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Introduction

�e generation of massive amounts of data in different forms (such as activity logs and 

sensor measurements) has increased the need for novel data mining algorithms, which 

are capable of building accurate models efficiently and in a distributed fashion. In recent 

years, several researchers proposed novel approaches to distribute the workload among 

several machines for classical clustering, classification and regression tasks [1]. However, 

only a few of them tackle the specific problem of density-based clustering. �is problem 

has received much attention in the last decades, because of many desirable properties of 

the extracted clusters (arbitrarily-shaped, noise-free, robustness to outliers) which turn 

out the be useful in many application domains (e.g., spatial data analysis).

Starting from the seminal work of DBSCAN [2], many algorithms have been proposed, 

but only a few of them are distributed. Unfortunately, existing distributed methods for 

density-based clustering suffer from several limitations. In particular, they are limited 

to data organized in a specific structure (e.g., they can analyze only low-dimensional 

feature spaces), or they suffer from overhead and scalability issues when the number of 

instances and attributes increase considerably [3–5]. �ese limitations depend from the 
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inherent difficulty in upgrading existing non-distributed density-based clustering algo-

rithms towards their equivalent (or, at least, approximated) distributed counterpart. 

Finally, most of the existing methods are strictly tailored for pure clustering and do not 

exploit clusters to support predictive tasks, as in predictive clustering trees [6].

�erefore, our research focused on the following questions: can we perform density-

based clustering on large-scale and high dimensional data, without incurring in compu-

tational bottlenecks? Can we profitably exploit these clusters for predictive purposes? To 

answer to these questions, we propose DENCAST, which simultaneously solves all the 

issues mentioned above. Specifically, it is a novel density-based clustering algorithm, imple-

mented in the Apache Spark framework, which is able to handle large-scale, high-dimen-

sional data. �e proposed approach exploits the identified clusters, built on labeled data, to 

predict the value assumed by one or more target variables of unlabeled objects in an induc-

tive, supervised learning setting. �is characteristic allows the proposed method to solve 

any single- or multi-target predictive task. In this paper, we focus on single- and multi-tar-

get regression tasks, which are central in several real-world applications (see Fig. 1 for a 

graphical overview of the environment in which DENCAST works). For example, solving 

a multi-target regression task can be useful in energy planning and trading from renewable 

sources, such as photovoltaic or wind plants [7]. In this context, multi-step ahead forecast-

ing (usually 24 h) is necessary to predict the energy produced by renewable sources, in order 

to minimize the production from polluting sources and possible money losses [8]. Other 

domains where multi-target regression finds application include traffic flow forecasting [9], 

air quality forecasting [10], bike demand forecasting [11, 12], life sciences (e.g., predicting 

Fig. 1 Overview of the environment in which DENCAST works. In the figure, data coming from multiple 
sources are fed into DENCAST, which produces a clustering model that is exploited for predictive purposes 
on new data (single-target or multi-target regression). DENCAST runs on multiple computational nodes, in a 
distributed fashion
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the toxicity of molecules) and ecology (e.g., analysis of remotely sensed data, habitat model-

ling) [13]. �e peculiarities of data in such application domains further motivate the adop-

tion of the predictive clustering framework in this paper. Indeed, not only several studies in 

the literature proved the effectiveness of predictive clustering frameworks [6, 14–16], but it 

has shown to be particularly appropriate when data exhibit different forms of autocorrela-

tion [17], i.e., objects which are close to each other (spatially, temporally, or in a network) 

appear more related than distant objects. Such phenomena are commonly present in data 

regarding the cited domains and approaches based on clustering can naturally detect them.

�erefore, the main contribution of this paper consists in a method for distributed 

density-based clustering which, contrary to existing works (see “Distributed methods for 

density-based clustering” and “Distributed methods for multi-target regression” sections), 

simultaneously shows all the following key features:

• It works on the neighborhood graph. In this way, the algorithm needs only object IDs 

and their neighborhood relationships (instead of their initial, possibly high-dimensional, 

representation) and thus it requires limited space resources. We build such a neighbor-

hood graph efficiently from high-dimensional data through the locality-sensitive hash-

ing (LSH) method [18].

• It is implemented in the Apache Spark framework and it is fully distributed. �erefore, 

it does not require pre-processing or post-processing steps, usually performed on a sin-

gle machine (see “ Distributed methods for density-based clustering” section for details 

about this aspect in other methods). �is aspect allows our method to analyze large-

scale datasets without incurring in computational bottlenecks.

• �e identified density-based clusters can be exploited to predict the value of one or 

more target variables, by means of a density- and distance-based approach. �e result is 

that the proposed method can be adopted to solve single-target and multi-target regres-

sion tasks in a distributed setting.

Overall, we propose a distributed density-based clustering algorithm that is capable to (i) 

handle large-scale data; (ii) deal with the high dimensionality of data; (iii) exploit the identi-

fied clusters to perform predictions in both single-target and multi-target settings. To the 

best of our knowledge, existing methods are limited in one or more of these aspects, or are 

not able to address all of them simultaneously.

In “Background” section, we introduce some background notions and briefly review exist-

ing methods that are related to this paper. In “Method” section, we propose our distributed 

density-based (predictive) clustering method, while in “Time complexity analysis” section 

we analyze its time complexity. In “Results and discussion” section, we describe the experi-

mental evaluation, showing that our method obtains accurate predictions and appears effi-

cient in dealing with massive amounts of high-dimensional data. Finally, in “Conclusion” 

section we draw some conclusions and outline future work.
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Background

�e pioneer density-based clustering approach in the literature is DBSCAN [2]. �is 

approach is able to identify arbitrarily shaped clusters (i.e., not only spherical) with-

out requiring the number of clusters to be extracted as an input parameter. However, it 

requires two other parameters, i.e., eps and minPts.

Since several concepts that characterize density-based algorithms are in common with 

those adopted in this paper, we recall some useful notions:

• �e neighborhood N(p) of an object p is defined as the set of objects whose dis-

tance from p, according to a given measure, is within the threshold eps. Formally, 

N (p) = {q | dist(p, q) < eps}.

• An object p is a core object w.r.t. eps and minPts if it has at least minPts objects in its 

neighborhood N(p). Formally, p is a core object if |N (p)| ≥ minPts.

• An object p is directly density-reachable from an object q if p ∈ N (q) and q is a core 

object.

• An object pw is density-reachable from an object p1 if there exists a chain of objects 

p1, p2, . . . , pw , such that for each pair of objects 〈pi , pi+1� , pi+1 is directly density-

reachable from pi w.r.t. eps and minPts.

• An object p is density-connected to an object q if there exists an object o, such that 

both p and q are density-reachable from o w.r.t. eps and minPts.

• A cluster is a non-empty subset of objects, where each pair of objects 〈p, q〉 is density-

connected.

• Non-core objects belonging to at least one cluster are called border objects, whereas 

objects not belonging to any cluster are considered noise objects.

