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Retinal Direction-Selective Ganglion Cells
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Abstract

Throughout the nervous system, the organization of excitatory and inhibitory synaptic inputs within a neuron’s

receptive field shapes its output computation. In some cases, multiple motifs of synaptic organization can

contribute to a single computation. Here, we compare two of these mechanisms performed by two morpho-

logically distinct retinal direction-selective ganglion cells (DSGCs): directionally tuned inhibition and spatially

offset inhibition. Using drifting stimuli, we found that DSGCs that have asymmetric dendrites exhibited stron-

ger directionally tuned inhibition than symmetric DSGCs. Using stationary stimuli to map receptive fields, we

found that DSGCs with both symmetric and asymmetric dendrites exhibited similar spatially offset inhibition.

Interestingly, we observed that excitatory and inhibitory synapses for both cell types were locally correlated in

strength. This result indicates that in the mouse retina, dendritic morphology influences the amount of tuned

inhibition attained through asymmetric wiring but does not dictate the synaptic organization of excitation rela-

tive to inhibition.

Key words: dendrites; direction selective; morphology; receptive field; retina; synaptic inputs

Significance Statement

Neural circuit function is dependent on the detailed organization of excitatory and inhibitory synapses onto

dendrites. Here, we use a classic neural circuit, the direction-selective circuit of the retina, to assess how

changes in dendritic shape impact the synaptic organization. We find the direction-selective cells of the ret-

ina that have asymmetric dendrites have similar synaptic organization to those that have symmetric den-

drites, indicating the shape of dendrites does not dictate the final computation of the neurons.

Introduction
Detecting the direction of moving stimuli is an essential

part of sensory processing. In the mouse visual system,
direction selectivity is first observed in the retina, where
direction-selective ganglion cells (DSGCs) fire many ac-
tion potentials in response to motion in their preferred di-
rection, and few to no action potentials in response to the
opposite, or null, direction. Direction-selective computa-
tions occur across many layers of the mammalian visual
system from DSGCs of the retina, to the retino-recipient

neurons of the dorsal lateral geniculate nucleus (dLGN) of
the thalamus (Marshel et al., 2012; Liang et al., 2018), tha-
lamo-recipient layer four neurons and intracortical circuits
of the visual cortex (Rasmussen et al., 2020; Rossi et al.,
2020). Additionally, direction selectivity has been shown
to arise in nonvisual areas like the mouse whisker somato-
sensory cortex (Laboy-Juárez et al., 2019) and in the pri-
mary auditory cortex (Zhang et al., 2003; Ye et al., 2010).
Retinal direction selectivity is mediated primarily by in-

hibition through two non-mutually exclusive mechanisms.
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The first mechanism is based on directional tuning of inhibi-
tion, where the amount of inhibitory input onto a DSGC is
greater for null direction motion than for preferred direction
motion. In the mammalian retina, this tuned inhibition is pro-
vided by starburst amacrine cells (SACs), where the combi-
nation of SAC centrifugal directional tuning (Gavrikov et al.,
2006; Hausselt et al., 2007; Ding et al., 2016; Vlasits et al.,
2016), and DSGC-SAC asymmetric wiring (Briggman
et al., 2011; Wei et al., 2011; Yonehara et al., 2011; Rosa et
al., 2016), ensures maximal spike suppression in response
to null direction motion, compared with preferred direction
motion. Although the role of tuned inhibition in generating di-
rection-selective responses has been well established in the
mouse and rabbit (Fried et al., 2002; Taylor and Vaney,
2002; Wei et al., 2011; Yonehara et al., 2011; Grama and
Engert, 2012; Morrie and Feller, 2015), its dependence on
the morphology of DSGCs has been relatively unexplored.
The second mechanism is based on spatially offset inhi-

