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Abstract

Dendrimers are nano-sized, radially symmetric molecules with well-defined, homogeneous, and monodisperse structure

that has a typically symmetric core, an inner shell, and an outer shell. Their three traditional macromolecular architectural

classes are broadly recognized to generate rather polydisperse products of different molecular weights. A variety

of dendrimers exist, and each has biological properties such as polyvalency, self-assembling, electrostatic interactions,

chemical stability, low cytotoxicity, and solubility. These varied characteristics make dendrimers a good choice in the

medical field, and this review covers their diverse applications.
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Introduction

Dendrimers are nano-sized, radially symmetric molecules

with well-defined, homogeneous, and monodisperse struc-

ture consisting of tree-like arms or branches [1]. These

hyperbranched molecules were first discovered by Fritz

Vogtle in 1978, by Donald Tomalia and co-workers in

the early 1980s, and at the same time, but independ-

ently by George R. Newkome. The second group called

synthesized macromolecules ‘arborols’ means, in Latin,

‘trees’. Dendrimers might also be called ‘cascade mole-

cules’, but this term is not as much established as ‘den-

drimers’ [2-4]. Dendrimers are nearly monodisperse

macromolecules that contain symmetric branching units

built around a small molecule or a linear polymer core

[5-7]. ‘Dendrimer’ is only an architectural motif and not a

compound. Polyionic dendrimers do not have a persistent

shape and may undergo changes in size, shape, and

flexibility as a function of increasing generations [8-10].

Dendrimers are hyperbranched macromolecules with a

carefully tailored architecture, the end-groups (i.e., the

groups reaching the outer periphery), which can be

functionalized, thus modifying their physicochemical or

biological properties [11-16]. Dendrimers have gained a

broad range of applications in supramolecular chemistry,

particularly in host-guest reactions and self-assembly pro-

cesses. Dendrimers are characterized by special features

that make them promising candidates for a lot of applica-

tions. Dendrimers are highly defined artificial macromole-

cules, which are characterized by a combination of a high

number of functional groups and a compact molecular

structure [17]. The emerging role of dendritic macromole-

cules for anticancer therapies and diagnostic imaging is re-

markable. The advantages of these well-defined materials

make them the newest class of macromolecular nano-

scale delivery devices [18]. Dendritic macromolecules tend

to linearly increase in diameter and adopt a more globular

shape with increasing dendrimer generation. Therefore,

dendrimers have become an ideal delivery vehicle candi-

date for explicit study of the effects of polymer size,

charge, and composition on biologically relevant proper-

ties such as lipid bilayer interactions, cytotoxicity, intern-

alization, blood plasma retention time, biodistribution,

and filtration [19] (Figure 1).

Structure and chemistry

The structure of dendrimer molecules begins with a cen-

tral atom or group of atoms labeled as the core. From

this central structure, the branches of other atoms called

‘dendrons’ grow through a variety of chemical reactions.

There continues to be a debate about the exact structure

of dendrimers, in particular whether they are fully ex-

tended with maximum density at the surface or whether

the end-groups fold back into a densely packed interior
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[21,22]. Dendrimers can be prepared with a level of con-

trol not attainable with most linear polymers, leading to

nearly monodisperse, globular macromolecules with a

large number of peripheral groups as seen in Figure 2, the

structure of some dendrimer repeat units, for example,

the 1,3-diphenylacetylene unit developed by Moore [23].

Dendrimers are a new class of polymeric belongings.

Their chemistry is one of the most attractive and hastily

growing areas of new chemistry [25-27]. Dendrimer

chemistry, as other specialized research fields, has its

own terms and abbreviations. Furthermore, a more brief

structural nomenclature is applied to describe the

Figure 1 Schematic representation of a generation G4 dendrimer with 64 amino groups at the periphery. This dendrimer starts from an

ethylene diamine core; the branches or arms were attached by exhaustive Michael addition to methyl acrylate followed by exhaustive aminolysis

of the resulting methyl ester using ethylene diamine [20].

Figure 2 Types of dendrimers. (A) More type dendrimers consisting of phenyl acetylene subunits at the third-generation different arms may

dwell in the same space, and the fourth-generation layer potential overlaps with the second-generation layer. (B) Parquette-type dendrons are

chiral, non-racemic, and with intramolecular folding driven by hydrogen bonding [24].
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different chemical events taking place at the dendrimer

surface. Dendrigrafts are a class of dendritic polymers

like dendrimers that can be constructed with a well-

defined molecular structure, i.e., being monodisperse [28].