Specifically, DBSCAN starts with an arbitrary object o and, if this is a core object, 

retrieves all the objects which are density-reachable from it w.r.t. eps and minPts, return-

ing a cluster. �e algorithm then proceeds with the next unclustered object. Other 

density-based methods follow a slightly different approach. For example, Density Peaks 

Clustering (DPC) [19] follows a hybrid workflow which takes inspiration from both cen-

troid-based and density-based methods. In particular, it selects some objects as cluster 

centroids, and subsequently assigns other objects to centroids according to the fact that 

they locally show density peaks. �e algorithm identifies density peaks according to two 

indicators: a local density indicator, which corresponds to the concept of eps-neighbor-

hood in DBSCAN, and the maximum similarity (or minimum distance) indicator, com-

puted between the current object and any object with higher local density. Similarly, 

Mean Shift [20] selects an object, identifies a circle of a pre-defined radius, computes the 

centroid of objects which fall within the radius, and it moves its center towards it. �is 

process, which works iteratively, allows the algorithm to find a local maximum (in terms 

of density) for each object, and to group objects that appear to be tied to the same local 

maximum. Mean Shift does not require to specify the number of clusters to be extracted, 

coherently with other density-based clustering algorithms. However, it requires to spec-

ify the radius, and its time complexity is O(n2 · I) , where n is the number of objects and 

I is the number of iterations, which can be considered high for high-dimensional and 

large-scale data.
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�ese density-based methods, even if they follow different approaches, are able to 

identify accurate and arbitrary shaped clusters, and are almost independent of the order 

of the analysis of objects. Moreover, many variants available in the literature aim to 

adapt density-based clustering algorithms (in particular DBSCAN) to specific contexts 

or to overcome limitations on time and space complexity. Regarding this aspect, in “Dis-

tributed methods for density-based clustering” section we briefly review existing works 

focusing on novel strategies to make density-based approaches applicable to large data-

sets. Moreover, since this paper has its roots also in methods for multi-target regression, 

in “Distributed methods for multi-target regression” section we briefly describe some 

related works in this field.

Distributed methods for density-based clustering

Although in the literature we can find some existing clustering algorithms which are 

able to handle large-scale and/or high-dimensional data [21–23], only few of them are 

density-based. �e first attempts focused on extensions or variations of the well-known 

DBSCAN algorithm. �e first extensions of DBSCAN concern the estimation of the 

optimal value of the input parameters eps and minPts [24] and its applicability to differ-

ent contexts, such as data streams [25] and spatio-temporal data [26]. Due to the neces-

sity to process large, high-dimensional datasets, more recent works have focused on the 

optimization of the time complexity, which is originally O(n2 · m) , where n is the num-

ber of objects and m is the number of features. Since the dominating phase is the iden-

tification of the neighborhood of all nodes (which time complexity is, thus O(n2 · m) ), in 

[27] the authors proposed to adopt the locality-sensitive hashing (LSH) [18] to perform 

this phase in O(n · m) . Although this method is able to process high-dimensional data, it 

cannot distribute the workload both in time and space to multiple machines and, conse-

quently, cannot scale in the presence of distributed architectures, thus limiting the pos-

sibility of handling large datasets.

In [3], the authors proposed a distributed variant of DBSCAN for MapReduce, which 

exploits an R-Tree-based index to compute the distance among objects. However, 

R-Tree-based indexes are not efficient with high-dimensional data [28], due to a high 

overlap among bounding boxes. For this reason, experiments are limited to 2D data-

sets. In [4] and [5], the authors proposed a variant of DBSCAN, named RDD-DBSCAN, 

implemented in Apache Spark. RDD-DBSCAN consists of three phases: data partition-

ing, local clustering and global labeling. �e algorithm takes as input the same param-

eters as DBSCAN, and defines a bounding rectangle for the whole dataset. Subsequently, 

the algorithm splits this rectangle into two parts, containing approximately the same 

number of data points. �e resulting partitions are clustered locally on executor nodes. 

In the global labeling phase, RDD-DBSCAN examines all the points that are within a 

specified distance (eps) of the borders of the bounding rectangle of each partition. If 

two clusters contain some common objects, the algorithm assumes they are the same 

cluster. Given these characteristics, these two works show the same limitations of the 

method proposed in [3], i.e., experiments are limited to 2D data. Moreover, one com-

mon limitation of [3–5], also present in the density-based approach proposed in [29], 

is the necessity of a merging phase which aggregates partial results obtained by the 

worker machines. �is phase usually takes place on a single (driver) machine and can, 
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in principle, require a complexity O(n2) , possibly leading to a significant increase of the 

overall running time.

Our method faces all the issues raised by large-scale, high-dimensional datasets. In 

particular, we propose an approach which is computationally efficient and distributed in 

all its steps, leading to the easy handling of large-scale datasets, and that, inspired by the 

work in [27], adopts locality-sensitive hashing to handle high-dimensional data.

Distributed methods for multi-target regression

In the literature, and specifically in the field of Structured Output Prediction, research-

ers paid much attention to the multi-target regression task [13], i.e., to the learning of 

regression models for multiple target attributes. �e easiest way to solve this task con-

sists in the application of methods for single-target regression for each target attribute, 

independently (local models). In this way, almost all the existing approaches allow to 

perform multi-target regression, even if they require an adaptation step. Focusing on 

methods for processing large-scale datasets, in the literature we can find some distrib-

uted approaches for single-target regression (elastic net regularized linear regression 

[30] and isotonic regression [31]) that can be adapted to multi-target regression tasks.

A recent survey [32] highlighted the advantages and disadvantages of prediction algo-

rithms in parallel multicore systems. Some simple algorithms, such as AutoRegressive 

Integrated Moving Average (ARIMA) [33], k-nearest neighbors and linear regression, 

show a moderate computational cost and good prediction performances in many scenar-

ios when the task is that of prediction or forecasting with a limited time horizon. Other 

algorithms, such as Neural Networks and deep neural networks [34], show a higher pre-

dictive accuracy and the ability to consider nonlinearity in the in data, at the cost of a 

higher computational complexity.

More complex approaches for multi-target regression learn a global model which is 

able to predict the value of all the target attributes as a whole. Since these approaches 

specifically perform multi-target regression, i.e., they can exploit possible dependencies 

among the target attributes, usually lead to better predictive performance (see [35] for 

an example showing the superiority of global methods in the case of predictive cluster-

ing trees).

Statistical approaches can be considered as the first attempt to deal with the simul-

taneous prediction of multiple real-valued target attributes [36]. Subsequent attempts 

focused on extending support vector regression (SVR) models in order to allow them to 

manage multiple target variables. For example, in [37] the authors developed a vector-

valued SVR (i.e., able to predict a vector of numeric values) by adapting the concepts of 

estimator, loss function and regularization function from the scalar-valued case to the 

vector-valued case. Another recent approach [38] proposed to extend the least squares 

SVR to the multi-target setting.

Alternative approaches (see [35] and [39]) proposed a multi-target variant of regres-

sion trees, which exploits possible correlations among the different target attributes. 

Moreover, it is noteworthy that neural networks and deep learning algorithms can natu-

rally be applied to the multi-target setting, by defining the output layer with multiple 

neurons. In this class of methods, it is worthy to mention the long short-term neural 
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networks [40], which are particularly powerful when data describe seasonal and recur-

rent phenomena characterized by temporal correlations.

However, to the best of our knowledge, global methods for multi-target regression 

that are distributed, and therefore able to process large-scale, high-dimensional datasets, 

are still scarcely available in the literature. An exception is the implementation of the 

ARIMA models [33], available in the Spark-TS library,1 which, however, is tailored for 

the analysis of time series. In particular, the different target variables regard the same 

feature predicted in different time instants in the future.

Moreover, recently, researchers put a significant effort to the adaptation of deep 

learning algorithms towards distributed frameworks, such as Apache Spark. Impor-

tant examples are DeepLearning4J,2 Elephas3 and TensorFlowOnSpark4 which provide 

straightforward approaches to distribute: (i) the data during the training phase, (ii) the 

workload in the hyper-parameter optimization, or (iii) the learning of ensembles of 

models.

Method

On the basis of the notions introduced in “Background” section, in this section we 

describe our method, which general workflow is depicted in Fig.  2 and formalized in 

Algorithm 1. Note that, since our method is implemented in the Apache Spark frame-

work, we adopt the Resilient Distributed Dataset (RDD) data structure and its opera-

tions (see [41] for details). 

