a void* in C) may be realized both natively, with support of
compiler intrinsics from the underlying runtime, and virtualized in
a pure high-level implementation that can run (inefficiently) with-
out any special support from the runtime. Like other virtualization
systems [51], this virtualized form can be a very powerful debug-
ging tool, and—as we show in Section 5—is trivial to implement.
Our framework has evolved from ten years of experience in us-
ing Java as a systems language [5] and is currently used in various
forms by two major JVM implementations, one written in Java [5]
and the other in C/C++ [7]. We describe elements of the framework
which are currently unimplemented in either setting.

It is important to note that this work is not about language-in-
language implementation in the tradition of LISP-in-LISP [36] and
Java-in-Java [5]. While the techniques we describe may enable ef-
ficient language-in-language runtime systems to be developed—
and this is the context in which many of our ideas have been
developed—the resulting approach is more widely applicable.
Moreover, language-in-language implementation involves other
important challenges (such as bootstrapping and self hosting),
which are orthogonal to the subject of this paper.

A handful of large projects now use high-level languages for
low-level programming, including the Singularity operating sys-
tem [22] and the Jikes RVM virtual machine [5]. More tellingly,
when experts from each of the major JVM vendors were brought

together to discuss the design and implementation of a next gener-
ation JVM, there was wide agreement that such a JVM should be
implemented in Java [8]. The increasing complexity of hardware
and software has led to the emergence of a new generation of pro-
gramming languages [4, 17, 18], which are ripe to learn from the
lessons provided from our experience with Java [5], C# [22], and
Self [64]. Thus we think the time is right to re-examine high-level
low-level programming.

The rest of this paper is structured as follows. We first discuss
related work in Section 2 before describing our approach in Sec-
tion 3. In Section 4 we present our concrete solution. Finally, in
Section 5, we flesh out the approach with two concrete examples of
its use.

2. Related Work
We start our discussion with the following observations:

Observation 1. High-level languages provide abstractions that
lead to software with greater security, better reliability, and lower
development costs.

Observation 2. The goals of high-level languages tend to be at
odds with low-level programming [57]. This is primarily because
high-level languages gain power through abstracting over detail,
while low-level programming may require transparent access to
detail. There are other concerns related to performance, determin-
ism, portability, and existing programmer skills—among others—
but they lie largely outside the scope of this paper.

2.1 Fortifying a low-level language
While individual motivations vary, it is clear that systems program-
ming projects have found it desirable to reach for higher levels of
abstraction akin to those found in high-level languages. This has a
strong history stretching back to the 1970’s [26, 27, 28, 38].

In today’s context, memory safety is an area in which C is
conspicuously lacking, and there have been countless idioms and
techniques devised to improve the situation including conserva-
tive garbage collection [13, 15], smart pointers and reference
counts [31], static and dynamic analysis tools such as Valgrind [51],
as well as custom allocators such as talloc [63]. This fortification
process also feeds into revisions of language specifications; fu-
ture versions of the C++ specification are expected to include both
high-level language features (e.g., garbage collection) as well as
additional systems programming features (e.g., constexpr func-
tions that are resolved at compile time).

The SAMBA Developers Guide [66] includes a set of coding
suggestions which amount to a list of conventions and idioms
designed to work around language shortcomings in areas such as
safety and portability. Enforced by convention rather than by the
semantics of the underlying language, these often exist to simply
work around artificial limitations of the base language.

There is also a limit to the extent one can introduce high-level
abstractions into an existing language. High-level abstractions such
as threads have been shown to be problematic to implement [14],
as correctness can not be ensured without the cooperation of the
underlying language.

2.2 Systems programming languages
There has been a long history of language development targeting
low-level or systems implementation, with differing degrees of in-
novation and success [16, 44, 53, 60, 68]. The Modula series of lan-
guages [16] was notable in several respects. It had a stronger notion
of type safety, integrating garbage collection into the programming
environment by providing two heaps for dynamic allocation: one
garbage collected and the other explicitly managed. Modula-3 also
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included a module system, now uniformly considered an important
building block for developing large and complex systems. While
there is criticism of the Modula implementation, the lack of such
a system providing intermediate levels of visibility is noted as a
shortcoming in C [55], and—prior to the introduction of names-
paces in 1994—also in C++ [61].

There have also been attempts at creating safer derivatives of C,
an example being Cyclone [42], which introduces stronger type and
memory safety, as well as a safe approach to multithreading [34].

This type of approach—in addition to approaches that aim to
provide richer static-analysis tools to prove ‘unsafe’ code cor-
rect [23]—focuses on proving low-level programming techniques
correct, rather than allowing high-level low-level programming. We
believe this neglects our second observation above: by maintaining
a transparent view to low-level details across the board, much of
the potential gains of high-level abstractions are lost.

2.3 Two-language approaches
The most common technique used to resolve the tension between
high-level and low-level programming is to simply use different
languages or dialects for each task. This general approach affords
itself to several solutions, based primarily around the level of inte-
gration of the two languages.

Extreme: Don’t use high-level languages for low-level tasks.
This is perhaps the most extreme position but is also the status
quo, demonstrated through the continued dominance of C and C++
for low-level programming while other languages continue to enjoy
increased popularity for general programming tasks.