bition, a term used to describe when excitatory and inhibi-
tory receptive fields are spatially offset from each other.
Hence, during preferred direction motion, the stimulus
elicits an excitatory response before an inhibitory re-
sponse, allowing the cell the fire action potentials. During
null direction motion, the stimulus elicits an inhibitory re-
sponse primarily at the same time as the inhibitory re-
sponse, effectively suppressing spiking output. This is the
classic mechanism postulated to underlie direction-selec-
tive responses in both the retina (Fried et al., 2002;
Yonehara et al., 2011) and in the visual cortex (Hubel and
Wiesel, 1959, 1962; Priebe and Ferster, 2005; Li et al.
2015; Wilson et al. 2018; Rossi et al., 2020). Several stud-
ies have revealed that temporal delays play a role in the
DS computation of the mouse retina, consistent with the
presence of spatially offset inhibition (Hanson et al., 2019;
Pei et al., 2015; Ding et al., 2021). Recently, we used re-
ceptive field mapping to show that a population of asym-
metric, ventral preferring DSGCs (vDSGCs) have both
tuned inhibitory inputs and spatially offset inhibition,
although neither of these circuit contributions were im-
pacted by dramatic changes in the dendrite orientation
because of dark-rearing (El-Quessny et al., 2020).
However, how spatially offset inhibition depends on den-
dritic morphology is not known.
Anatomical studies indicate that ON-OFF DSGCs ex-

hibit a uniform distribution of GABAA receptors on their
dendrites (Auferkorte et al., 2012; Sigal et al., 2015;
Bleckert et al., 2018), while functional studies indicate
that SACs whose somas are located on the null side of a
DSGC provide stronger inhibitory drive than SACs located

on the preferred side of DSGC asymmetric wiring (Lee et
al., 2010; Wei et al., 2011; Morrie and Feller, 2015). Here,
we compare the organization of excitatory and inhibitory
receptive fields of two subsets of DSGCs that have dis-
tinct morphologies. The first is a subset of vDSGCs,
which have asymmetric dendrites that are oriented to-
ward their preferred direction (Trenholm et al., 2011), a
configuration which contributes to their direction selectiv-
ity in the absence of inhibitory input (Trenholm et al.,
2011; El-Quessny et al., 2020). The second is a subset of
nasal motion preferring DSGCs (nDSGCs), which have
symmetric dendrites that are not oriented in any particular
direction (Rivlin-Etzion et al., 2011). Multielectrode array
data has shown that the spiking output of both DSGC
subtypes possesses similar directional tuning under
bright stimulus conditions (Yao et al., 2018). Here, we
combine morphologic reconstructions with whole cell
voltage clamp recordings to show that asymmetric
vDSGCs have sharper tuning of inhibition relative to sym-
metric nDSGCs. Additionally, we map the receptive fields
of both DSGC subtypes, using stationary stimuli, and
show no difference in the spatial offset of inhibition rela-
tive to excitation despite distinct dendritic morphologies.

Materials and Methods

Experimental model and subject details

Mice used in this study were aged from postnatal day
30 (p30) to p60 and were of both sexes. Animals used in
experiments had not previously been involved in other ex-
periments or exposed to any drugs. Animal health was
monitored daily and only healthy animals were used in ex-
periments. To target vDSGCs, we used Hb9::GFP (Arber
et al., 1999) mice, which express GFP in a subset of
vDSGCs which have asymmetric dendrites (Trenholm et
al., 2011). To target nDSGCs, we used Trhr::GFP mice
(Rivlin-Etzion et al., 2011). All experiments involved re-
cording from one to seven cells from at least two animals
of either sex. All animal procedures were approved by the
University of California, Berkeley Institutional Animal Care
and Use Committee and conformed to the National
Institutes of Health Guide for the Care and Use of
Laboratory Animals, the Public Health Service Policy, and
the Society for Neuroscience Policy on the Use of Animals
in Neuroscience Research.

Method details

Retina preparation
Mice were anesthetized with isoflurane and decapi-

tated. Retinas were dissected from enucleated eyes in
oxygenated (95% O2/5% CO2) Ames’ media (Sigma) for
light responses. Retinal orientation was determined as
described previously (Wei et al., 2010). Isolated whole ret-
inas were micro-cut at the dorsal and ventral halves to
allow flattening, with dorsal and ventral mounted over a 1-
to 2-mm2 hole in nitrocellulose filter paper (Millipore) with
the photoreceptor layer side down and stored in oxygen-
ated Ames’ media until use (maximum 10 h). All experi-
ments were performed on retinas in which dorsal-ventral
orientation was tracked.
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Visual stimulation
For visual stimulation of DSGCs, visible light (420–

530nm) were generated using a computer running 420- to
520-nm light through a digital micro-mirror device (DLI
Cel5500) projector with a light emitting diode (LED) light
source generated using MATLAB software with the
Psychophysics Toolbox. Visual stimuli are focused on the
photoreceptor layer using a condenser in the DMD path
to the chamber.