Fig. 2 Workflow of the proposed method. Orange blocks represent inputs (labeled and unlabeled objects) 
and outputs (predictions); grey blocks represent intermediate results; blue blocks represent the different 
phases of the proposed method

1 githu b.com/sryza /spark -times eries .
2 deepl earni ng4j.org/docs/lates t/deepl earni ng4j-scale out-intro .
3 githu b.com/maxpu mperl a/eleph as.
4 githu b.com/yahoo /Tenso rFlow OnSpa rk.

http://github.com/sryza/spark-timeseries
http://deeplearning4j.org/docs/latest/deeplearning4j-scaleout-intro
http://github.com/maxpumperla/elephas
http://github.com/yahoo/TensorFlowOnSpark
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Algorithm 1: Main Algorithm

Data:

· m: Integer
number of (non-target) descriptive attributes

· k: Integer
number of target attributes

· AL: RDD[Node, Vector]
labeled objects represented by a node and an (m+k)-dimensional feature vector

· AU : RDD[Node, Vector]
unlabeled objects represented by a node and an m-dimensional feature vector

· minPts: Integer ∈ [1, |AL|]
min number of neighboring objects for core objects

· labelChangeRate: Double ∈ [0, 1]
min percentage of propagations to perform an iteration

Result:

· pred: RDD[Node, Vector]
unlabeled objects associated with predictions for the k target attributes

1 begin

/* Neighborhood graph identified by LSH. Edges are represented as pairs of
nodes 〈src, dst〉 */

2 〈V : RDD[Node], E : RDD[Node, Node]〉 = LSH(AL);

/* /*edonhcaefosruobhgienehtyfitnedI
3 objNeig: RDD[Node, Set[Node]] = E.aggregateByKey();

/* Identify core objects (i.e., those having at least minPts neighbours) */
4 cores: RDD[Node] = objNeig.filter{case(node, neig) → neig.size ≥ minPts}.keys;

/* /*sretsulcehtyfitnedI
5 clusters: RDD[Node, ClusterID] = findClusters(V, E, cores, labelChangeRate);

/* /*serutaefstiotedonhcaepameR
6 model: RDD[Node, 〈Vector, ClusterID〉] = AL.join(clusters)

/* Exploit the clusters to predict the value of non-target attributes for
/*stcejbodelebalnu

7 pred: RDD[Node, Vector] = predict(m, k, model, AU )

8 return pred

9 end

Given the dataset AL consisting of n labeled objects represented by m + k attributes 

(m descriptive attributes and k target attributes), we first apply a distributed variant 

of locality-sensitive hashing—LSH [42] (line 2) to identify an approximate neighbor-

hood graph. �e obtained graph consists of a node for each labeled object and an 

undirected edge for each pair of nodes 〈u, v〉 , which appear similar enough accord-

ing to the representation obtained after the application of the LSH algorithm and 

a threshold minSim. �is step and the specific details about the distributed variant 

adopted are described in “Identification of the neighborhood graph” section. From 

this point, the algorithm only uses the neighborhood graph, which can be considered 

an approximate representation of the objects and their distances, instead of objects 

represented in the original feature space. �is design choice, which has been conven-

iently adopted by several clustering algorithms (see for example [43]), reduces sig-

nificantly the space and the time necessary for the next steps: identification of the 

neighbours of each node (line 3) and identification of core objects (line 4), i.e., those 

having at least minPts nodes in their neighborhood.

Our method for density-based clustering then maps each labeled node to a clus-

ter (line 5), by propagating cluster IDs from core objects through their neighbors. 
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As we will describe in “Density-based clustering” section, our approach is iterative 

and requires a stopping criterion, based on a threshold (labelChangeRate), aiming to 

avoid unnecessary iterations, which would lead to slight changes in cluster assign-

ments. It is noteworthy that not all the objects will be necessarily assigned to a clus-

ter, i.e., similarly to existing density-based clustering algorithms, our algorithm is able 

to discard objects that can be considered noise or outliers, since they are too far in 

the feature space from the identified clusters.

Finally, we re-associate all the nodes with the original features of the corresponding 

objects (line 6) and exploit the identified clusters to predict the value of the target attrib-

utes for all the nodes of a set of unlabeled objects AU (line 7). �e prediction step is 

described in detail in “Exploiting clusters for multi-target regression” section.

Identi�cation of the neighborhood graph

As we mentioned in “Method” section, we adopt a distributed variant of the locality-

sensitive hashing (LSH) method to efficiently identify an approximate neighborhood 

graph, which will then be exploited by our clustering algorithm. LSH hashes objects so 

that similar objects map to the same buckets with a high probability (where the number 

of buckets is much smaller than the number of analyzed objects). Contrary to conven-

tional hash functions, LSH maximizes the probability of collision for similar objects [44]. 

LSH exploits some properties of the cosine similarity: given two objects represented as 

(m + k)-dimensional vectors, the probability of a random hyperplane to correctly sepa-

rate them increases as the angle between them increases [42]. Accordingly, the compu-

tation of the neighborhood of each node in AL through LSH is reformulated as follows:

• Generate r random (m + k)-dimensional hyperplanes, where r ≪ (m + k);

• Represent each object p ∈ AL as an r-dimensional bit stream pr , where the i-th fea-

ture is 0 or 1 according to the side of the i-th hyperplane which p falls into;

• Generate numPerm random permutations of r elements. For each permutation, per-

mute the bit stream of all the objects in AL (each object is represented by numPerm 

bitstreams). Bitstreams, for each permutation, are then sorted lexicographically.

• Find the set Ñ (p) of the B nearest neighbors of each object p in every sorted list and 

compute the Hamming distance between the bitstream of p and the bitstream of the 

objects in Ñ (p) . Every object q ∈ Ñ (p) having a Hamming distance with p smaller 

than a given threshold minSim is included in N(p).

�e implementation we adopt5 is the distributed variant proposed in [42]. Such a vari-

ant identifies N(p) by replacing the Hamming distance with the exact cosine similarity, 

which avoids the presence of false positives (objects detected as neighbors, that actu-

ally are not). Formally: N (p) = {q|q ∈ Ñ (p) ∧ cosine(p, q) ≥ minSim} . Although other 

variants of LSH, based on different similarity/distance measures are available in the lit-

erature [45], they mainly exploit the Euclidean distance on the unit sphere, which actu-

ally corresponds to the cosine similarity. Moreover, their adoption would require an 

5 https ://githu b.com/sound cloud /cosin e-lsh-join-spark .

https://github.com/soundcloud/cosine-lsh-join-spark
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additional step to normalize the values in [0,1], leading to introduce possible approxima-

tion errors.

Density-based clustering

In this section, supported by the pseudo-code of Algorithm 2 and by Fig. 3, we describe 

our distributed density-based clustering method. Our implementation exploits GraphX 

APIs6 of Apache Spark to analyze the neighborhood graph identified by LSH. GraphX 

[47] internally represents graphs through a collection of vertices and a collection of 

edges, built on top of the Spark RDD. �e vertex collection is hash-partitioned by vertex 

IDs and supported by a local hash index in each partition, which facilitates frequent joins 

across vertex collections. �e edge collection is horizontally partitioned and supported 

by a routing table that enables the efficient lookup of edges according to their source and 

target vertices. GraphX also adopts specific strategies to reduce network costs and to 

avoid unnecessary movements of unchanged data in subsequent iterations. Additional 

details can be found in [47]. Interestingly, GraphX provides the counterpart of the most 

common primitives of Spark RDDs for graph processing, such as map, filter and aggre-

gate, which are exploited by our method in order to manipulate distributed graphs.

Fig. 3 Graphic representation of the clustering approach. a Initialization of cluster IDs. b Core objects 
propagate their cluster ID to their neighbors (map phase). Nodes highlighted in red receive multiple 
messages. c Multiple cluster IDs received by the same node are aggregated (reduce phase). Dotted lines 
represent the final clustering result, after some iterations

6 Although other APIs for graph analysis have been recently proposed [46], they can only improve the efficiency when 
there is an unidirectional value propagation. Since, in our case, propagation can happen in both directions, GraphX 
appeared the most appropriate approach, since directly integrated within Apache Spark.



Page 11 of 27Corizzo et al. J Big Data            (2019) 6:43 

Algorithm 2: findClusters(V,E,cores,labelChangeRate). Distributed density-

based clustering.