Intermediate: Call out using a foreign function interface (FFI).
This technique provides an escape hatch where the programmer
can call into a separate language to implement low-level features,
and is available in almost all modern language environments, from
C’s ability to call into assembly, to Java [33] with the Java Native
Interface [47] and C# [20] (in the Common Language Infrastruc-
ture [21]) with Platform Invoke. This allows some low-level pro-
gramming, such as that in Java described by Ritchie [56], but it is a
coarse-grained approach and the split between low-level and high-
level code can compromise both software design and performance.

Minimal: Introduce dual-semantics to the language. A refine-
ment of the above technique is to introduce regions within the high-
level language that allow the use of low-level language features.
This allows greater coherency between the high- and low-level as-
pects of the system being implemented. Modula-3 [16] achieves
this through unsafe modules (where features such as the use of
pointers or unchecked type casts are allowed) and unsafe interfaces
(which can only be called from unsafe modules). Safe modules
may interact with unsafe modules by exposing an unsafe module
through a safe interface. C# [20] and the CLI [21] also use a sim-
ilar concept of unsafe code, but control the the interaction of safe
and unsafe code at a coarser granularity.

Techniques to reduce both the design [37] and performance [59]
disadvantages of these approaches exist. There is however a more
fundamental problem in that they treat the need to perform low-
level operations as an all-or-nothing requirement. This does not
resolve well with our above observations: it should be possible
to leverage high-level abstractions for everything other than the
specific low-level detail you are dealing with.

2.4 Foundations of our work
Another approach is to provide the tools with which one can ex-
tend a high-level language to perform low-level programming. This
is the general approach taken throughout our work. Much of the
progress in this area has been through projects where the focus

was not on language itself. Two areas of research in particular—
operating systems and virtual machines—have been largely respon-
sible for the progress in this area, although contributions to lan-
guage design have generally been driven by other pragmatic goals.

Operating systems have been developed using high-level lan-
guages including Modula-3 [9], Haskell [35], Java [52], and
C# [40]. SPIN [9] is a research operating system focused on safety,
flexibility, and extensibility [10], and is written in an extended
version of Modula-3 [16]. Extensions include improvements to al-
low interoperability with externally defined interfaces (such as for
accessing hardware devices), changes to improve error-handling
behavior, and the ability to safely cast raw memory into typed
data [24]. Yamauchi and Wolczko [69] embed a small virtual ma-
chine within a traditional operating system to allow safer drivers
written in Java, while the Singularity project [40, 41] (written us-
ing Sing#, an extension of Spec#, itself an extension of C#) aims
to discover how a system should be built from the ground up for
high-level language execution, including models for inter-process
communication [3, 22].

There have been many examples of virtual machines written us-
ing high-level languages [6, 12, 25, 54, 58, 49, 64, 67], most likely
due to the combination of a systems programming task in concert
with a deep understanding of a high-level language. Virtual ma-
chine development is the context within which much of our work
has been undertaken. Jikes RVM, formally known as Jalapeño [6]
is a high-performance Java-in-Java virtual machine, requiring
extensions—known as magic—to support required low-level op-
erations [5]. Maessen et al. [48] provided a deeper understanding
of how magic operations interact with the compiler, and what steps
must be taken to ensure correctness in the face of compiler op-
timizations. OVM, an ahead-of-time Java-in-Java virtual machine
aimed at real-time applications, used similar magic idioms, but
built more principled abstractions around them [25]. Moxie [12] is
a clean-slate Java-in-Java virtual machine that was used to proto-
type some of the ideas that have helped to feed into our approach.
The sun.misc.Unsafe API, implemented by current production
virtual machines, and implemented in Jikes RVM through our more
general magic framework, provides some similar functionality. In-
terestingly, it may be possible to use sun.misc.Unsafe as a prag-
matic means to implement a limited subset of our framework on
existing production virtual machines.

3. High-level Low-level Programming
We now describe our approach to low-level programming in a high-
level language. Our premise is that high-level programming is de-
sirable whenever it is reasonably achievable. High-level languages
are designed to abstract over the specifics of the target environment,
shielding the programmer from complexity and irrelevant detail so
that they may focus on the task at hand. In a systems programming
task, however, there is often a need for transparent access to the
lowest levels of the target environment. The presence of high-level
abstractions can obstruct the programmer in this objective.

3.1 Approach
Our approach is guided by a principle of containment whereby we
minimize exposure to low-level coding both in extent (the num-
ber of lines of code) and depth (the degree to which semantics are
changed). Our view is that to achieve this efficiently, effectively,
and safely, adding low-level features to high-level languages re-
quires: (1) extensibility, (2) encapsulation, and (3) fine grained low-
ering. We will now describe each of these attributes in more detail.

Extensibility. To reach beyond the semantics of a high-level lan-
guage, systems programmers need to be able to either change the
language (generally infeasible), use a different language (undesir-
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able), or extend the language. Jikes RVM took the third approach.
However, the original Jikes RVM approach had two notable short-
comings: a) the extensions were unstructured, comprising a pot-
pourri of ad hoc extensions accreted over time; and b) the exten-
sions required modification to the compiler(s) and runtime. An ex-
tensible framework for introducing and structuring low-level prim-
itives is necessary. Such a framework will maximize reuse and not
require modifying the source of the language runtime in order to
provide new extensions. We discuss our extensible framework in
Section 4.

