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Summary

A dynamic regime is a function that takes treatment and response history and

baseline covariates as inputs and returns a decision to be made. Robins (2004)

and Murphy (2003) have proposed models and developed semi-parametric meth-

ods for making inference about the optimal regime in a multi-interval trial that

provide clear advantages over traditional parametric approaches. We show that

Murphy’s model is a special case of Robins’ and that the methods are closely

related but not completely equivalent; in doing this, we show that Murphy’s

estimates are not efficient. Interesting features of the methods are highlighted

using the Multicenter AIDS Cohort Study (MACS) and through simulation.
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1. Introduction

In a study aimed at estimating the mean effect of a treatment on a time-

dependent outcome, it may be argued that dynamic treatment regimes are the

most logical and ethical protocols to consider. A dynamic treatment regime is

a function which takes in covariates, treatment and response history as argu-

ments and outputs an action to be taken, providing a list of decision rules for

how treatment should be allocated over time. One characteristic of a dynamic

regime is that a subject’s interval-specific treatment is not known at the start of

the regime, since treatment depends on subsequent time-varying variables that

may be influenced by earlier treatment.

The problem of finding the optimal dynamic regime is one of sequential

decision-making, where an action which appears optimal in the short-term may

not be a component of the optimal regime [Lavori (2000)]. We define a regime as

optimal if it maximizes the mean response at the end of the final time interval.

There are many examples of adaptive intervention strategies in health care,

ranging from treatment of AIDS to encouraging participation in mammography

screening for breast cancer (see, for example, Robins (1994)). Yet there is a

dearth of randomized trials that have implemented dynamic treatment proto-

cols, due perhaps to the historical lack of theory for the design and analysis of

such a trial. Recent work in the area has provided better insight into issues of

randomization and sample size calculations [Murphy (2004), Lavori and Dawson

(2001), Dawson and Lavori (2004)]. Design considerations for multi-center, se-

quentially randomized trials with adaptive randomization have been addressed

in a Bayesian framework [Thall et al. (2000), Thall and Wathen (2005)]. Along-

side the theoretical innovations, within-person sequentially-randomized trials
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are being performed for treatment of mental illness [Rush et al. (2003), Schnei-

der et al. (2001)] and cancer [Thall et al. (2000)]. However, the protocols

for some of these trials call for analyses which do not take advantage of their

sequential nature, but rather treat each phase as a separate trial.

Dynamic programming, also called backwards induction, is a traditional

method of solving sequential decision problems [Bellman (1957), Bertsekas and

Tsitsiklis (1996)], however in the dynamic regimes context, it requires modelling

the longitudinal distribution of all status variables and outcome. The knowledge

needed to model this is often unavailable and, by mis-specifying the distribu-

tion, it is possible to incorrectly recommend treatment when no treatment effect

exists. The methods of Murphy (2003) and Robins (2004) do not suffer from

this serious limitation.

Lavori et al. (1994) developed a causal approach to assessing optimal treat-

ment discontinuation time for a binary outcome using propensity scores to ad-

just for time-varying covariates. Thall et al. (2000) produced a likelihood-based

approach to analyze sequentially randomized trials for optimal regimes in the

context of prostate cancer treatment, with additional complications: randomiza-

tion probabilities changed as information from patients accrued and the outcome

of interest was death or treatment failure in any interval.

The purpose of this article is to provide a clearer understanding of the models

and methods proposed in the optimal dynamic regime literature: g-estimation

and Murphy’s iterative minimization, and to demonstrate the similarities be-

tween what may appear to be very different approaches. The following section

introduces our motivating example, looking at the effect of AZT initiation on

12-month CD4 counts. In section 3, the procedure for estimating an optimal
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dynamic regime is described, beginning with models and the optimal treatments

which they imply, followed by an explanation of g-estimation and iterative min-

imization. The section concludes by contrasting the two methods. The methods

are demonstrated using the Multicenter AIDS Cohort Study (MACS) in section

4, alongside simulations that highlight interesting features of the two methods.

2. Context of the problem and motivating example

To examine the work of Murphy (2003) and Robins (2004) in a simple, two-

interval example, we consider a subset of the MACS data [Kaslow et al. (1987)],

a longitudinal observational study accumulating information from over 5000

HIV-1 infected homosexual and bisexual men in four U.S. cities beginning in

1984. Participants were invited to return for follow-up every six months, com-

pleting a questionnaire and a physical examination including blood work. We

restrict our attention to the 2179 HIV-positive, AIDS-free men recruited af-

ter March 1986, when zidovudine (AZT) became available. Of those men, 38

(1.7%) were lost to follow-up before one year and 10 (0.5%) had initiated AZT

before study entry; these were excluded from the analysis. We follow Hernan

et al. (2000) in using last-observation carried forward to account for unobserved

information due to missed visits.

To minimize notation, we will consider only two intervals - baseline to six

months and six to 12 months into study - and use a single status variable,

CD4 count, to determine the optimal rule for prescribing AZT at each interval.

However, our development extends to the general case.