Data:

· V : RDD[Node]
nodes of the neighborhood graph

· E: RDD[Node, Node]
edges of the neighborhood graph (as pairs 〈src, dst〉)

· cores: RDD[Node]
core objects

· labelChangeRate: Double ∈ [0, 1]
min percentage of propagations for a new iteration

Result:

· clusters: RDD[Node, ClusterID]
labeled objects associated to their cluster ID

1 begin

/* /*sDIretsulcehtfonoitazilaitinI

2 clusterID = 0
3 clusters: RDD[Node, ClusterID] = V.map
4 {v → if v ∈ cores then 〈v, (clusterID += 1)〉 else 〈v, 0〉}

/* /*sDIretsulcfonoitagaporP
5 threshold = labelChangeRate · |E|
6 repeat

7 propagations = 0

/* /*esahppaM
8 clusters = E.map
9 {case (〈src, srcID〉, 〈dst, dstID〉) →

10 if src ∈ cores and srcID > dstID then
11 propagations = propagations + 1
12 〈dst, srcID〉
13 else
14 〈dst, dstID〉}

/* /*esahpecudeR
15 clusters = clusters.reduceByKey{case(ID1, ID2) → max(ID1, ID2)}

16 until propagations < threshold
17 return clusters

�e novelty of the proposed method relies on the formulation of a density-based clus-

tering method that performs the exploration of the neighborhood graph, through the 

GraphX programming primitives, in a fully distributed way. We stress this last aspect, 

since, contrary to existing methods [3–5], it does not require a merging phase at the end, 

usually performed on a single driver machine.

We recall that the original DBSCAN implementation [2] identifies a cluster starting 

from an arbitrary core object and retrieving all objects which are density-reachable from 

it w.r.t. eps and minPts. Our approach aims at identifying all the reachable nodes of all 

the core objects simultaneously. �is is performed by propagating the cluster assign-

ment of all the core objects to their neighbors, until the cluster assignment appears sta-

ble enough.

�e first step consists in assigning a different cluster ID to each core object. Non-core 

objects are associated with 0 (lines 2–4). �en we start a process which, as mentioned in 

“Method” section, iterates until a criterion based on the number of propagations is not 

satisfied. In particular, we stop the iterative process when the number of propagated IDs 

is below a given percentage (labelChangeRate) of the number of edges of the neighbor-

hood graph (line 5). �is strategy avoids the execution of additional iterations that would 

only lead to slight changes in cluster assignments. 
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Algorithm 3: findClusters(V,E,cores,labelChangeRate). Pseudo-code de-

scription.
Data:

· V : nodes of the neighborhood graph

· E: edges of the neighborhood graph (as pairs 〈src, dst〉)

· cores: core objects

· labelChangeRate: min percentage of propagations to perform a new iteration
Result:

· clusters labeled objects associated with their cluster ID

1 begin
/* /*sDIretsulcfonoitazilaitinI

2 clusters ← V
3 clusterID ← 1
4 foreach v ∈ clusters do
5 if v ∈ cores then
6 v.clusterID ← clusterID
7 clusterID ← clusterID + 1

8 else
9 v.clusterID ← 0

/* /*sDIretsulcfonoitagaporP
10 threshold ← labelChangeRate · |E|
11 repeat
12 propagations ← 0

/* /*sedonehtllarofsegassemteseR
13 foreach v ∈ clusters do
14 v.messages ← ∅

/* Each node receives multiple messages from (core, clustered)
/*sedongnirobhgien

15 foreach e = 〈src, dst〉 ∈ E do
16 if src ∈ cores and src.clusterID > dst.clusterID then
17 dst.messages ← dst.messages ∪ {src.clusterID}
18 propagations ← propagations + 1

/* /*sedonehtybdeviecersegassemetagerggA
19 foreach v ∈ V do
20 v.clusterID ← max(v.messages)

21 until propagations < threshold
22 return clusters

Each iteration consists in the propagation of the cluster ID from all the core objects 

towards their neighbors. To this aim, we perform a map phase which works on the set of 

edges of the neighborhood graph (lines 8–14). In particular, for each edge 〈src, dst〉,7 we 

propagate the cluster ID of the node src towards the node dst if src is a core object and 

if its current cluster ID is higher than the cluster ID of the object dst.8 �is choice guar-

antees a deterministic behaviour of our approach, as well as its convergence. Moreover, 

similarly to [46], it leads to a reduction of the number of messages possibly exchanged 

among different machines in the cluster.

After propagation, each node receives multiple cluster IDs from its neighboring core 

objects. �erefore, the final step of each iteration consists of a reduce phase (line 15), 

7 We remind that the neighborhood graph is undirected. �e identifiers src and dst are used only to distinguish between 
the two nodes involved in the link. �is means that, in the algorithms, ∀p, q ∈ V  the edge 〈p, q〉 is interchangable with 
(equivalent to) the edge 〈q, p〉.
8 It is noteworthy that this is only an implementation choice. Indeed, we could propagate the lowest cluster IDs without 
any change in the final clustering result, since the density-connection property that we catch from the neighborhood 
graph is symmetric and transitive.
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which aggregates the set of received cluster IDs into a single cluster ID. Coherently with 

the approach adopted during the map phase, each node will be assigned to the highest 

cluster ID received (see footnote 8). �is leads, after some iterations, to collapse neigh-

boring clusters in a single cluster, that is, the cluster with the highest ID. �is makes the 

final merging phase, typically performed by existing distributed clustering methods on a 

single driver node, not necessary.

In Algorithm  3, we report a higher-level (non-parallel) pseudo-code description of 

Algorithm 2, from which it is possible to observe the performed steps also without going 

into details about the Apache Spark primitives.

An example of an iteration performed by our density-based clustering method can be 

observed in Fig. 3.

Exploiting clusters for multi-target regression

In this section, we describe the strategy we adopt to exploit the identified clusters to 

solve both single-target and multi-target regression tasks (see Fig.  4). Formally, given 

the set of unlabeled objects AU , we aim at predicting the value of the target attributes 

for each object in AU . Inspired by other solutions which exploit clusters for predictive 

purposes [15] we estimate, for each unlabeled object u ∈ AU , the cluster c(u) to which 

u ideally belongs: that is, the cluster to which u would have been assigned, if it had been 

known during the clustering process. We identify the most similar labeled object l and 

assign u to its cluster, i.e. c(u) = c(l) . Formally:

where cosineSim(·, ·) is the cosine similarity between two vectors and l[1:m] is the sub-

vector of the object l, consisting of only the descriptive attributes. Finally, we predict 

the value of the target attributes of each unlabeled object u by computing the average of 

(1)c(u) = c
(

argminl∈AL
cosineSim

(

u, l[1:m]

))

,

Fig. 4 Graphical representation of the prediction phase of our approach. Each unlabeled object is assigned 
to the cluster containing the most similar labeled object (dotted lines) and the value of its target attributes 
are predicted according to a weighted average of the values assumed by the labeled objects in such a cluster 
(crossed circle)
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the values associated to the target attributes of all the objects falling in the cluster c(u), 

weighted according to their similarity with u. Formally:

where l[m+1:m+k] is the sub-vector of the object l, consisting of only the target attributes, 

AL(c(u)) is the subset of objects of AL falling in c(u) and u[m+1:m+k] is the part of the vec-

tor u reserved for target values.

Note that, this approach is coherent with the philosophy of density-based clustering 

because it extends the concept of density-connection to unlabeled examples.

More details about the implementation of the prediction phase are formalized in 

Algorithm 4. In particular, we first compute the cosine similarity between all the unla-

beled objects in AU and all the labeled objects in AL (lines 2–8). �en we associate each 

unlabeled object to the cluster in which its most similar labeled object falls (lines 9–17). 

Finally, we predict the value of the target attributes of each unlabeled object according to 

Eq. 2 (lines 18–33).