Encapsulation. Thorough containment of low-level code is es-
sential to minimize the erosion of any advantages of the high-level
language setting. Two-level solutions, such as those provided by
foreign function interfaces (FFIs) [47], unsafe sub-languages [16,
20], or other means [37], tend to polarize what is otherwise a rich
spectrum of low-level requirements. Consider the implementation
of a managed runtime, where on one hand the object model may
internally require the use of pointer arithmetic, while the sched-
uler may instead require low-level locking and scheduling controls.
Simply classifying both as ‘unsafe’ renders both contexts as equiva-
lent, reducing them to the same rules and exposing them to the same
pitfalls. By contrast, a general mechanism for semantic regimes
may allow low-level code to be accurately scoped and encapsu-
lated, avoiding under- or over-specification.

1 @AssertSafe // Any code may call this method
2 @UncheckedMemoryAccess
3 public Word getHeader(ObjectReference ref) {
4 return ref.loadWord(HEADER_OFFSET);
5 }

Figure 1. Unsafe code encapsulated within a safe method.

We illustrate encapsulation in Figure 1, where a safe method,
getHeader(), is implemented through safe use of an unsafe mem-
ory operation, loadWord().1 The @UncheckedMemoryAccess
annotation is used to scope the method to explicitly permit its use
of loadWord(), while the @AssertSafe annotation encapsulates
the unsafe code by asserting that calls to getHeader() are ‘safe’.
This allows getHeader() to be called from any context. The result
is a more general and extensible means of describing and encap-
sulating low-level behavior than the practice of simply declaring
entire contexts to be either ‘safe’ or ‘unsafe’. We discuss the im-
plementation of semantic regimes in our concrete framework in
Section 4.2.2.

Fine grained lowering. A key issue when lowering semantics is
the granularity at which that lowering occurs with respect to pro-
gram scope. Coarse grained approaches, such as the use of FFIs,
suffer both in performance and semantics. Performance suffers be-
cause of the impedance mismatch between the two language do-
mains. In some cases crossing this boundary requires heavy-weight
calling conventions [47], and it is generally difficult or impossi-
ble for the high-level language’s compiler to optimize across the
boundary. (Aggressive compiler optimizations have recently been
shown to reduce this source of overhead [59].) Similarly, the coarse
grained interface can generate a semantic impedance mismatch, re-
quiring programmers who work at the interface to grapple with two
distinct languages. Instead, we argue for introducing semantic low-
ering at as fine a grain as possible. Thus in the example of the object
model in Figure 1, the programmer implementing getHeader()
must (of course) reason about the layout of objects and their head-

1 The safety of getHeader() is due to the use of the strongly typed
ObjectReference. The method would not have been safe had the
weakly typed Address (i.e., void*) been used.

ers in memory, but is not required to code in an entirely distinct lan-
guage, with all the nuances and subtleties that entails. Further, an
optimizing compiler can reason about loadWord(), and, if appro-
priate, inline the getHeader()method and further optimize within
the calling context. In practice, the result yields performance simi-
lar to a macro in C, but retains all of the strengths of the high-level
language except for the precise concern (memory safety) that the
programmer is required to dispense with.

3.2 Requirements and Challenges
Having outlined our approach at a very high level, we now explore
the primary concerns that face the construction of a framework
for high-level low-level programming. The challenges of low-level
programming in a high-level language fall broadly into two cate-
gories: 1) the high-level language does not allow data to be repre-
sented as required, and 2) the high-level language does not allow
behavior that is required.

3.2.1 Representing Data
Low level programming may often require types that are not avail-
able in the high-level language. For example, high-level languages
typically abstract over architecture, but low-level programming
may require a type that reflects the underlying architectural word
width. Additionally, an operating system or other interface may ex-
pect a particular type with a certain data layout which is unsup-
ported by the high-level language.

Primitive types. It may be necessary to introduce new primi-
tive types—types that could otherwise not be represented in the
language—such as architecturally dependent values. In the original
Jalapeño, a Java int was used to represent an architectural word.
This suffered from a number of fairly obvious shortcomings: Java
ints are signed, whereas addresses are unsigned; a Java int is 32-
bits, making a 64-bit port difficult; and aliasing types is undesirable
and undermines the type safety of the high-level language. (For the
64-bit port, it was necessary to disambiguate large numbers of ints
throughout the code base, and determine whether they were really
addresses or integers [65]). Ideally systems programmers would
be able to introduce their own primitive types for such purposes.
This objective might imply that operators over those types could be
added too.

Compound types. Systems programmers must sometimes use
compound types to efficiently reflect externally defined data, such
as an IP address. Because these are externally defined, it is essen-
tial that the programmer have precise control over the layout of the
fields within the type when required. Typically, a language runtime
will by default do its best to pack the fields of a type to optimize for
space, or to improve performance through better locality, etc. How-
ever, the need to interface with externally defined types means that
the user must be able to optionally specify the field layout. Some
languages (e.g., C# [20]) provide fine control over field layout, but
others (e.g., Java [33]), provide none.