2.1 Notation

Treatments are given at two fixed times, t1 and t2. X1 and X2 are the

status variables measured prior to treatment at the beginning of the first and
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second intervals, respectively, i.e. at t1 and t2. In particular, X1 represents

baseline covariates and X2 includes time-varying covariates which may depend

on treatment received in the first interval. Aj , j = 1, 2, is the treatment given

subsequent to observing Xj . Y is the outcome observed at the end of the

second interval, and larger values of Y are deemed preferable. Thus, the order

of occurrence is (X1, A1, X2, A2, Y ) and the data can be depicted by a tree when

X and A are categorical (Figure 1a). Let Hj denote the treatment and response

history up to time j, so H1 = X1 and H2 = (X1, A1, X2). Specific values will

be denoted with the lower-case, e.g. h1 = x1.

In our example, X1 is baseline CD4; X2 is CD4 cell counts at six months;

and Y is CD4 counts at 12 months. Treatment is the indicator of AZT com-

mencement so that A1 = 1 if AZT therapy was initiated between baseline and

six months and A2 is the equivalent indicator for initiation of AZT between six

and 12 months. Participants who took AZT did not discontinue treatment, so

the rules to be estimated are for starting of AZT (Figure 1b).

[Figure 1 about here.]

Throughout this paper, models will rely on counterfactuals (or potential

outcomes), i.e. a person’s outcome had he followed a particular treatment regime

- possibly different from the regime that was actually followed. Let X2(a1)

denote a person’s counterfactual status at the beginning of the second interval

had treatment a1 been received by that person and Y (a1, a2) denote the end-

of-study outcome if he had followed regime (a1, a2).

Counterfactuals adhere to the axiom of consistency : X2(a1) = X2 whenever

treatment a1 is actually received and Y (a1, a2) = Y whenever a1 and a2 are

received. That is, the actual and counterfactual status are equal when the
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regime in question is the regime actually received and similarly for outcome.

2.2 Assumptions

To estimate the effect of any dynamic regime (optimal or otherwise), we

require:

1. Stable Unit Treatment Value Assumption (SUTVA): A subject’s outcome

is not influenced by other subjects’ treatment allocation [Rubin (1978)].

2. No unmeasured confounders : For any regime (a1, a2),

A1 ⊥ (X2(a1), Y (a1, a2))|H1 and A2 ⊥ Y (a1, a2)|H2 [Robins (1997)].

Assumption 2 (also called sequential ignorability) always holds under sequential

randomization, that is, when treatment is randomly assigned at each interval

with known probabilities (which may be a function of history).

Without further assumptions the optimal regime may only be estimated

from among the set of feasible regimes [Robins (1994)]: Let pj(aj |hj) denote

the conditional probability of receiving treatment aj given history hj and let

f(·) denote the density function of h2 = (x1, a1, x2). Then for all h2 with

f(h2) > 0, a feasible regime (d1(h1), d2(h2)) satisfies

p1(d1(h1)|h1)× p2(d2(h2)|h2) > 0.

I.e., feasibility requires some subjects to have followed regime (d1(h1), d2(h2))

for the analyst to be able to estimate its performance non-parametrically. In

terms of a decision tree, no (non-parametric) inference can be made of the effect

of following a particular branch if no one followed that path. In particular, we

cannot make inference about AZT discontinuation in the MACS data-set since

no discontinuations were observed in the first year of study (Figure 1b).
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It is unlikely that SUTVA is violated in the MACS example, as participants

were drawn from four large cities. Further, we model the probability of initiating

AZT as a function of CD4 count, presence of symptoms (such as thrush, herpes

zoster, etc), pneumonia prophylaxis at the last visit, and year of cohort entry. It

is plausible that there are few or no other variables that confound the association

between CD4 and AZT initiation; we proceed, assuming that this is so.

3. Steps to finding the optimal regime

We define optimal rules recursively as follows:

dopt

2 (h2) = max
d2

E
[
Y

(
a1, d2(h2)

)∣∣H2 = h2

]
,

dopt

1 (h1) = max
d1

E
[
Y

(
d1(h1), dopt

2

(
h1, d1(h1), X2(h1, d1(h1))

))∣∣H1 = h1

]
.

Optimal regimes are defined for any sequence of treatment and covariate history,

even a sequence h2 that might not be possible to observe had the optimal regime

been followed by all participants from the first interval. Thus, an optimal regime

provides information not only on the best treatment choices from the beginning

but also on treatment choices that maximize outcomes from a later time, even

if a sub-optimal regime had been followed up to that point.

Robins [(1994), (1997)] pioneered the field of dynamic treatment regimes.

However Murphy (2003) gave the first method to estimate regimes semi-parametrically.

Following this, Robins (2004) produced a number of estimating equations for

finding optimal regimes using structural nested mean models (SNMM). The

three key steps to identifying the optimal dynamic treatment regime are (1)

definition of the model, (2) finding the optimal rule implied by the model, and

(3) estimation of model parameters. For (1), Robins uses “blip” models; Mur-

phy uses “regrets”. Both are variants of the SNMMs. For (3), Robins uses
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g-estimation, while Murphy uses iterative minimization.