As for the clustering phase, also this phase is fully distributed. Here, the idea is to per-

form an incremental computation of the weighted average, which mainly consists of 

a map phase (lines 25–27) and a reduce phase (lines 28–30). Such a computation also 

exploits the operators: + between two vectors, which distributedly computes their ele-

ment-wise sum and ∗ (resp. /) between a vector and a scalar, which distributedly com-

putes the multiplication (resp. division) of each element of the vector by the scalar.

Time complexity analysis

In this section, we analyze the time complexity of the proposed method. First, we con-

sider the time complexity of the training phase, by following the steps of the main algo-

rithm (Algorithm 1) and of the clustering algorithm (Algorithm 2).

In particular, the first step performed by our method is the identification of the neigh-

borhood graph through LSH (Algorithm  1 , line 2), which has a time complexity of 

O(|V | · m) [18], where |V| is the number of nodes (i.e., objects) and m is the number of 

features. Next, the identification of the neighborhood of each object (Algorithm 1, line 3) 

requires a scan of the whole neighborhood graph, i.e., O(|V | · B) operations, where B is 

the maximum number of neighboring objects identified by LSH for each node. Given the 

neighborhood of each object, the identification of core objects (Algorithm 1, line 4) only 

requires a single scan of all the objects, leading to a complexity of O(|V|). Finally, after 

executing the density-based clustering algorithm, a final join operation (Algorithm  1, 

line 6) is performed. �is join operation, since the used data structures (i.e., paired RDD) 

are indexed on the node identifier, has a time complexity of O(2 · |V |) . �erefore, the 

pre-processing and the post-processing steps of our main clustering algorithm require 

an overall time complexity of:

that, since B is a constant, can be approximated to

(2)u[m+1:m+k] =

∑
l∈AL(c(u)) cosineSim(u, l[1:m]) · l[m+1:m+k]

∑
l∈AL(c(u)) cosineSim(u, l[1:m])

,

(3)O(|V | · m) + O(|V | · B) + O(|V |) + O(2 · |V |)

(4)O(|V | · m).
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Algorithm 4: predict(m, k,model, AU )

Data:
· m: Integer

number of (non-target) descriptive attributes

· k: Integer
number of target attributes

· model: RDD[Node, 〈Vector, ClusterID〉]
clustering result: labeled objects associated with their (m+k)-dimensional feature
vector and their cluster ID

· AU : RDD[Node, Vector]
unlabeled objects represented by a node and an m-dimensional feature vector

Result:
· pred: RDD[Node, Vector]

unlabeled objects associated with predictions for the k target attributes

1 begin
/* Compute similarities between unlabeled objects and labeled objects,

keeping the cluster ID and the value of target attributes */
2 sims: RDD[Node, 〈ClusterID, Double, Vector〉] = AU

3 .cartesian(model).map
4 {case(〈unNode, unV ec〉, 〈node, 〈vec, cluster〉〉) →

/* /*setubirttategrat-noN
5 nontarget = vec.take(m)

/* /*ytiralimisenisoC
6 sim = cosineSim(unV ec, nontarget)

/* /*setubirttategratfoeulaV
7 target = vec.takeRight(k)

8 〈unNode, 〈cluster, sim, target〉〉}

/* Associate unlabeled objects to the cluster of the most similar labeled
object */

9 assocClusters: RDD[Node, ClusterID] = sims
10 .reduceByKey
11 {case(〈clust1, sim1, val1〉, 〈clust2, sim2, val2〉) →
12 if (sim1 > sim2) then
13 〈clust1, sim1, val1〉
14 else
15 〈clust2, sim2, val2〉}
16 .map
17 {case(unNode, 〈cluster, sim, target〉) → 〈unNode, cluster〉}

/* Compute predictions through a weighted average of the values of
target attributes of labeled objects belonging to the associated

/*retsulc

18 pred: RDD[Node,Vector] = sims
19 .map
20 {case (unNode, 〈cluster, sim, target〉) →
21 〈〈unNode, cluster〉, 〈sim, target〉〉}
22 .filter
23 {case(〈unNode, cluster〉, 〈sim, target〉) →
24 cluster == assocClusters.lookup(unNode)}
25 .map
26 {case (〈unNode, cluster〉, 〈sim, target〉) →
27 〈〈unNode, cluster〉, 〈(sim ∗ target), sim〉〉}
28 .reduceByKey
29 {case(〈target1, sim1〉, 〈target2, sim2〉) →
30 〈(target1 + target2), (sim1 + sim2)〉}
31 .map
32 {case(〈unNode, cluster〉, 〈sumTarget, sumSim〉) →
33 〈unNode, (sumTarget / sumSim)〉}
34 return pred

Focusing on the main clustering algorithm (Algorithm 2), we can observe that the 

initialization (Algorithm  2, lines 2–4) requires O(|V|) operations, since it performs 

an assignment for each object. �en, the algorithm performs u iterations of the main 
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loop (Algorithm 2, lines 6–15), each of which consisting of a map and a reduceByKey 

performed on all the links of the neighborhood graphs. �is means that, since the 

neighborhood graph has O(|V | · B) links, the main clustering algorithm has an overall 

time complexity of:

�e number of performed iterations u can be (pessimistically) estimated as the average 

number of steps required to propagate the cluster ID of a core object to all the other 

objects. Since objects in the neighborhood graph have at most B neighbors, we can 

observe that, starting from a given core object, in u iterations we are able to propagate 

its cluster ID to B + O(B2) + O(B3) + · · · + O(Bu) objects,9 that can be approximated 

to O(Bu) . �is means that, in order to reach all the objects (we have this guarantee when 

B
u ≥ |V | ), we need at least u = log

B
|V | iterations. In fact:

�erefore, by assuming u = O(log
B

|V |) and by combining Eqs. 4 and 5, we can conclude 

that the time complexity of the training phase is:

As regards the prediction phase (Algorithm 1, line 7 and Algorithm 4), we compute the 

cosine similarity between the unlabeled object and all the labeled objects (Algorithm 4, 

lines 2–8), leading to a time complexity of O(|V | · m) . �en, the identification of the 

cluster containing the most similar labeled object (Algorithm 4, lines 9–17) requires a 

scan of all the labeled objects, which time complexity is O(|V|). Finally, the weighted 

average computed to make the predictions (Algorithm 4, lines 18–33), requires the scan 

of the objects belonging to the selected cluster that, in the worst case scenario (i.e., all 

the objects belong to one single cluster), requires O(|V|) operations. �erefore, the over-

all complexity of the prediction phase is:

Results and discussion

In the following, we first describe the experimental setting, the competitor systems, and 

the adopted datasets. Finally, we show and discuss the obtained results.

Experimental setting and competitor systems

Our experiments focused on two aspects: scalability and regression performances. It is 

noteworthy that the accuracy achieved in solving the regression task is a clear indicator 

of the quality of the identified clusters.

Regarding scalability, we compared DENCAST with a highly optimized clustering 

method available in Apache Spark, i.e., K-means, on a large-scale dataset. �e adop-

tion of the K-means implementation available in Apache Spark is motivated by its high 

(5)O(u · 2 · |V | · B) = O(|V | · u).

(6)B
u ≥ |V | ⇒ log

B
B
u ≥ log

B
|V | ⇒ u ≥ log

B
|V |

(7)O(|V | · m) + O(|V | · log
B

|V |).

(8)O(|V | · m) + O(|V |) + O(|V |) = O(|V | · m)

9 �is assumes that, during the exploration of the graph, the propagation always happens towards new (not already vis-
ited) objects. However, if an object receives the same cluster ID multiple times during the execution of different itera-
tions, the propagation does not happen and, therefore, it is not counted (Algorithm 2, lines 10–12).
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popularity, as well as by its native presence as an official, stable implementation since the 

early versions of the Spark MLLib machine learning library.