Unboxed types. High-level languages allow users to define com-
pound types. However, these types are often by default ‘boxed’.
Boxing is used to give an instance of a type its identity, typically
via a header which describes the type and may include a virtual
method table (thus identifying the instance’s semantics). From a
low-level programmer’s point of view, boxing presents a number
of problems, including that the box imposes a space overhead and
that the box will generally prevent direct mapping of a type onto
some externally provided data (thereby imposing a marshaling/-
copying overhead at external interfaces). Unboxed types—types
that are stripped of their ‘box’—allow programmers to create com-
pound types similar to C structs. User-defined unboxed types
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are not uniformly supported by high-level languages (for exam-
ple, Java does not offer user-defined unboxed types). Integration
of unboxed types into an environment implies a variety of restric-
tions. For example, subtyping is generally not possible, as there is
no way of reestablishing the concrete subtype from the value due
to the absence of a box that captures the instance’s type. Further-
more, in some languages there is no way to refer to an instance of
an unboxed type (if, for example, the language does not have point-
ers, only object references), which limits unboxed types to exist as
fields in objects or as local variables. C# provides unboxed types,
and supports interior pointers to unboxed types as fields of objects.

References and values. Conventionally, data may be referred to
directly (by value) or indirectly (by reference). In many high-
level languages, the language designers choose not to give the
programmer complete freedom, preferring instead the simplicity of
a programming model with fixed semantics. For example, in Java,
primitive types are values and objects are references; the system
does not allow an object to be viewed as a value. Thus Java has no
concept of pointer, and no notion of type and pointer-to-type. Since
pointers are a first order concern for systems programmers, a low-
level extension to a high-level language should include pointers,
and allow the value/reference distinction to be made transparent
when necessary.

3.2.2 Extending the Semantics
In the limit, a systems programmer will need to access the under-
lying hardware directly, unimpeded by any language abstractions.
This problem is typically solved by writing such code in assem-
bler, following a two-language approach. Alternatively, intrinsic
functions could be added to the language which directly reflect the
required semantics, and semantic regimes could be defined within
which certain language-imposed abstractions would be suspended.

Intrinsic functions. Intrinsic functions allow the addition of op-
erations that are not expressible in the high-level language. An
example of this is a systems programmer’s need to control the
hardware caches. For example, Jikes RVM (like most virtual ma-
chines) dynamically generates code and for correctness on the Pow-
erPC platform, must flush the data cache and invalidate the in-
struction cache whenever new code is produced. However, a high-
level language such as Java abstracts over all such concerns, so
a programmer would typically resort to a two-language solution.
Likewise, the implementation of memory fences [46] and cache
prefetches [30] require semantics that are architecture-specific, and
that a high-level language will abstract over. Intrinsic functions are
widely used, and in the case where the systems programmer hap-
pens to be maintaining the very runtime on which they depend,
they may readily implement intrinsic functions to bypass the lan-
guage’s restrictions. Ideally, a high-level language would provide
some means for extensible, user-defined intrinsics. In that case, the
user would need to provide a specification of the required seman-
tics. In the limit such a specification may need to be expressed in
terms of machine instructions, augmented with type information (to
ensure memory safety) and semantic information (such as restrict-
ing code motion) essential to allowing safe optimization within the
calling context.

Semantic regimes. In addition to adding new operations to the
semantics of the high-level language, sometimes low-level coding
will necessitate suspending or modifying some of the semantics of
a high-level language. This scenario is particularly common when
a virtual machine is implemented in its own language, as it must
curtail certain semantics to avoid infinite regress; the virtual ma-
chine code that implements a language feature cannot itself use the
language feature it implements. For example, the implementation
of new() cannot itself contain a new(). For semantics that are

directly expressed in the high-level source code (such as new())
this is achievable through careful coding. However, an explicit se-
mantic regime can be a valuable aid in automatically enforcing
these restrictions. In other cases, the semantics that need to be sus-
pended are not controllable from the high-level language. For ex-
ample, low-level code may need to suspend array bounds checks,
avoid runtime-inserted scheduling yieldpoints, be compiled to use
non-standard calling conventions, or be allowed to access heap ob-
jects without executing runtime-inserted garbage collector read-
/write barrier sequences. By defining orthogonal and composable
semantic regimes for each of these semantic changes, the program-
mer can write each necessary low-level operation while preserv-
ing a maximal subset of the high-level language semantics. Thus
ideally a runtime would provide a means of defining new semantic
regimes and applying such regimes to various programming scopes.

4. A Concrete Framework
We now take the general approach outlined in the previous sec-
tion and explore how it plays out in practice. Concretely, we in-
troduce a framework for building language extensions that allows
Java to support low-level programming features. This framework
is the basis for the publicly available org.vmmagic package. We
characterize the extensions in terms of the same categories we use
in the preceding section: extending the type system and extending
language semantics.