3.1 Step 1: Model definition

A SNMM defines an expected difference between a person’s counterfactual

responses on a specific treatment regime from time j+1 onwards and on another

specific regime from time j conditional on history. We consider a particular class

of SNMM’s, those with optimal blip functions.

Define an optimal blip-to-reference function to be the expected difference in

outcome when using a reference regime dref

j = dref

j (hj) instead of aj at time tj , in

persons with treatment and covariate history hj who subsequently receive the

optimal regime. At the first time-point, we have:

γ1(h1, a1) = E
[
Y

(
a1, d

opt

2

(
h1, a1, X2(a1)

))− Y
(
dref

1 , dopt

2

(
h1, d

ref

1 , X2(dref

1 )
))∣∣H1 = x1

]
,

and at the second,

γ2(h2, a2) = E
[
Y (a1, a2)− Y (a1, d

ref

2 (h2))
∣∣H2 = (x1, a1, x2)

]
.

The term “optimal” refers to treatment subsequent to tj . At the second interval

there are no subsequent treatments, so the blip is simply the expected difference

in outcomes for having taken treatment a2 as compared to the reference regime,

dref

2 , among people with treatment and response history h2.

Two special cases of optimal blip-to-reference functions have been used in

the dynamic regimes literature and applications:

The optimal blip-to-zero function, suggested by Robins (2004), takes the

reference regime to be the “zero” regime at time j, a substantively meaningful

regime such as placebo or standard care.

Murphy (2003) modelled the regret function. This function is the negative

of the optimal blip that uses the optimal treatment at time j as the reference
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regime. Denote this by

µ1(h1, a1) = E
[
Y

(
a1, d

opt

2 (h1, a1, X2(a1))
)−

Y
(
dopt

1 (h1), dopt

2 (h1, d
opt

1 , X2(dopt

1 ))
)∣∣H1 = x1

]
,

µ2(h2, a2) = E
[
Y

(
a1, a2

)− Y
(
a1, d

opt

2 (h2)
)∣∣H2 = (x1, a1, x2)

]
.

The regret at tj is the expected difference in the outcome had the optimal

treatment been taken at tj , instead of treatment aj , in participants who followed

regime a up to tj and the optimal regime from tj+1 onwards.

Optimal blip-to-zero functions and regrets correspond directly:

µj(hj , aj) = max
a γ(hj , a)− γ(hj , aj),

γj(hj , aj) = µj(hj , d
ref

j )− µj(hj , aj).

It can be shown that if the regret is smooth in its arguments (or parameters),

the optimal blip-to-zero will be also; the converse does not hold. Both optimal

blips and regrets compare the counterfactual outcomes in which treatment at

time j +1 and thereafter is optimal; regrets additionally posit that treatment at

time j is optimal. Henceforth, take dref

j = 0 in all optimal blip functions except

regrets.

While Robins generally advocates optimal blip-to-zero functions and Mur-

phy, regrets, a simple transformation can be used to go from one to the other.

However, it is important to be aware that simple forms for either model can

lead to complex - and perhaps unlikely - forms for observables. For example,

if outcome under the optimal regime depends linearly on status variables, Xj ,

and we assume a linear blip function, this implies that observed outcome, Y , is

piece-wise linear in Xj , and not necessarily continuous.
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3.2 Step 2: Identification of the optimal rules

If given the true form of the optimal blip (or alternatively, of the regret

function) parameterized by ψ, it is straight-forward to identify the optimal

regime. For all j, it is:

dopt

j (hj , aj ; ψ) = arg max
aj

γj(hj , aj ;ψ);

or, using regrets, it is the regime dopt

j (hj , aj ;ψ) such that

µj(hj , d
opt

j (hj , aj ; ψ)) = 0.

Define Dj(γ) to be the set of rules, dopt

j , that are optimal under the optimal

blip function model γj(hj , aj ;ψ) as ψ is varied:

Dj(γ) = {dj(·)|dj(hj) = arg max
aj

γj(hj , aj ;ψ) for some ψ}.

LetDj(µ) be the set of optimal rules that are compatible with regret µj(hj , aj ; ψ):

Dj(µ) = {dj(·)|µj(hj , dj(hj); ψ) = 0 for some ψ}.

Murphy [(2003), p.345] models the regret for a discrete decision by a smooth

approximation, expit(x) = ex(ex + 1)−1, to facilitate estimation. Using an

approximation, µ̃j(hj , aj), to the true regret model, µj(hj , aj), let

Dj(µ̃) = {dj(·)|dj(hj) = arg min
aj

µ̃j(hj , aj ; ψ) for some ψ}

denote the set of optimal rules that are compatible with µ̃j(hj , aj). The approx-

imate regret may not equal zero at the optimal regime.

Problems may arise if parameterization of the true SNMM is poorly chosen.