The unique structure of dendrimers provides special op-

portunities for host-guest chemistry (Figure 3) and is espe-

cially well equipped to engage in multivalent interactions.

At the same time, one of the first proposed applications of

dendrimers was as container compounds, wherein small

substrates are bound within the internal voids of the den-

drimer [29]. Experimental evidence for unimolecular mi-

celle properties was established many years ago both in

hyperbranched polymers [30] and dendrimers [31].

Synthesis

Dendrimers are just in between molecular chemistry and

polymer chemistry. They relate to the molecular chemis-

try world by virtue of their step-by-step controlled syn-

thesis, and they relate to the polymer world because of

their repetitive structure made of monomers [32-35].

The three traditional macromolecular architectural clas-

ses (i.e., linear, cross-linked, and branched) are broadly

recognized to generate rather polydisperse products of

different molecular weights. In contrast, the synthesis of

dendrimers offers the chance to generate monodisperse,

structure-controlled macromolecular architectures simi-

lar to those observed in biological systems [36,37].

Dendrimers are generally prepared using either a diver-

gent method or a convergent one [38]. In the different

methods, dendrimer grows outward from a multifunc-

tional core molecule. The core molecule reacts with

monomer molecules containing one reactive and two

dormant groups, giving the first-generation dendrimer.

Then, the new periphery of the molecule is activated

for reactions with more monomers.

Cascade reactions are the foundation of dendrimer synthesis

The basic cascade or iterative methods that are currently

employed for synthesis were known to chemists much

earlier. For example, similar schemes form the basis of

solid-phase peptide synthesis. In turn, biology has long

exploited similar iterative strategies in biochemical syn-

thetic pathways; one example is provided by fatty acid

biosynthesis [39] (Figure 4).

The synthesis of dendrimers follows either a divergent or

convergent approach

Dendrimers can be synthesized by two major approaches.

In the divergent approach, used in early periods, the syn-

thesis starts from the core of the dendrimer to which the

arms are attached by adding building blocks in an ex-

haustive and step-wise manner. In the convergent ap-

proach, synthesis starts from the exterior, beginning with

the molecular structure that ultimately becomes the

outermost arm of the final dendrimer. In this strategy, the

final generation number is pre-determined, necessitating

the synthesis of branches of a variety of requisite sizes be-

forehand for each generation [41] (Figure 5).

Properties of dendrimers

When comparing dendrimers with other nanoscale syn-

thetic structures (e.g., traditional polymers, buck balls, or

carbon nanotubes), these are either highly non-defined or

have limited structural diversity.

Pharmacokinetic properties

Pharmacokinetic properties are one of the most significant

aspects that need to be considered for the successful bio-

medical application of dendrimers, for instance, drug de-

livery, imaging, photodynamic therapy, and neutron

capture therapy. The diversity of potential applications

of dendrimers in medicine results in increasing interest

in this area. For example, there are several modifica-

tions of dendrimers' peripheral groups which enable to

obtain antibody-dendrimer, peptide-dendrimer conjugates

or dendritic boxes that encapsulate guest molecules [42].

Figure 3 Three main parts of a dendrimer: the core, end-groups, and subunits linking the two molecules.
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Covalent conjugation strategies

The strategy of coupling small molecules to polymeric

scaffolds by covalent linkages to improve their pharmaco-

logical properties has been under experimental test for

over three decades [43-46]. In most cases, however, the

conjugated dendritic assembly functions as ‘pro-drug’

where, upon internalization into the target cell, the conju-

gate must be liberated to activate the drug (Figure 6).

Polyvalency

Polyvalency is useful as it provides for versatile functio-

nalization; it is also extremely important to produce

multiple interactions with biological receptor sites, for

example, in the design of antiviral therapeutic agents.

Self-assembling dendrimers

Another fascinating and rapidly developing area of

chemistry is that of self-assembly. Self-assembly is the

spontaneous, precise association of chemical species by

specific, complementary intermolecular forces. Recently,

the self-assembly of dendritic structures has been of in-

creasing interest [47]. Because dendrimers contain three

distinct structural parts (the core, end-groups, and

branched units connecting the core and periphery),

there are three strategies for self-assembling dendrimers.

The first is to create dendrons with a core unit that is cap-

able of recognizing itself or a ditopic or polytopic core

structure, therefore leading to spontaneous formation of a

dendrimer [48-51]. A self-assembling dendrimer using

pseudorotaxane formation as the organizing force was re-

ported by Gibson and coworkers (Figure 7) [52].