In addition to the requirements discussed in the previous sec-
tion, for a concrete realization we add the pragmatic goal of mini-
mizing or eliminating any changes to the high-level language syn-
tax. This enables us to leverage existing tools and retain portability.
Portability is important to the examples we discuss in Section 5,
where we use virtualized implementations of magic to rehost code
into different contexts, potentially running on different host run-
times. This powerful facility depends on portability.

To help ground our discussion, we will use a running example
of the evolution of an Address type, as shown in Figure 2. This is
an abstraction that provides functionality similar to that provided
by an untyped pointer (void*) in C, an unsafe feature absent from
many high-level languages but essential for many low-level tasks.
For simplicity, we show only a very minimal subset of the Address
type as it evolves. Although for concreteness our example is ex-
pressed in terms of Java syntax, the abstract approach from Sec-
tion 3 and many aspects of this concrete framework are language-
neutral, including applicability beyond Java-like languages to oth-
ers including dynamic object-oriented languages like Python.

The org.vmmagic package has in various forms been both used
by and shaped by use in three Java-in-Java JVMs (Jikes RVM [5],
OVM [25], and Moxie [12]), one C/C++ JVM (DRLVM [7, 32]),
and one operating system (JNode [52]). Much of what we describe
here is publicly available in the 3.0.1 release of Jikes RVM; some
aspects are currently under development, and a few other clearly
identified aspects of the framework are more speculative.

1 class Address {
2 ...
3 byte loadByte();
4 void storeByte(byte value);
5 ...
6 }

Figure 2. First attempt at an Address type.

4.1 Type-System Extensions
In Section 3.2.1 we discussed the system programmer’s require-
ment of being able to extend the type system. We address these
requirements concretely through two mechanisms. The first, raw
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storage, allows the introduction of types with explicit layouts that
may depend on low-level characteristics of the target system. The
second allows us to introduce unboxed types with control over field
layout.

4.1.1 Raw Storage
Raw storage allows the user to associate an otherwise empty type
with a raw chunk of backing data of a specified size. The size
may be specified in bytes, or more abstractly in terms of archi-
tectural width words (whose actual size will be platform depen-
dent). Raw storage is a contract between the writer of the type and
the runtime system which must allocate and manage the data. Raw
storage is not visible to the high-level language, and can only be
accessed through the use of intrinsic functions. In Figure 3, the
@RawStorage annotation2 is used to associate a single architec-
tural word with our Address type.

1 @RawStorage(lengthInWords=true, length=1)
2 class Address {
3 ...
4 byte loadByte();
5 void storeByte(byte value);
6 ...
7 }

Figure 3. Associating a word-width payload with Address.

This example shows how the raw storage mechanism allows
systems programmers to fabricate basic (non-compound, unboxed)
types. In Section 4.2.1 we will discuss how the programmer can
define operations over such types.

At present we have limited our framework to byte-granularity
storage. However, as future work we intend to explore sub-word
granularity storage and layout. Bit-grained types are important to
projects such as Liquid Metal [39], which may use this framework,
or similar. Prior work in the OVM project tentatively explored
this issue [25]. The SPIN project described an example of packet
filtering in Modula-3 which used bit masks and bit fields, however
the example they gave was at a 16 bit (2 byte) granularity [24].

4.1.2 Unboxed Types
We allow programmers to define unboxed types by marking class
declarations with an @Unboxed annotation. Since an unboxed type
is only syntactically distinguished from an object, we rely on the
runtime compiler ensuring that unboxed types are never used as
objects. Our current implementation in Jikes RVM is limited to
supporting single field types (such as Address), which are treated
like Java’s primitives and are thus passed by value and allocated
only on the stack.

Control of field layout. When specifying an unboxed type, our
framework allows the programmer to specify that field order should
be respected by setting the layout parameter to Sequential, and
requires the user pad the type with dummy fields as necessary (as
is commonly done in C). This allows the programmer to precisely
match externally defined types.

Support for compound unboxed types and pointers to unboxed
types are not available in Jikes RVM 3.0.1, but will be released in
a future version.

4.2 Semantic Extension
Our framework follows the discussion in Section 3.2.2, providing
two basic mechanisms for extending the semantics of the language:

2 Here we use the Java annotation syntax to annotate the type. As demon-
strated in [25] and [5], other mechanisms such as marker interfaces can be
used to similar effect when the language does not explicitly support an an-
notation syntax.

1 @Unboxed(layout=Sequential)
2 class UContext {
3 UInt64 uc_flags;
4 UContextPtr uc_link;
5 StackT uc_stack;
6 ...
7 }

Figure 4. Unboxing with controlled field layout.

1) intrinsic functions, which allow the expression of semantics
which are not directly expressible in the high-level language, and
2) semantic regimes, which allow certain static scopes to operate
under a regime of altered semantics, according to some contract
between the programmer and the language implementation.

4.2.1 Intrinsic Functions
Intrinsic functions amount to a contract between the programmer
and the compiler, whereby the compiler materializes the function
to reflect some agreed-on semantics, inexpressible in the high-level
language. In early implementations of magic in Jikes RVM [5], the
contract was implemented by compiler writers intercepting method
calls to magic methods in the Java bytecode (identified by the class
and method being called) and then realizing the required semantics
in each of the three runtime compilers instead of inserting a method
call.