For example, suppose the optimal blip, γj(Hj ;ψ) = ajf(Xj ; ψ), is such that

f(Xj ; ψ) = ψ0 + ψ1Xj with treatment aj binary. The corresponding regret is
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µj(Hj , aj) = |ψ0 + ψ1Xj | × (aj − I[ψ0 + ψ1Xj > 0])2 and Dj(γ) = Dj(µ) =

{I[ψ0 + ψ1Xj > 0]}. Suppose ψ1 > 0 so that treatment is beneficial if Xj is

above the threshold β = −ψ0/ψ1. We may re-parameterize the regret to obtain

the threshold, β: µ∗j (Hj , aj) = |Xj − β| × (aj − I[Xj − β > 0])2, which gives

Dj(µ∗) = {I[Xj − β > 0]}. However, if ψ1 < 0 so that now subjects should

be treated when Xj < β, µ∗j (hj , aj) = |Xj − β| × (aj − I[Xj − β < 0])2 and so

Dj(µ∗) = {I[Xj−β < 0]}. Thus, one consequence of using the re-parameterized

regret in this form is that whether it is optimal to treat for high or low status

values must be known in advance. Incorrectly specifying the direction can lead

to false conclusions such as failure to detect a treatment effect. This can be

overcome by using a richer class of models for the regret, such as the two-

parameter model in this example. (See reply to discussion in [Murphy (2003)].)

3.3 Step 3: Estimation
3.3.1. g-estimation

Robins (2004) proposes finding the parameters ψ of the optimal blip-to-zero

function or regret function via g-estimation. Define

H1(ψ) = Y +
2∑

j=1

[
γj(Hj , d

opt

j ;ψ)− γj(Hj , aj ;ψ)
]
,

H2(ψ) = Y + γ2(H2, d
opt

2 ;ψ)− γ2(H2, a2; ψ).

Hj(ψ) is a patient’s actual outcome adjusted by the expected difference between

the average outcome for someone with treatment and covariate history hj who

is treated optimally from time tj and someone with history (hj , aj) who is

subsequently treated optimally from time tj+1.

Under additive local rank preservation (LRP),

H2(ψ) = Y
(
a1, d

opt

2 (X1, a1, X2(a1))
)
,
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H1(ψ) = Y
(
dopt

1 (X1), dopt

2

(
X1, d

opt

1 (X1), X2(dopt

1 (X1))
))

[Robins (2004)]. Loosely, LRP states that the ranking of patients’ outcomes

under a particular regime is the same as their ranking under another regime,

conditional on history. LRP is additive if the difference in person’s outcome

should he be treated with one regime instead of the other given history equals the

expected difference. Rank preservation provides a simplistic situation in which

the parameters of a SNMM may be interpreted at the individual level. However

SNMM’s may be used without making such assumptions via a population-level

interpretation in terms of average causal effects.

For the purpose of estimation, specify Sj(aj) = sj(aj , hj) ∈ Rdim(ψj) which

depends on variables which are thought to interact with treatment to influence

outcome. For example, if the optimal blip at the second interval is linear,

γ2(h2, a2) = a2(ψ0 + ψ1x2 + ψ2a1 + ψ3x2a1),

the analyst may choose S2(a2) = ∂
∂ψ γ2(h2, a2) = a2 · (1, x2, a1, x2a1)T . Let

U(ψ, s) =
2∑

j=1

Hj(ψ){Sj(Aj)− E[Sj(Aj)|Hj ]}, (1)

with the probability of being treated modelled (perhaps non-parametrically) by

pj(aj |hj ; α). E[U(ψ, s)] = 0 is an unbiased estimating equation from which con-

sistent, asymptotically Normal estimates ψ̂ of ψ may be found under standard

regularity conditions provided the treatment model is correct and the optimal

regime is unique, though see [Robins (2004)]. The intuition behind equation (1)

is that counterfactual outcomes under different treatment regimes at time j are

independent of any function of actual treatment conditional on prior treatment

and covariates (by Assumption 2). These estimators are not efficient.
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Robins (2004) refined equation (1) to gain efficiency. Let

U†(ψ, s, α̂) =
2∑

j

(Hj(ψ)− E[Hj(ψ)|hj ]){Sj(Aj)− E[Sj(Aj)|hj ]}. (2)

The inclusion of E[Hj(ψ)|hj ] in (2) gives estimates which are more efficient than

those found using (1), however these estimates are still not efficient. Robins

proves that estimates found by (2) are consistent provided either E[Hj(ψ)|hj ]

or pj(aj |hj) is correctly modelled, and thus is said to be doubly-robust. Semi-

parametric efficient estimates can be found with good choice of S(Aj), although

its form is often complex.

Correct specification of E[Hj(ψ)|hj ] requires knowing the functional depen-

dence of outcome on history. For simplicity, consider the case of binary treat-

ment. As noted earlier, γj(hj ;ψ) = ajf(xj ; ψ) and µj(hj , aj) = |f(xj ; ψ)| ×

(aj − I[f(xj ;ψ) > 0])2 specify the same SNMM so that if γj(hj ; ψ) is linear in

hj , µj(hj , aj) is piece-wise linear. Expressing Hj(ψ) as Y +
∑2

m=j µm(hm, am),

we see that if the mean of Y depends linearly on hj , then E[Hj(ψ)|hj ] is piece-

wise linear with discontinuities and changes in slope occurring at optimal rule

thresholds. Simulations suggest that even when pj(aj |hj) is wrongly specified,

using an incorrect model for E[Hj(ψ)|hj ] in (2) yields estimates that are less

biased and less variable than using no model at all, i.e., using (1) (see Table 1).