For a fair comparison, we let K-means extract the same number of clusters identified 

by DENCAST. We run the experiments on a cluster of five machines, each equipped 

with a 4-cores (8 threads) CPU at 3.40 GHz, 32 GB of RAM and a 750 GB SSD hard 

drive. Moreover, we measured DENCAST running times on a single machine, with an 

increasing number of instances, and compared them with those obtained on the cluster 

of machines, in order to directly evaluate the performance gain due to the distributed 

environment. By exploiting such results, we also evaluated the speedup factor, i.e., the 

ratio between the running time on a single machine and the running time on the clus-

ter. Finally, we measured the scaleup factor, which shows the ability of DENCAST to 

exploit the computational power of multiple CPUs to process an increasing number of 

instances.

Regression performances were evaluated in a forecasting setting since all the consid-

ered datasets contain measurements of a target variable at different time stamps (see 

“Datasets” section). Moreover, we performed the experiments in both the single-target 

(ST) setting, to predict a single target value in the future, and the multi-target (MT) set-

ting to predict a time series in the future. We performed the evaluation in terms of Root 

Mean Square Error (RMSE) and, for the time series, on the average RMSE over the time 

series.

We compared DENCAST with: (i) a baseline strategy, which predicts the value of the 

target attributes using the average value in the training set (AVG); (ii) four distributed 

regression algorithms, i.e., linear regression (LR), isotonic regression (ISO), ARIMA and 

a distributed implementation, based on DeepLearning4J, of long short-term memory 

neural networks (LSTM) for regression; (iii) the K-means clustering algorithm, extended 

to solve regression tasks.10

Methodologically, LR trains an elastic net regularized linear regression model [30], 

which overcomes the limitations of the LASSO method by combining the L1 and L2 

penalties of the LASSO and ridge methods. ISO is capable of fitting a non-decreasing 

free-form line to a set of points, without assuming the linearity of the target func-

tion [31]. LSTM learns neural networks that effectively model temporal dependencies 

in sequential data, by introducing loops in the structure of the network that allow the 

information to persist [40]. For K-means, we adopted a prediction strategy similar to 

that described in “Exploiting clusters for multi-target regression” section, except for the 

cluster assignment that was performed according to the closest cluster centroid (coher-

ently with the way it performs clustering).

We clarify that, although several additional methods for single- and multi-target 

regression exist in the literature, we focus on those for which a distributed implementa-

tion is available. Non-distributed algorithms have been widely investigated before, and a 

comparison with them is out of the scope of our analysis.

We run LR and ISO only in the single target setting since they do not perform 

multi-target regression. On the other hand, we adapted K-means and AVG to perform 

10 �e adopted implementation of the ARIMA algorithm is available at https ://githu b.com/sryza /spark -times eries . LR, 
ISO, and K-means are available in the Apache Spark MLlib library.

https://github.com/sryza/spark-timeseries
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multi-target regression, following the same principle adopted by DENCAST to solve 

regression tasks.

We optimized the input parameters of all the methods on an independent split of each 

dataset as follows:

• DENCAST We set labelChangeRate = 5% and performed a grid search 

to identify the best values of the parameters minPts ∈ {3, 5, 10} and 

minSim ∈ {0.8, 0.9, 0.95, 0.97, 0.98, 0.99} . �e other LSH parameters were optimized 

in a separate preliminary experiment (see Table 1 for some results) and were accord-

ingly set as follows: r = 5 (number of hyperplanes), B = minPts · 2 , (number of near-

est neighbors to consider), numPerm = 20 (number of random permutations). �ese 

values provided a good trade-off between accuracy and running times.

• AVG �is approach does not need any tuning.

• K-means We performed a grid search to choose the best value of k from the set 

{
√
n/8,

√
n/4,

√
n/2,

√
n,

√
n · 2,

√
n · 4,

√
n · 8}.

• ARIMA �e best values of its parameters (i.e., the parameters p, d, q [33]) were auto-

matically optimized by a tuning procedure available in the Spark-TS library (based 

on the AUTO-ARIMA algorithm [48]);

• Linear regression (LR) We performed a grid search to optimize the regularization 

parameter in {0.15, 0.3, 0.45}.

• Isotonic regression (ISO) �e specific implementation in Spark does not require any 

optimization.

Table 1 Experimental results on  LSH showing RMSE and  execution time obtained 

with di�erent con�gurations of r and numPerm 

r numPerm RMSE Time (s)

1 20 0.1619 27

1 30 0.1619 36

1 40 0.1619 45

3 20 0.1198 28

3 30 0.1198 40

3 40 0.1198 60

5 20 0.0991 45

5 30 0.0991 93

5 40 0.0991 74

7 20 0.0876 46

7 30 0.0875 74

7 40 0.0865 119

9 20 0.0762 57

9 30 0.0758 111

9 40 0.0755 190

11 20 0.0622 57

11 30 0.0634 131

11 40 0.0634 160
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• Long short-term memory neural networks (LSTM) We performed a grid search to opti-

mize the values of different hyperparameters: learning rate lr ∈ {10−1, 10−2, 10−3} , 

dropout d ∈ {0.1, 0.3, 0.5} , batch size bs ∈ {64, 128, 256, 512, 1024}.

We set the remaining (secondary) parameters to their default values.

Datasets

In our experiments, we considered the following datasets (also see Table 2):

• PVItaly data on energy production, aggregated hourly, collected from Jan 1 st , 2012, 

to May 4 th , 2014, by sensors located on 17 photovoltaic plants in Italy (see details in 

[7]).

• PVNREL simulated photovoltaic data from 6000 plants, aggregated hourly, for the 

year 2006. In the scalability test, we considered a dataset of 20 M instances, which 

allowed us to deeply assess the efficiency of the proposed approach compared to 

K-means. In the evaluation of the regression performances, we also used a reduced 

version, consisting of the 48 plants obtained by a stratified sampling which selected 

3 plants for each of the 16 States with the highest global horizontal irradiation 

(GHI). �e reduced version allowed us to perform an extensive comparison with the 

approaches mentioned above since most of them were not able to process the full 

dataset in a reasonable time.

• LightSource:11 solar energy production data from 7 plants based in the United King-

dom. We enriched production data with irradiance data from PVGIS and weather 

data from Forecast.io, and aggregated spot values (1 min data) hourly.

• WindNREL measurements of wind power plants from more than 30,000 sites. We 

selected five plants with the highest production, obtaining the time series of wind 

speed, production and climatic data (extracted from Forecast.io), aggregated hourly, 

from Jan 1 st , 2005, to Dec 31st , 2006.

• Bike sharing data from the Capital bikeshare system on the rental of bikes, aggre-

gated hourly and daily, from/to different positions, collected in 2011 and 2012 [49]. 

Data include the count of rented bikes and weather information.

Table 2 Quantitative information on  the  datasets used for  the  scalability analysis 

and for the single-target (ST) and multi-target (MT) regression tasks

#instances (ST) #features (ST) #instances (MT) #features (MT)

Scalability

 PVNREL-Full 20,000,000 11 – –

Regression

 PVItaly 254,486 16 13,455 214

 PVNREL 331,968 16 17,520 214

 LightSource 331,968 14 2550 212

 WindNREL 48,545 14 2650 221

 Bike sharing 17,379 15 731 199

 Burlington 16,464 11 686 218

11 Not publicly available, even if anonymized, due to legal reasons.
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• Burlington data from 51 kW DC rooftop photovoltaic installations owned by Dealer.

com with 216 modules. �e data span a period between 2nd Nov, 2012 and 18th Sep, 

2014, aggregated hourly, and include the average measurements of temperature, irra-

diance, energy production and weather conditions extracted from Forecast.io.