1 @RawStorage(lengthInWords=true, length=1)
2 @Unboxed
3 class Address {
4 ...
5 @Intrinsic("org.vmmagic.unboxed.loadByte")
6 native byte loadByte();
7 ...
8 @Intrinsic("org.vmmagic.unboxed.storeByte")
9 native void storeByte(byte value);

10 ...
11 @Intrinsic("org.vmmagic.unboxed.wordLLT")
12 native boolean LT(Address value);
13 ...
14 }

Figure 5. Use of intrinsics for Address.

Moxie [12] developed the idea further by canonicalizing seman-
tics, separating the usage of an intrinsic operation from the seman-
tics of the operation itself. Figure 5 shows how intrinsic function
declarations can then reference the desired semantics, with the in-
trinsic function declarations of loadByte and storeByte refer-
ring to canonical loadByte and storeByte semantics—both of
which may be (re)used by corresponding intrinsics within other
types (e.g., an ObjectReference type). The benefit of this ap-
proach becomes clear as we extend Address to include more in-
trinsic operations, such as the less-than (<) intrinsic in Figure 5,
which is defined in terms of canonical wordLLT semantics, and
could again be reused by a number of word-sized types. In the
Moxie solution, individual compilers thus only needed to under-
stand how to provide each of the full set of intrinsic semantics once,
no matter how many times they were used.

The conspicuous limitation of all the described approaches to
intrinsic functions is that they require the co-operation of those
maintaining the host runtime. This is convenient when the run-
time itself is the coding context, but is not a general solution.
A more general approach—and the one that we have taken—
is to associate the semantics of individual intrinsic operations
with IntrinsicGenerator instances. These instances under-
stand how to generate the appropriate code for an intrinsic op-
eration. In our current implementation IntrinsicGenerator in-
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stances are stored in a table indexed by the unique string provided at
the intrinsic function declaration (e.g., "org.vmmagic.unboxed.
loadByte" in Figure 5). Currently, our IntrinsicGenerator
instances must be implemented with knowledge of the compiler in-
ternals (to allow the intrinsics to code their own semantics), but in
the future we intend to allow intrinsics to be constructed more gen-
erally, through either providing a set of compiler-neutral building
blocks, or the use of a specialized language such as CISL [50].

4.2.2 Semantic Regimes
Recall that in Section 3.2.2 we introduced the idea of statically
scoped semantic regimes which change the default language se-
mantics. When the compiler encounters code that is marked with a
semantic regime it treats it specially. Currently, support for individ-
ual semantic regimes must be hard-coded into the compiler. This in-
cludes turning on and off language features such as bounds-checks,
the use of locking primitives, and the presence of yield points. It
also includes allowing (or disallowing) calls to certain language
features, such as calls to new(), or the use of unchecked memory
operations (e.g., @UncheckedMemoryAccess in Figure 1). This
mechanism is essential to our objective of containment, allow-
ing the finely specified, well scoped declaration of a region with
changed semantics.

5. Real World Experience
The framework we describe has emerged as the pragmatic conse-
quence of a decade of experience with systems programming in the
context of high performance JVMs. The framework is thus solidly
grounded in real-world experience. In this section we discuss this
experience and provide two case studies that illustrate a little of
the power of our approach. The first describes Jikes RVM’s mem-
ory management toolkit, MMTk [11], which is written in Java and
makes extensive use of our framework. The second describes how
strong abstraction facilitates virtualization, allowing us to create a
powerful synthetic debugging harness for MMTk at no cost to pro-
duction performance. We conclude the section by discussing other
interesting applications of this virtualization capability to various
runtime services.

5.1 Deployment
Our ideas have evolved through real-world experience in the imple-
mentation of three Java-in-Java virtual machines [5, 12, 25], a Java
operating system [52], and a C/C++ JVM [7].

The use of a Java instantiation of our framework, org.vmmagic,
in DRLVM [7]—a C/C++ JVM based on the ORP [19] and Star-
JIT [1] code bases—is particularly interesting. DRLVM uses the
framework to express runtime services such as write barriers and
allocation sequences in Java. Our Java-based framework made the
code easier to express, removed the impedance mismatch between
the service code and the user context in which it is called, and al-
lowed the service code to be trivially inlined and optimized into
application code. Previously, DRLVM had used ORP’s LIL [32] to
express service code. Aside from providing a more natural medium
to express the service code, the use of our framework was moti-
vated by performance [45]. At the time of writing, our framework
is used by DRLVM to implement actions including object model
operations, class registry access, lock reservation (lock biasing), ac-
cessing the current Thread object, the object allocation fast path,
and garbage collection write barriers.