3.3.2. Recursive, closed-form g-estimation

In general, search algorithms are required to find the values of ψ̂ to satisfy the g-

estimating equation. Exact solutions can be found when optimal blips are linear

in ψ and parameters are not common (shared) between intervals. An example

of blip functions that are linear in ψ but do have common parameters between

intervals is γ1(x1, a1) = a1(ψ0 + ψ1x1) and γ2(h2, a2) = a2(ψ0 + ψ1x2 + ψ2a1),
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since ψ0 and ψ1 appear in the blip functions of both intervals.

We may also use the modification

Hmod,1(ψ) = Y − γ1(h1, a1; ψ) +
[
γ2(h2, d

opt

2 ; ψ)− γ2(h2, a2;ψ)
]

Hmod,2(ψ) = Y − γ2(h2, a2; ψ)

in equation (1) or (2) without changing the consistency of the resulting g-

estimates. Under LRP, Hmod,1(ψ) = Y
(
0, dopt

2 (X1, 0, X2(0))
)

and Hmod,2(ψ)

= Y
(
a1, d

opt

2 (X1, a1, X2(a1))
)
. This modification allows recursive estimation

when parameters are not shared: find first ψ̂2 at the last interval then plug

ψ̂2 into Hmod,1(ψ) to find ψ̂1. Postulating models for the mean dependence of

Y on hj and for γj(hj ;ψ) is sufficient to determine a model for E[Hmod,j(ψ)|hj ].

3.3.3. Iterative Minimization for Optimal Regimes (IMOR)

Murphy (2003) developed a method that estimates the parameters of the optimal

regime, ψ, by searching for (ψ̂, ĉ) which satisfy

2∑

j=1

Pn

[
Y + ĉ +

2∑

l=1

µl(hl, al; ψ̂) −
∑

a

µj(hj , a; ψ̂)pj(a|hj ; α̂)
]2

≤
2∑

j=1

Pn

[
Y + c +

K∑

l=1,l 6=j

µl(hl, al; ψ̂) + µj(hj , aj ; ψ)

−
∑

a

µj(hj , a;ψ)pj(a|hj ; α̂)
]2

(3)

for all c and all ψ, where Pn(f) = n−1
∑n

i=1 f(Xi) is the empirical average. ψ̂ is

consistent for ψ provided the treatment allocation probabilities, pj(aj |hj), are

correctly estimated. ψ̂ is not efficient, as will be seen in the next sub-section.

Murphy (2003) describes an iterative method of finding solutions to (3),

which begins by selecting an initial value of ψ̂, say ψ̂(1), then minimizing the

RHS of the equation over (ψ, c) to obtain a new value of ψ̂, ψ̂(2), and repeating
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this until convergence. This method may not produce a monotonically decreas-

ing sequence of RHS values of equation (3). Further, this procedure may not

converge to a minimum; profile plots of the RHS of (3) for each parameter in

an interval about its estimate provide a useful diagnostic tool.

3.4 Relating the methods for 2 intervals

Suppose X1, A1, X2, A2, and Y are observed where Aj is binary and Xj , Y

are univariate for j = 1, 2. Further suppose that parameters are not shared

across intervals. Robins [(2004), Corollary 9.2] proves that for an optimal blip

γj(hj , aj ; ψj), the unique function q(hj , aj) minimizing

E

[{
Y − q(hj , aj) +

2∑

m=j+1

(γm(hm, dopt

m ;ψm)− γm(hm, am; ψm))

−E
[
Y −q(hj , aj)+

2∑

m=j+1

(γm(hm, dopt

m ;ψm)− γm(hm, am; ψm))
∣∣∣hm

]}2
]

(4)

subject to q(hj , 0) = 0 is γj(hj , aj ; ψj). To make use of (4) to estimate ψ1, ψ̂2

must have already been found - i.e., estimation is recursive, not simultaneous.

At each interval, g-estimation is equivalent to minimizing (4) by setting its

derivative to zero. At the minimum, q(hj , aj) = γj(hj , aj ;ψj) and so

Y − q(hj , aj) +
K∑

m=j+1

[
γ(hm, dopt

m ;ψm)− γ(hm, am; ψm)
]

= Hmod,j(ψj).

With S(aj) = − ∂
∂ψj

q(hj , aj), equation (4) leads to g-estimating equation (2)

using the modified version of Hj(ψ).