Moving stimuli. To measure the directional tuning
of synaptic currents onto DSGCs, drifting bars of posi-
tive contrast on a gray background (96% Michaelson’s
contrast) were presented (velocity = 250 mm/s, length =
600 mm, width = 350 mm over a 700-mm radius circular
mak) in eight block shuffled directions, repeated three
times, moving along the long axis of the bar. Each presen-
tation lasted 6 s and was followed by 3 s interstimulus
interval of gray background. For these moving stimuli,
the illumination radius on the retina was 1.4 mm to limit
modulation of DSGC responses by inhibitory wide-field
amacrine cells (Chen et al., 2016). A 20� water-immer-
sion objective (Olympus LUMPlanFl/IR 360/1.0 NA) was
used to target cells for voltage clamp recordings, which
were simultaneously acquired using methods described
below.

Static stimuli for receptive field mapping. To map exci-
tatory and inhibitory receptive fields of DSGCs, positive
contrast square stimuli (30� 30mm) were flashed over a
gray background (96% Michaelson’s contrast) at an in-
tensity of 3.1� 105 R*/s/rod. Stimuli were individually
presented in 100 block-shuffled positions, repeated
three times, with each stimulus lasting for 0.5 s followed
by a 1.2 s interstimulus interval of gray background.
Stimuli were presented within a 10� 10 grid, onto a
stimulus field of 500� 500 mm, with the DSGC soma
located in the center of the stimulus field.

Two-photon targeted whole-cell voltage-clamp

recordings
Oriented retinas were placed under the microscope in

oxygenated Ames’ medium at 32–34°C. Identification and
recordings from GFP1 cells were performed as described
previously (Wei et al., 2010). In brief, GFP1 cells were
identified using a custom-modified two-photon micro-
scope (Fluoview 300; Olympus America) tuned to 920 nm
to minimize bleaching of photoreceptors. The inner limit-
ing membrane above the targeted cell was dissected
using a glass electrode. Cell attached voltage clamp re-
cordings were performed with a new glass electrode
(4–5 MV) filled with internal solution containing the follow-
ing: 110 mM CsMeSO4, 2.8 mM NaCl, 20 mM HEPES, 4 mM

EGTA, 5 mM TEA-Cl, 4 mM Mg-ATP, 0.3 mM Na3GTP, 10
mM Na2phosphocreatine, and 5 mM QX-Cl (pH 7.2 with
CsOH, osmolarity = 290, ECl– = �60mV). Whole cell re-
cordings were performed with the same pipette after ob-
taining a giga ohm (1 GV) seal and breaking into the cell
membrane. Holding voltages for measuring excitation and
inhibition after correction for the liquid junction potential
(10mV) were 0 and �70mV, respectively. Signals were
acquired using Clampex 10.4 recording software and a

Multiclamp 700A amplifier (Molecular Devices), sampled
at 10 kHz, and low pass filtered at 6 kHz.

Two-photon imaging and morphologic reconstruction
After physiological recordings of DSGCs were com-

pleted, Alexa Fluor 594-filled DSGCs were imaged using
two-photon excitation at 800nm. At this wavelength, GFP
is not efficiently excited, but Alexa Fluor 594 is brightly flu-
orescent; 480� 480 mm Image stacks were acquired at z
intervals of 1.0 mm and resampled fifteen times for each
stack using a 20� objective (Olympus LUMPlanFl/IR 2�
digital zoom, 1.0NA) 30 kHz resonance scanning mirrors
covering the entire dendritic fields of the DSGCs. Image
stacks of DSGCs were then imported to FIJI (NIH) and a
custom macro was used to segment ON and OFF den-
drites based on their lamination depth in the inner plexi-
form layer (ON layer 10–30mm, OFF layer 35–55mm in
depth). Following ON and OFF dendritic segmentation,
we used the Simple Neurite Tracer plugin in FIJI to skele-
tonize and then binarize the ON and OFF dendritic seg-
ments for morphologic analyses.