Given the nature and temporal granularity of all the datasets considered, for each 

dataset, we select five random splits containing 10% of the days and adopt them as five 

different test sets. For each day of the test set, we consider the measurements of each 

hour of the previous 30, 60 and 90 days as training set, predict the value assumed by the 

target variable for each hour of the day and collect the average RMSE computed over the 

splits and the days. In the MT setting, each object represents one day, therefore: (i) the 

descriptive attributes correspond to the time series of the measurements and (ii) we pre-

dict the time series of the target attribute. �e time series represent the hours of the day.

Discussion

In Table  3 we show the average RMSE obtained by DENCAST and by all the consid-

ered competitor systems. As anticipated, the MT results are not available for LR and 

ISO. Additionally, ISO was not able to provide the results within 20 days of execution 

for some configurations of the PVItaly and PVNREL datasets. �e results obtained by 

ISO were also poor in terms of RMSE and almost in line with the results obtained by the 

baseline (AVG).

From the results obtained with different sizes of the training set we can observe 

that, in general, there is no significant variation. An important exception resides in the 

results obtained by ARIMA, which leads to more errors when the size of the training 

set increases. �is behavior is reasonable since ARIMA only observes the time series 

described by the target variables. �erefore, its predictions are negatively affected by 

objects that are too distant, in terms of timestamp, from the unlabeled objects in the test 

set. On the contrary, in some configurations, other methods took advantage of larger 

training sets. An example can be seen in the Bike sharing dataset (single-target setting), 

for which DENCAST obtains the best results only with the largest training set (90 days).

Focusing on the two different settings (MT vs. ST), we observe that the MT setting 

provides advantages in most cases. In some datasets such a difference is significant. It 

is noteworthy that DENCAST is the system that benefits most from the MT setting 

(Table  3, last column). �is result confirms that it is reasonable in many domains to 

combine the MT setting (which takes into account dependency between the values of 

the same time series), with a density-based predictive clustering solution.

Comparing DENCAST with other methods in terms of RMSE, we can see (Table 3) 

that it shows the best results in almost all the configurations, in both the ST and MT 

settings. We can observe some exceptions in the datasets LightSource and Bike Shar-

ing, where K-means shows the best performances in the ST setting, and in the Burling-

ton dataset, where LSTM outperforms the other competitors in the MT setting. �e 

only dataset in which DENCAST obtains worse results than K-means in the MT setting 

(but not in ST) is WindNREL. �is behavior is possibly motivated by the highly variable 

nature of wind that makes long-term prediction challenging for density-based clustering 

methods. Here density-based clustering tends to extract bigger clusters when compared 
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Table 3 Forecasting results in terms of average RMSE

The best results for each con�guration are highlighted in italics. The last column represents the improvement of MT w.r.t. ST

Single-target (ST) Multi-target (MT) Avg MT

30 days 60 days 90 days 30 days 60 days 90 days Improv (%)

PVItaly

  DENCAST 0.1416 0.1384 0.1416 0.1002 0.1030 0.0950 29.2

  K-means 0.1471 0.1474 0.1469 0.1803 0.1744 0.1726 − 19.5

  ARIMA 0.1508 0.1704 0.1925 0.1508 0.1704 0.1925 0.0

 AVG 0.2032 0.2058 0.2065 0.2490 0.2490 0.2490 − 21.4

  LR 0.1516 0.1521 0.1532 N/A N/A N/A N/A

 ISO 0.2026 0.2000 – N/A N/A N/A N/A

  LSTM 0.2296 0.2296 0.2296 0.2280 0.2280 0.2280 0.70

PVNREL

 DENCAST 0.1519 0.1535 0.1529 0.1140 0.1166 0.1193 23.7

  K-means 0.2366 0.2385 0.2397 0.2337 0.2198 0.2150 4.8

  ARIMA 0.2736 0.2843 0.3001 0.2736 0.2843 0.3001 0.0

  AVG 0.2635 0.2640 0.2647 0.3324 0.3324 0.3324 − 25.9

  LR 0.2265 0.2274 0.2284 N/A N/A N/A N/A

  ISO 0.2621 – – N/A N/A N/A N/A

  LSTM 0.3367 0.3367 0.3367 0.2867 0.2867 0.2867 14.85

LightSource

  DENCAST 0.1680 0.1618 0.1680 0.1222 0.1225 0.1263 25.45

  K-means 0.1338 0.1380 0.1332 0.1658 0.1668 0.1672 − 23.43

  ARIMA 0.1596 0.1729 0.1920 0.1596 0.1729 0.1920 0.0

  AVG 0.1891 0.1910 0.1940 0.1267 0.1299 0.1355 31.71

  LR 0.1651 0.1667 0.1687 N/A N/A N/A N/A

  ISO 0.1989 0.1977 0.1968 N/A N/A N/A N/A

  LSTM 0.2027 0.2027 0.2027 0.2123 0.2123 0.2123 − 4.73

WindNREL

  DENCAST 0.2992 0.2813 0.2853 0.3169 0.3220 0.3343 − 12.5

  K-means 0.3763 0.3844 0.3929 0.2037 0.1761 0.1682 53.1

  ARIMA 0.3131 0.3460 0.3757 0.3131 0.3460 0.3757 0.0

  AVG 0.3263 0.3452 0.3480 0.4939 0.4939 0.4939 − 45.5

  LR 0.3072 0.3146 0.3226 N/A N/A N/A N/A

  ISO 0.3494 0.3517 0.3627 N/A N/A N/A N/A

  LSTM 0.4858 0.4858 0.4858 0.3913 0.3913 0.3913 19.45

Bike sharing

  DENCAST 0.1117 0.1114 0.1089 0.0848 0.0894 0.0926 19.6

  K-means 0.1096 0.1096 0.1136 0.2335 0.2301 0.2244 − 87.4

  ARIMA 0.1646 0.1739 0.2240 0.1646 0.1739 0.2240 0%

  AVG 0.1625 0.1638 0.1656 0.0926 0.0957 0.0992 41.6

  LR 0.1260 0.1278 0.1308 N/A N/A N/A N/A

  ISO 0.1759 0.1905 0.1996 N/A N/A N/A N/A

  LSTM 0.2424 0.2424 0.2424 0.2144 0.2155 0.2155 11.52

Burlington

  DENCAST 0.1263 0.1280 0.1260 0.1205 0.1320 0.1196 2.2

  K-means 0.1408 0.1450 0.1485 0.2128 0.2047 0.2059 − 43.7

  ARIMA 0.1886 0.2100 0.2263 0.1886 0.2100 0.2263 0.0%

  AVG 0.1985 0.2017 0.2051 0.2246 0.2246 0.2246 − 11.3

  LR 0.1440 0.1485 0.1538 N/A N/A N/A N/A

  ISO 0.4521 0.4388 0.4218 N/A N/A N/A N/A

 LSTM 0.1972 0.1980 0.1975 0.1157 0.1157 0.1157 41.43



Page 22 of 27Corizzo et al. J Big Data            (2019) 6:43 

to highly-fragmented centroid-based ones. �is hypothesis is confirmed by the fact that, 

in this dataset, the optimal value of k for K-means is the highest ( 
√
n · 8 ). In Table  4, 

where we report the number of clusters extracted by K-means and DENCAST in their 

best-performing configurations, we can observe that this behavior is confirmed for all 

the datasets: DENCAST generally extracts a lower amount of clusters than K-means 

in the MT setting, while it extracts a significantly higher number of clusters in the ST 

setting. �is result confirms that, although in the MT setting the number of clusters is 

generally lower for both the approaches (due to the lower number of instances), the den-

sity-based approach leads to a number of clusters which is not strictly dependent on the 

number of instances, and that better adapts to the data distribution.