IMOR is another method of recursive minimization. At any interval j, taking

q(hj , aj) = µj(hj , aj ; ψ) and

c = −µj(hj , 0; ψj)−
j−1∑
m=1

µm(hm, am; ψ̂m)

+ E
[
µj(hj , 0;ψj) +

K∑

m=j+1

µm(hm, am; ψ̂m)− Y
∣∣hj

]
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in (4) leads to the RHS of (3) on an interval-by-interval basis. The parameter

c in (3) is not interval-specific, so the two methods are not identical. This is a

critical difference between the methods: IMOR does not model E[Hmod,j(ψ)|hj ]

explicitly, but rather captures the quantity through the regrets and ĉ. If the

researcher correctly specifies the model for E[Hmod,j(ψ)|hj ], he can obtain more

precise estimates using g-estimation as compared to IMOR.

4. Examples
4.1 Simulation results

Via simulations we compare the performance of the methods discussed in

the previous section, as well as illustrate the double-robustness of g-estimating

equation (2). Suppose that patients are accrued in a trial whose purpose is to

estimate the optimal rule for AZT initiation. Patients will be randomized to

either no treatment or AZT at baseline and those who did not receive treatment

at baseline will be re-randomized at 6 months to receive either no treatment or

AZT. (Clearly, such a trial would be unlikely given the current understanding

of the beneficial effects of AZT!)

Variables are as described in §2.1 and were generated as follows: baseline

CD4: X1 ∼ N (450, 150); six-month CD4: X2 ∼ N (1.25X1, 60); and one-year

CD4: Y ∼ N (400 + 1.6X1, 60)− µ1(H1, A1)− µ2(H2, A2). Note that, as stated

before, the observed outcome is not linear in X1 and X2. Treatments A1,

A2 were randomly assigned with equal probability and optimal blips are linear:

γ1(h1, a1) = a1(ψ10+ψ11x1), and γ2(h2, a2) = a2(ψ20+ψ21x2). We use Sj(aj) =

∂
∂ψ γj(hj , aj) in g-estimation for greater similarity to IMOR.

Two models were considered for E[Hmod,j(ψ)|hj ] when implementing g-

estimation (2). The first incorrectly assumed that E[Hmod,j(ψ)|hj ] depends
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linearly on all of hj . The second, correct model allowed the mean function to be

piece-wise, discontinuous linear with inflections at the optimal rule thresholds

(see Appendix). All results are presented in Table 1; diagnostic plots for the

IMOR approach are in Figure 2.

[Table 1 about here.]

[Figure 2 about here.]

The efficiency gained by using the g-estimating equation (2) instead of (1)

is considerable; using the incorrect model for E[Hmod,j(ψ)|hj ] also leads to

reduced efficiency. IMOR estimates are slightly biased and efficiency is lower,

although much better than equation (1).

Suppose now that physicians broke protocol, so that the probability of initi-

ating AZT is higher in patients with low CD4 counts: Aj ∼ Binom(pj), where

p1 = expit(2 − .006X1) and p2 = expit(0.8 − .004X2). This new randomiza-

tion scheme used depends only on the observed variable CD4. If the analyst

incorrectly assumed complete randomization, only equation (2) using the cor-

rect model for E[Hmod,j(ψ)|hj ] yields unbiased estimates (Table 1). In this

example, using a linear model for E[Hmod,j(ψ)|hj ] in equation (2) on average

yields optimal decision thresholds (95% CI) not too far from the truth: begin

AZT at baseline for patients with CD4 counts below 226 (194, 258), and begin

therapy at 6 months if counts are below 325 (271, 378) as compared to the true

best regime thresholds of 250 and 360 counts at the first and second interval,

respectively. IMOR and g-estimation using equation (1) are seen to be not at

all robust to mis-specification of the treatment model, as expected.
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4.2 Multicenter AIDS Cohort Study Results

Turning our attention to the MACS data: 142 (6.7%) participants initiated

AZT in the first six months of the study; a further 166 (7.8%) began treatment

between six and 12 months. Initial plots show little difference in 12-month CD4

counts between those who were treated and those who were not (Figure 3).

[Figure 3 about here.]

[Table 2 about here.]

Initially, treatment was fit as a function of CD4 at the previous visit only. It

is unlikely that this scenario reflects the true decision-making process of physi-

cians, so the analysis was repeated using richer treatment models which were

selected using the Bayesian Information Criterion. The richer models found year

of study entry and presence of symptoms at baseline as well as baseline CD4 to

predict treatment in the first six months of study. Six-month CD4, use of Pneu-

mocystis Carinii pneumonia prophylactics in the first six months of study, and

presence of symptoms at six months were predictive of AZT initiation between

six and 12 months. Neither g-estimation nor IMOR detected any effect of AZT

initiation at any time in the first year on 12-month CD4 counts (Table 2). This

analysis should not undermine the usefulness of AZT as a treatment for HIV.

It may suggest that one-year CD4 counts are not sufficient to capture beneficial

effects of the therapy or are not a good surrogate for HIV-patient health.

A naive linear regression of 12-month CD4 counts on baseline CD4, six-

month CD4, and treatments A1 and A2 picks up a strong association between

initiation of AZT in the second interval and outcome (p < 0.001): in this model,

participants who started AZT between six and 12 months had, on average, 12-
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month CD4 counts that were 74 (44, 104) lower than those who did not initiate

therapy. A non-significantly lower average CD4 count was also observed for AZT

initiation between zero and six months. Residual plots suggested heteroscedas-

ticity. Log-transforming the outcome did not remove the strong statistical sig-

nificance of the association, nor did including of the covariates from the richer

treatment models used in the dynamic regimes methods or interaction terms.