Electrostatic interactions

Molecular recognition events at dendrimer surfaces are

distinguished by the large number of often identical

end-groups presented by the dendritic host. When

these groups are charged, the surface may have as a

polyelectrolyte and is likely to electrostatically attract

oppositely charged molecules [53]. One example of elec-

trostatic interactions between polyelectrolyte dendrimers

and charged species include the aggregation of methy-

lene blue on the dendrimer surface and the binding of

EPR probes such as copper complexes and nitroxide

cation radicals [54,55].

Figure 4 Cascade reaction sequences developed for the synthesis of ‘non-skid-chain like’ polyazamacrocyclic compounds [40].

A B

Figure 5 Approaches for the synthesis if dendrimers. (A) Divergent approach: synthesis of radially symmetric polyamidoamine (PAMAM)

dendrimers using ammonia as the trivalent core; the generations are added at each synthetic cycle (two steps), leading to an exponential

increase in the number of surface functional groups [37]. (B) Convergent approach: synthesis of dendrons or wedges or branches that will

become the periphery of the dendrimer when coupled to a multivalent core in the last step of the synthesis [13].
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Applications

Today, dendrimers have several medicinal and practical

applications.

Dendrimers in biomedical field

Dendritic polymers have advantage in biomedical applica-

tions. These dendritic polymers are analogous to protein,

enzymes, and viruses, and are easily functionalized. Dendri-

mers and other molecules can either be attached to the per-

iphery or can be encapsulated in their interior voids [56].

Modern medicine uses a variety of this material as potential

blood substitutes, e.g., polyamidoamine dendrimers [57].

Anticancer drugs

Perhaps the most promising potential of dendrimers is

in their possibility to perform controlled and specified

drug delivery, which regards the topic of nanomedicine.

One of the most fundamental problems that are set to-

ward modern medicine is to improve pharmacokinetic

properties of drugs for cancer [58]. Drugs conjugated

with polymers are characterized by lengthened half-life,

higher stability, water solubility, decreased immunogen-

icity, and antigenicity [59]. Unique pathophysiological

traits of tumors such as extensive angiogenesis resulting

in hypervascularization, the increased permeability of

tumor vasculature, and limited lymphatic drainage enable

passive targeting, and as a result, selective accumulation

of macromolecules in tumor tissue. This phenomenon is

known as ‘enhanced permeation and retention’ (EPR)

[58,60]. The drug-dendrimer conjugates show high solu-

bility, reduced systemic toxicity, and selective accumula-

tion in solid tumors. Different strategies have been

proposed to enclose within the dendrimer structure drug

molecules, genetic materials, targeting agents, and dyes ei-

ther by encapsulation, complexation, or conjugation.

Dendrimers in drug delivery

In 1982, Maciejewski proposed, for the first time, the

utilization of these highly branched molecules as molecular

containers [61]. Host-guest properties of dendritic poly-

mers are currently under scientific investigation and have

gained crucial position in the field of supramolecular

Figure 6 Requirements for dendrimer-based, cancer-targeted drug delivery. (A) Dendrimers with multiple surface functional groups can be

directed to cancer cells by tumor-targeting entities that include folate or antibodies specific for tumor-associated antigens (TAAs). (B) The next

step is ingestion into the cell which, in the case of folate targeting, occurs by membrane receptor-mediated endocytosis. (C) Once inside the cell,

the drug generally must be released from the dendrimer, which, for the self-immolative method, results in the simultaneous disintegration of the

dendritic scaffold (D).
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chemistry. Host-guest chemistry is based on the reaction of

binding of a substrate molecule (guest) to a receptor mol-

ecule (host) [62].

Transdermal drug delivery

Clinical use of NSAIDs is limited due to adverse reac-

tions such as GI side effects and renal side effects when

given orally. Transdermal drug delivery overcomes these

bad effects and also maintains therapeutic blood level

for longer period of time. Transdermal delivery suffers

poor rates of transcutaneous delivery due to barrier

function of the skin. Dendrimers have found applications

in transdermal drug delivery systems. Generally, in bio-

active drugs having hydrophobic moieties in their struc-

ture and low water solubility, dendrimers are a good

choice in the field of efficient delivery system [63].