However, in most of the cases in which DENCAST obtains worse results with respect 

to the competitors, the difference is marginal. In order to statistically confirm this con-

clusion, we used the Friedman test with the Nemenyi post-hoc test at α = 0.05. In Fig. 5, 

Table 4 Number of clusters extracted by K-means and DENCAST in their best performing 

con�guration for all the datasets and window sizes

30 days 60 days 90 days

DENCAST K-means DENCAST K-means DENCAST K-means

Single-target (ST)

PVItaly 618 50 1356 50 1905 25

PVNREL 1441 21 3396 21 4386 21

LightSource 268 16 490 11 722 109

WindNREL 306 8 491 8 911 8

Bike sharing 72 216 119 216 179 108

Burlington 61 27 121 27 171 13

Multi-target (MT)

PVItaly 31 192 85 192 91 192

PVNREL 103 304 205 304 315 304

LightSource 17 120 31 120 37 120

WindNREL 13 96 28 96 37 96

Bike sharing 3 5 6 2 9 2

Burlington 2 20 7 5 9 20

Fig. 5 Nemenyi test for a single-target and b multi-target settings. If the distance between methods is less 
than the critical distance (at p-value = 0.05), there is no statistically significant difference between them
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we depict the result of the test, which shows that in the ST setting ISO, ARIMA and 

LSTM do not appear statistically better than the baseline AVG, while LR, K-means and 

DENCAST significantly outperform it. Moreover, DENCAST significantly outperforms 

all the competitors. Looking at the results in the MT setting, the difference is more evi-

dent, showing a clear dominance of DENCAST.

Moreover, we performed the Wilcoxon test on the average standard deviations which 

showed a p-value < 0.05 for all the single-target configurations and the 30-days configu-

ration of the multi-target setting. Another aspect we want to emphasize is that DEN-

CAST generally provides more stable predictions than our version of K-means (which, 

as stated above, we extended with the same prediction step proposed for DENCAST). 

To show this aspect, in Table 5 we report the results in terms of the standard deviation 

of the predictions, which clearly show that DENCAST always leads to lower standard 

deviations than K-means.

In order to evaluate the efficiency of the proposed approach, we compared the per-

formance of DENCAST, on the full version of the PVNREL dataset (20 M objects–400 

million edges), with the predictive K-means, which is highly-optimized in terms of effi-

ciency in Apache Spark. In Fig. 6, we show the running times observed when the num-

ber of objects (and, thus, the number of edges in the neighborhood graph) increases. 

DENCAST appears much more efficient than the predictive K-means and scales better 

Table 5 Standard deviations of  the  predictions measured for  K-means and  DENCAST 

and the result of the Wilcoxon signed-rank tests

Statistically signi�cant results are marked in italics

30 days 60 days 90 days

DENCAST K-means DENCAST K-means DENCAST K-means

Single-target (ST)

 PVItaly 0.0419 0.0497 0.0388 0.0510 0.0389 0.0520

 PVNREL 0.0217 0.0379 0.0196 0.0385 0.0213 0.0386

 LightSource 0.0079 0.0055 0.0061 0.0068 0.0082 0.0090

 WindNREL 0.1063 0.1948 0.1086 0.2113 0.1081 0.2188

 Bike sharing 0.0399 0.0417 0.0398 0.0422 0.0391 0.0425

 Burlington 0.0655 0.0820 0.0636 0.0867 0.0665 0.0862

Average 0.0472 0.0686 0.0461 0.0727 0.0470 0.0745

Winner DENCAST DENCAST DENCAST

p-value 0.0374 0.0139 0.0139

Multi-target (MT)

 PVItaly 0.0360 0.0743 0.0363 0.0740 0.0335 0.0753

 PVNREL 0.0184 0.0416 0.0185 0.0380 0.0197 0.0353

 LightSource 0.0082 0.0080 0.0064 0.0070 0.0041 0.0025

 WindNREL 0.1139 0.1247 0.1137 0.0926 0.1119 0.0794

 Bike sharing 0.0402 0.0918 0.0433 0.0895 0.0459 0.0885

 Burlington 0.0678 0.1427 0.0726 0.1339 0.0673 0.1404

Average 0.0474 0.0805 0.0485 0.0725 0.0470 0.0702

Winner DENCAST DENCAST DENCAST

p-value 0.0232 0.0579 0.0865
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when the number of edges increases significantly. On the other hand, K-means was not 

able to analyze the full version of the dataset within 20 days.

Moreover, as introduced in “Results and discussion” section, we evaluated the DEN-

CAST speedup factor. In particular, we first measured the running times on a single 

machine and on the cluster of machines for the analysis of the dataset PVNREL, with 

different sizes (in terms of the number of objects and, accordingly, of edges in the neigh-

borhood graph). In Fig. 7a, it is possible to observe a comparison in terms of running 

times, which shows that the distributed approach scales much more efficiently on larger 

datasets with respect to the local variant. �is improvement is confirmed by the speedup 

factor plotted in Fig. 7b, which shows that, with the largest version of the PVNREL data-

set, DENCAST boosts the performance up to a 5 × factor, which is the ideal speedup fac-

tor with our cluster consisting of five machines.

Finally, we measured the scaleup factor, in order to evaluate the ability of DENCAST 

to exploit the computational power of multiple CPUs when dealing with datasets with 

a linearly increasing size. In particular, we considered four different sizes of the PVN-

REL dataset with a proportional increase in the number of cores used by DENCAST. 

�e results plotted in Fig. 8 show that the scaleup factor is very close to 1 for almost all 

Fig. 6 DENCAST vs K-means. Running times measured with different sizes of the PVNREL dataset (100 K, 1 M, 
5 M, 10 M, 20 M objects and 0.7 M, 7 M, 30 M, 130 M, 400 M edges in the neighborhood graph)

Fig. 7 DENCAST-local vs DENCAST-distributed. a Running times and b speedup factor, with different sizes of 
PVNREL (100 K, 1 M, 5 M, 10 M, 20 M objects and 0.7 M, 7 M, 30 M, 130 M, 400 M edges in the graph)
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the configurations, which means that the overhead introduced by DENCAST in the dis-

tribution of the workload to multiple machines is very low. Moreover, processing even 

larger datasets through DENCAST would only require a linear increase in the number of 

available CPUs in the cluster of machines.

Conclusion

In this paper, we proposed DENCAST, a density-based clustering algorithm imple-

mented in Apache Spark, which is able to handle large-scale and high-dimensional data. 

We also exploited the clusters identified by DENCAST to predict the value assumed by 

one or more target variables of unlabeled objects, i.e., for regression purposes in both 

single and multi-target settings.

Our experimental evaluation, performed on several datasets, demonstrated the abil-

ity of DENCAST to obtain predictions with a higher accuracy than existing distributed 

regression approaches. Such competitive regression results also confirm the quality of 

the extracted clusters. A further analysis showed that DENCAST clearly benefits from 

the multi-target setting. In particular, the combination of the density-based predictive 

clustering solution with the multi-target setting led DENCAST to dominate over all the 

considered competitors. �is is an important result, since it confirms that catching pos-

sible dependencies among the target attributes provides a great margin of improvement 

in the regression task.

Moreover, an analysis focused on the efficiency emphasized the ability of DENCAST 

to significantly outperform the distributed version of K-means in Apache Spark, in terms 

of running times. Finally, a scalability analysis has shown that DENCAST exhibits opti-

mal speedup and scaleup performances. In particular, it reached a 5 × speedup factor 

with five machines, corresponding to the ideal speedup factor, and a scaleup factor close 

to 1, which emphasizes a very low overhead due to the distribution of the workload. �is 

relevant result is due to the advantage of performing all the stages in a fully distributed 

manner, without incurring in any computational bottleneck.

For future work, we aim to introduce the possibility to handle mixed-types attributes 

(i.e., not only numerical attributes). Moreover, we plan to extend the proposed approach 

in order to make it able to solve classification tasks as well to measure and explicitly 

Fig. 8 DENCAST-local vs DENCAST-distributed. Scaleup factor measured with different sizes of the PVNREL 
dataset (1.25 M, 3,75 M, 5 M, 6.25 M edges) and increasing number of cores (8, 16, 24, 32)
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model spatio-temporal autocorrelation phenomena during the clustering and the pre-

diction phases.
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