The negative association between treatment in the second interval and one-

year CD4 in linear regression can reasonably be explained by confounding: pa-

tients with low CD4 counts were more likely to use AZT. This example nicely

demonstrates the utility of dynamic regimes in general, particularly the impor-

tance of causal models that are correctly specified under the null hypothesis.

5. Conclusion

Our paper has clarified the connections between both the models and the meth-

ods used to make inference in the context of dynamic treatment regimes. Blip

functions are highly flexible and can be used to describe a number of different

mean models, including regret functions. While the methods of Robins and

Murphy appear to be very different at first glance, we have shown that the

methods are based on a similar minimization. In fact, g-estimation and IMOR

are conceptually nearly equivalent.

The methods discussed here, along with the advances in theory needed to

implement clinical studies of dynamic regimes mentioned in the section 1, have

the potential to contribute greatly to the design of treatment protocols for a va-

riety of medical conditions. Robins and Murphy developed their methods in the

general, K-interval case and so they are widely applicable although sample size

requirements may rapidly become infeasible with a large number of treatment
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options, unless it is reasonable to impose stationarity (i.e., parameter-sharing).

We leave the reader with a final word of caution: Model choice should be driven

by practical considerations, however it is important to be aware of the (perhaps

implausible) models for observables which are then implied.
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Appendix

Assuming a linear model for the optimal blip function with binary treatment

is equivalent to assuming a broken-stick model for the regret. The assumption

of a model for the blip/regret induces a model for the distribution of outcome

(see, for example, Murphy (2003)). Together, the blip or regret model and the

distribution of Y specify the correct form for E[Hmod,j(ψ)|hj ].

In the model of §4.1, E[Hmod,1(ψ)|h1] = 400 + 1.6X1 if X1 ≥ 250 (equiva-

lently, if ψ10 + ψ11X1 > 0) and E[Hmod,1(ψ)|h1] = 400 + 1.6X1 + ψ10 + ψ11X1

otherwise. To see why this is so, note that if X1 ≥ 250, then the patient should

not be treated and so the optimal outcome, 400+1.6X1, will be observed under

Hmod,1(ψ) = Y (0, dopt

2 ).
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At the second interval, E[Hmod,2(ψ)|h2] can take one of four forms, depend-

ing on subgroups defined by the value of A1, X1 < 250, and X2 < 360:

A1 = 1 and X1 < 250, E[Hmod,2(ψ)|h2] = 400 + 1.6X1

A1 = 1 and X1 ≥ 250, E[Hmod,2(ψ)|h2] = 400 + 1.6X1 + ψ10 + ψ11X1

A1 = 0, X1 ≥ 250, and X2 ≥ 360, E[Hmod,2(ψ)|h2] = 400 + 1.6X1

A1 = 0, X1 < 250, and X2 ≥ 360,

E[Hmod,2(ψ)|h2] = 400 + 1.6X1 + ψ10 + ψ11X1

A1 = 0, X1 ≥ 250, and X2 < 360,

E[Hmod,2(ψ)|h2] = 400 + 1.6X1 + ψ20 + ψ21X2

A1 = 0, X1 < 250, and X2 < 360,

E[Hmod,2(ψ)|h2] = 400 + 1.6X1 + ψ10 + ψ11X1 + ψ20 + ψ21X2.

Note that A1 = 1 implies A2 = 0, i.e. if AZT is started between baseline and six

months, it cannot be initiated between six and 12 months. Thus, if a participant

initiated AZT in the first interval, only a single treatment possible in the second

interval (continue taking AZT) so that this treatment is optimal by virtue of it

being the only option.

These derivations have an important implication: the parameters ψ ap-

pear in the design matrix for E[Hmod,j(ψ)|hj ] under a linear model. Not

only that, parameters from the first interval appear in the design matrix for

E[Hmod,2(ψ)|h2] which rather takes away from the recursive g-estimation that

we would like to use when (ψ10, ψ11) are not assumed to equal (ψ20, ψ21). Thus,

using the correct model for E[Hmod,j(ψ)|hj ] requires iterating between estimat-

ing E[Hmod,j(ψ)|hj ] and solving the g-estimating equations.
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Figure 1. Illustration of data for two intervals: (a) generic and (b) MACS.
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Figure 3. MACS: (a) CD4 at 12 months vs. baseline and (b) CD4 at 12 vs.
six months for those who were not treated in the first interval.
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Table 1
AZT initiation and CD4 cell counts: g-estimation and IMOR for 1000

data-sets of sample sizes 500 and 1000.