Gene delivery

The primary promise that the combination of understand-

ing molecular pathways of disease and the complete hu-

man genome sequence would yield safer and more

efficient medicines and revolutionize the way we treat

patients has not been fulfilled to date. However, there is

little doubt that genetic therapies will make a significant

contribution to our therapeutic armamentarium once

some of the key challenges, such as specific and efficient

delivery, have been solved [64]. The ability to deliver

pieces of DNA to the required parts of a cell includes

many challenges. Current research is being performed to

find ways to use dendrimers to traffic genes into cells

without damaging or deactivating the DNA. To maintain

the activity of DNA during dehydration, the dendrimer/

DNA complexes were encapsulated in a water soluble

polymer and then deposited on or sandwiched in func-

tional polymer films with a fast degradation rate to

mediate gene transfection. Based on this method,

PAMAM dendrimer/DNA complexes were used to en-

capsulate functional biodegradable polymer films for

substrate-mediated gene delivery. Research has shown

that the fast-degrading functional polymer has great

potential for localized transfection [65-67].

Dendrimers as magnetic resonance imaging contrast agents

Dendrimer-based metal chelates act as magnetic reson-

ance imaging contrast agents. Dendrimers are extremely

appropriate and used as image contrast media because

of their properties [56].

Dendritic sensors

Dendrimers, although are single molecules, can contain

high numbers of functional groups on their surfaces.

This makes them striking for applications where the

Figure 7 Gibson's self-assembling dendrimers using pseudorotaxane formation. (A) Crown ethers with dendritic substituents.

(B) Triammonium ion core. (C) Schematic of tridendron formed by triple pseudorotaxane self-assembly.
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covalent connection or close proximity of a high number

of species is important. Balzani and coworkers investi-

gated the fluorescence of a fourth-generation poly (pro-

pylene amine) dendrimer decorated with 32 dansyl

units at the periphery (Figure 8) [68]. Since the dendri-

mer contains 30 aliphatic amine units in the interior,

suitable metal ions are able to coordinate. It was ob-

served that when a Co2+ ion is incorporated into the

dendrimer, the strong fluorescence of all the dansyl

units is quenched. Low concentrations of Co2+ ions (4.6 ×

10−7 M) can be detected using a dendrimer concentration

of 4.6 × 10−6 M. The many fluorescent groups on the sur-

face serve to amplify the sensitivity of the dendrimer as a

sensor [69].

Dendrimers used for enhancing solubility

PAMAM dendrimers are expected to have potential appli-

cations in enhancing solubility for drug delivery systems.

Dendrimers have hydrophilic exteriors and interiors,

which are responsible for its unimolecular micelle nature.

Dendrimer-based carriers offer the opportunity to en-

hance the oral bioavailability of problematic drugs. Thus,

dendrimer nano carriers offer the potential to enhance the

bioavailability of drugs that are poorly soluble and/or sub-

strates for efflux transporters [70,71].

Photodynamic therapy

Photodynamic therapy (PDT) relies on the activation of

a photosensitizing agent with visible or near-infrared

(NIR) light. Upon excitation, a highly energetic state is

formed which, upon reaction with oxygen, affords a

highly reactive singlet oxygen capable of inducing necro-

sis and apoptosis in tumor cells. Dendritic delivery of

PDT agents has been investigated within the last few

years in order to improve upon tumor selectivity, reten-

tion, and pharmacokinetics [72-75].

Figure 8 Poly (propylene amine) dendrimer, containing 32 dansyl units at its periphery.
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Miscellaneous dendrimer applications

Clearly, there are many other areas of biological chemis-

try where application of dendrimer systems may be help-

ful. Cellular delivery using carrier dendritic polymers is

used in the purification of water dendrimer-based prod-

uct in cosmetics contaminated by toxic metal ion and

inorganic solute, and dendrimer-based commercial prod-

ucts organic solutes [76]. Furthermore, highly sensitive

analytical devices [77,78], MRI contrast agents [79],

prion research [80], burn treatment [81], and EPR im-

aging with spin-labeled dendrimers [82-106] are some of

the diverse areas of fascinating ongoing dendrimer re-

search that are beyond the scope of this article.

Conclusion

Dendrimers are characterized by individual features that

make them hopeful candidates for a lot of applications.

Dendrimers are highly defined artificial macromolecules,

which are characterized by a combination of a high num-

ber of functional groups and a compact molecular struc-

ture. A rapid increase of importance in the chemistry of

dendrimers has been observed since the first dendrimers

were prepared. Work was established to determine the

methods of preparing and investigating the properties of

the novel class of macro and micromolecules. In spite of

the two decades since the finding of dendrimers, the

multi-step synthesis still requires great effort.
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