Jikes RVM makes extensive use of our framework and is the
primary environment from which org.vmmagic emerged. The
memory management subsystem makes particularly heavy use of
org.vmmagic, principally because it is concerned with accessing
raw memory, which is not supported by regular Java semantics. As

the single largest user of the framework, we have focused much of
the discussion in this section on the memory manager. However,
org.vmmagic is used throughout Jikes RVM in a variety of capac-
ities. A few examples of the wide variety of semantic regimes used
by Jikes RVM include: stipulating that an object may not move
(NonMovingAllocation); defining the special semantics of tram-
poline code, which by definition never returns (DynamicBridge);
preventing optimization (NoOptCompile); asserting callee save
semantics for volatiles (SaveVolatile); and eliding null checks
(NoNullCheck). Jikes RVM also makes use of a wide variety of
compiler intrinsics, including: atomic operations used to implement
locks; memory barrier and cache flushing operations (required
when compiling code and initializing classes on architectures with
weak memory models); stack introspection (for exception delivery
and debugging); and persisting, modifying, and restoring thread
state (to support exact garbage collection, green thread schedul-
ing, and exception delivery). The unboxed magic types used by the
memory manager (Word, Address, ObjectReference, Offset,
and Extent) are used throughout the JVM.

5.2 MMTk
MMTk [11] is a high performance Memory Management Toolkit
written in Java that leverages org.vmmagic for low-level access
to the underlying hardware. MMTk was initially developed as the
memory manager for Jikes RVM, but has been successfully ported
to other Java [12] and non-Java [7, 29, 62] runtimes, and has thus
evolved a clean interface with respect to the underlying runtime
environment.

Why Java? MMTk uses Java for two distinct reasons. First,
MMTk derives significant software engineering benefits from be-
ing implemented in a high-level, strongly typed language [11].
Second, MMTk is written in the same language that it was orig-
inally designed to support. This avoids an ‘impedance mismatch’
between the supported language and the language in which the sup-
port is written, which provides significant performance advantages,
as noted by the Jalapeño [6] and DRLVM [45] experiences.

The performance advantage of implementing in Java is borne
out by both a) our own empirical inspection of compiled code frag-
ments for performance critical sections of MMTk, and b) through
a direct performance comparison with a high quality C implemen-
tation of a memory manager [30]. When the language impedance
mismatch is removed, performance critical code (object allocation
and write barriers) can be inlined into user code, and the optimizing
compiler can produce code as good as or better than hand-selected
machine code.

The traditional language for implementing memory managers
is C, but it would be very difficult to build a toolkit as flexible
as MMTk in C. Using C++ may make it possible to achieve an
equally flexible structure, but high performance allocation and bar-
riers would require a complex and fragile solution, such as provid-
ing hand-crafted IR fragments to the compiler [32], or taking DR-
LVM’s approach and using org.vmmagic for the helper code and
C/C++ for the remainder of the memory manager implementation.

Low-level coding. To illustrate why MMTk requires low-level
access to hardware resources, consider the operation of tracing an
object in a parallel copying garbage collector. Given an object the
collector must:

1. Determine where references to other objects are located in the
object, typically by consulting a reference map linked from the
object’s header; then

2. Take each reference location, load the reference and:

(a) Determine that the reference is non-null (if not then we
move on to consider the next reference location);
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(b) Determine that the reference does not point to an already
copied object (if it does then we update the reference loca-
tion to point to the new copy and move on to consider the
next reference location),

(c) Atomically mark the object to ensure only one copy is made
(forcing other threads to spin and wait for us to finish if they
are also considering it);

(d) Allocate an area in the target space and copy the contents of
the object to it;

(e) Store a forwarding pointer from the old version of the object
to the new copy (also unmarking the object to allow any
threads waiting in Step 2c to continue); and

(f) Update the reference location to point to the new copy, and
then move on to consider the next reference location.

Two things are clear from the above operations. First, many of
the operations required—such as determining pointer locations, up-
dating them, and accessing synchronization information in object
headers—deal with information that is generally not accessible in
a high-level language. Second, given that the number of objects in
the heap generally runs into in the millions—and that garbage col-
lection can take a significant fraction of execution time (a common
rule of thumb is 10%)—any unnecessary overhead (such as that
from a foreign function interface) would have an intolerable per-
formance impact. Fine-grained intrinsics (see Section 4.2.1) which
the optimizing compiler can reason about are vital to achieving per-
formance. We were successful [11, 30] in meeting our goal that
MMTk perform at least as well as a very well tuned, optimized
C/C++ memory manager implementation.

5.3 The MMTk Debugging Harness
Garbage collectors are notoriously difficult to debug. (Even when
written in a type safe high-level language!) They are very tightly
bound to the environment in which they execute: an error in write
barrier code could cause pointers to become corrupted, manifest-
ing as errors in user code with no apparent link to the code that
produced the error. Modern garbage collectors also tend to be par-
allel (where multiple collector threads perform collection work at
the same time) as well as concurrent (where collection work exe-
cutes in parallel with user code). Modern programming styles also
dictate that memory managers support parallel allocation and write
barriers, due to the prevalence of multithreaded user code. These
characteristics tend to conspire to make debugging a garbage col-
lector within a production JVM a challenge.

The MMTk harness seamlessly rehosts MMTk from the com-
plex, natively executing environment of a high performance JVM
to an environment that is synthetic, controlled, and yet rich. MMTk
can be debugged in this controlled environment using scripts ex-
pressed in a trivial domain-specific language executed by an in-
terpreter written in Java. Rehosting MMTk onto this interpretive
debugging engine requires a) a simple virtual machine interface
layer targeted at the harness, and b) a virtualized implementation
of org.vmmagic written in pure Java. The virtual org.vmmagic
classes replace raw memory accesses with a virtualized view of
memory, simulated within the harness as a hash table of memory
pages (each in turn implemented as an array of integers).