Correct model for pj(a|hj ; α̂) Incorrect model for pj(a|hj ; α̂)

Estimate ψ ψ̂ SE rMSE Cov.∗ ψ̂ SE rMSE Cov.∗

n = 500

g-est. ψ10 = 250 225.76 304.96 407.10 96.5 2782.53 478.10 2577.95 0.0
eqn. (1) ψ11 = −1.0 -0.967 0.735 0.984 96.2 -8.648 1.398 7.776 0.0

ψ20 = 720 744.87 406.15 549.3 95.1 3172.1 799.21 2584.39 4.9
ψ21 = −2.0 -2.060 0.773 1.046 94.9 -7.085 1.671 5.363 4.0

g-est.† ψ10 = 250 247.03 24.29 32.78 94.9 197.49 21.05 58.23 34.8
eqn. (2) ψ11 = −1.0 -0.995 0.052 0.071 94.5 -0.870 0.055 0.144 35.8

ψ20 = 720 721.34 82.35 114.34 92.4 563.92 79.63 183.48 50.6
ψ21 = −2.0 -2.003 0.131 0.183 92.4 -1.724 0.141 0.321 51.4

g-est.‡ ψ10 = 250 250.01 17.17 23.18 95.1 250.81 17.02 25.17 89.4
eqn. (2) ψ11 = −1.0 -1.000 0.038 0.051 95.2 -1.002 0.048 0.064 95.4

ψ20 = 720 720.30 24.05 33.56 92.6 719.18 28.52 41.23 89.3
ψ21 = −2.0 -2.001 0.041 0.056 93.0 -1.999 0.054 0.076 92.2

IMOR ψ10 = 250 242.63 98.11 123.7 98.5 -38.79 122.18 316.73 32.2
ψ11 = −1.0 -0.986 0.213 0.265 98.8 -0.720 0.261 0.416 86.5
ψ20 = 720 716.61 142.34 187.35 96.4 479.47 193.99 345.69 73.7
ψ21 = −2.0 -1.995 0.223 0.295 95.9 -1.797 0.328 0.485 88.3

n = 1000

g-est. ψ10 = 250 237.09 211.23 288.04 94.3 2770.40 335.93 2542.86 0.0
eqn. (1) ψ11 = −1.0 -0.980 0.511 0.697 94.1 -8.587 0.981 7.651 0.0

ψ20 = 720 720.04 284.26 380.78 95.2 3051.94 558.22 2399.22 0.0
ψ21 = −2.0 -2.006 0.540 0.724 94.8 -6.824 1.163 4.965 0.0

g-est.† ψ10 = 250 247.74 16.85 23.10 93.6 198.08 14.96 54.46 12.9
eqn. (2) ψ11 = −1.0 -0.996 0.036 0.050 93.9 -0.871 0.039 0.135 10.1

ψ20 = 720 720.82 60.12 82.74 93.0 562.77 59.65 170.63 25.8
ψ21 = −2.0 -2.002 0.096 0.132 93.1 -1.723 0.106 0.300 24.0

g-est.‡ ψ10 = 250 249.45 12.16 16.68 94.9 250.00 12.04 17.71 89.3
eqn. (2) ψ11 = −1.0 -0.999 0.027 0.037 94.2 -1.000 0.034 0.046 95.3

ψ20 = 720 720.29 17.22 23.73 93.5 720.28 20.30 29.28 90.0
ψ21 = −2.0 -2.001 0.029 0.040 94.3 -2.001 0.038 0.054 92.8

IMOR ψ10 = 250 245.16 69.46 86.78 98.4 -35.38 87.44 299.31 4.8
ψ11 = −1.0 -0.991 0.150 0.186 98.8 -0.727 0.186 0.345 71.3
ψ20 = 720 720.57 101.76 134.35 95.7 464.94 139.89 303.99 53.0
ψ21 = −2.0 -2.001 0.159 0.211 95.9 -1.770 0.236 0.379 83.2

∗ Coverage of 95% Wald-type confidence intervals
† E[Hmod,j(ψ)|hj ] linear in hj (incorrect model)
‡ E[Hmod,j(ψ)|hj ] piece-wise linear (correct model)
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Table 2
AZT initiation and its effects on 12-month CD4 cell counts in the Multicenter
AIDS Cohort Study where (a) the treatment model depends only on prior CD4

and (b) a richer treatment model is assumed. For details of the model for
E[Hmod,j(ψ)|hj ], see section 4.2.

g-estimate eqn (2) IMOR

ψ ψ̂ 95% CI ψ̂ 95% CI

(a) ψ10 -16.61 (-64.37, 31.16) -103.79 (-308.43, 100.85)
ψ11 -0.019 (-0.152, 0.114) 0.177 (-0.457, 0.811)
ψ20 -39.32 (-85.43, 6.79) -116.76 (-294.80,61.27)
ψ21 -0.063 (-0.192, 0.067) 0.134 (-0.313, 0.581)

(b) ψ10 1.40 (-53.10, 55.90) -129.43 (-316.44, 57.57)
ψ11 -0.046 (-0.183, 0.092) 0.182 (-0.340, 0.705)
ψ20 -14.44 (-62.30, 33.42) 197.65 (-2635.69, 3031.00)
ψ21 -0.105 (-0.236, 0.026) -0.442 (-3.103, 2.219)
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