The MMTk harness provides many debugging options that are
unavailable in existing virtual machine implementations. We can
put arbitrary watchpoints on words of memory, or on particular
objects or sets of objects. We can also use graphical debuggers such
as the Eclipse debugger. Most importantly we can write unit tests to
exercise specific aspects of individual collectors, including during
development where collectors are incomplete, something that is
extremely problematic in virtual machine implementations where
the memory manager must also manage other memory allocated by
the virtual machine itself (in addition to the executing application).

1 class Address {
2 int address;
3

4 byte loadByte() {
5 return SimMemory.loadByte(address);
6 }
7

8 void storeByte(byte value) {
9 SimMemory.storeByte(address, value);

10 }
11 }

Figure 6. Virtualized version of Address.

The actual implementation of the virtualized org.vmmagic is
quite straightforward, as the required operations—rather than being
executed natively as intrinsics by the host runtime—fall through
to the pure Java implementation working on top of our virtualized
memory environment. Figure 6 shows an example of how Address
can be implemented on top of the virtualized memory.

Note that in org.vmmagic magic types such as Address and
ObjectReference are implicitly value types, so need to be passed
by value. However, in a pure Java implementation the magic types
will be realized as regular Java objects and thus be subject to Java’s
pass by reference semantics. Fortunately, in our current implemen-
tation of org.vmmagic the magic types are immutable,3 so pass
by value and pass by reference are semantically equivalent and our
pure Java virtualization is trivial. Had this not been the case, we
could have achieved pass by value semantics by copying the val-
ues as they were passed. This could be done transparently via code
rewriting or bytecode rewriting.

5.4 Further Opportunities for Virtualization
The strongly abstracted view of low-level features is what allowed
the virtualization leveraged by the MMTk debugging harness. We
foresee other interesting applications of such virtualization. For ex-
ample, an interesting twist on the debugging harness would be to
use virtualization to drive MMTk via a dislocated JVM rather than
via the harness. As with the debugging harness, MMTk would run
in a pure Java environment on a host JVM. However, unlike the
debugging harness, the heap would exist not as a hash table of
memory pages, but as a real heap in the host JVM, accessed via a
network socket. Such a scheme could be used, for example, to de-
bug when the JVM is executing on a very constrained environment,
such as an embedded processor, unsuitable for the rich debugging
environments available on mainstream development platforms.

6. Future Work
While the approach outlined in this paper has evolved from a
decade of real-world experience, and has been proven in practice
through several projects, there is significant promise for future
work in a number of directions.

Firstly, there is a clear benefit to undertaking the refinements of
the type system extensions alluded to in earlier sections. These in-
clude allowing more general unboxed compound types—and con-
sequently pointers to these types—as well as the bit-level specifica-
tion of types such as those required by Lime [39]. While evidently
not required for our existing applications, the addition of this func-
tionality should add broader appeal to our approach.

To further extend the appeal of our approach, it would be in-
teresting to implement it within the context of other language run-
times (both Java and non-Java). This would provide additional in-
centive to develop the compiler-independent representation of the

3 For example, a field ptr of type Address cannot be incremented; a
reassignment idiom must be used: ptr = ptr.add(1);.
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IntrinsicGenerator objects (see Section 4.2.1) to reduce the
amount of porting work demanded of users of the framework.

Also, while a large degree of the power of our approach lies
with its extensible nature, it would be worthwhile developing a
basic set of semantic regimes, unboxed types, and intrinsics. This
would both avoid individual users reinventing the wheel, as well as
providing a basic set of functionality to make the framework more
approachable.

Finally, we hope that this paper will help to drive the adoption
of high-level low-level programming as a technique within systems
programming more broadly. By drawing together our approach into
a coherent framework, we anticipate that it will open up the power
of our approach to other developers who do not have the freedom
to change the underlying runtime system.

7. Conclusion
Hardware and software complexity is making it harder and harder
to reason about the environment in which code is written, frus-
trating the objective of reliable, secure, and maintainable software.
Now more than ever, systems programmers need to be embracing
high-level languages. However, although abstraction is the key to
many of the benefits of high-level languages, it typically obstructs
low-level programming. We have explored this conundrum in a
pragmatic, experience-oriented setting.

Our contributions include: 1) characterizing the problem and
identifying a solution, 2) illustrating our solution through two novel
and concrete case studies, 3) outlining ambitious future directions
for the work, and 4) drawing together a large and fragmented
body of related work. Our solution is a publicly available work-in-
progress, and is used in various forms in a number of JVMs (both
Java and C), and one operating system. The primary advantages
of our approach are: 1) the capacity to minimize the intrusion of
low-level code into the high-level setting, both in extent, and in
character; 2) the ability to trivially virtualize systems built upon
this framework; and 3) outstanding performance (that has led to
its use in a C/C++ JVM [7], on the grounds of improved perfor-
mance [45]).

As new languages emerge [4, 17, 18, 39], we hope the design-
ers will carefully consider the possibility of supporting low-level
programming, and that they might find our work useful.
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