Pharmacology
For experiments conducted in Hexamethonium

(Millipore Sigma), we diluted 100 mM in Ames’ media, and
allowed it to perfuse for 5–10 min at a perfusion rate of 1
ml/min.

Quantification and statistical analysis

Statistical tests
Mean 6 SDs for all angles performed using circular

mean and circular SDs. Details of statistical tests, number
of replicates, and p values are indicated in the figures and
figure captions; p, 0.05 was considered significant.

Data analysis
For voltage clamp recordings during moving stimuli,

traces were first averaged across the three trials for each
direction and inspected to ensure the consistency of the
responses across trials. Average traces were baseline
subtracted based on the last 500 ms of recording or a
user defined interval after manual inspection. Peak cur-
rents were calculated from average baseline subtracted
traces. They were defined as the maximal (IPSC) or mini-
mal (EPSC) points during two separate 1.9 s windows in
which the ON and OFF responses occurred. The peak
currents in each direction were used to calculate the vec-
tor sum of the current responses. For timing analysis,
PSC traces were low pass filtered using an 80-ms moving
average, and the peak times for excitation and inhibition
was extracted for both ON and OFF responses. Null direc-
tions for both ON and OFF responses were defined as the
angle of the vector sum of ON and OFF peak IPSCs; the
preferred directions were defined as 180° from the, null
direction.
The directionally selective index (DSI) was calculated

for the peak amplitude of the IPSCs as: (ND – PD)/(ND 1

PD), where ND is the amplitude of the peak current in the
null direction, and PD is the amplitude of the peak current
in the preferred direction. We also used the magnitude of
the vector sum of the PSCs as another measurement of
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directional tuning (vector sum=1 – circular variance of the
PSCs; Mazurek et al., 2014).

Quantification of receptive fields. For voltage clamp

recordings during static stimuli, we first divided each
trace into the ON and OFF response based on the lo-

cation of the stimulus. Next, we calculated the center

of mass (COM) of the receptive field using the follow-
ing equations:

COMx ¼

XN

i¼1
mixi

M

COMy ¼

XN

i¼1
miyi

M

Where x and y are the cartesian coordinates of the
COM, N is the total number of stimulus squares (100), m
is the peak current amplitude at each coordinate location,
and M is the sum of peak current amplitudes across the
entire receptive field.
To measure the displacement and orientation of the re-

ceptive fields relative to the soma, we calculated the mag-

nitude and angle, respectively, of vector from the soma to
the COM of the receptive field using the following

equations:
Vector magnitude =

p
~Ax

21~Ay
2, where ~Ax and ~Ay are

the vector components from the soma to COMx and
COMy, respectively.

Vector Angle ¼ tan�1
~Ax

~Ay

 !

:

To quantify spatially offset inhibition, we calculated the
vector from the COM of the excitatory receptive field to
the COM of the inhibitory receptive field.

Quantification of dendrite asymmetry. To compare
DSGC dendrites to the synaptic inputs evoked by stat-

ic stimuli, we skeletonized dendrites using methods
described above. Next, we calculated the vector from

soma to the COM of the dendritic pixels; the magni-
tude of the vector indicates the magnitude of dendritic

asymmetry relative to the soma, while the angle of the
vector indicates the orientation dendrites. To directly

compare the DSGC dendrites to the IPSC and EPSC
receptive fields, we binned the dendritic skeleton into

a 10� 10 matrix by summing the binarized pixels in
each bin, with the soma located in the center of the

matrix. Again, we calculated the vector from soma to
the COM of the binned dendritic pixels; the magnitude

of the vector indicates the magnitude of dendritic
asymmetry relative to the soma, while the angle of the

vector indicates the orientation dendrites. In Figure

2A, we show the responses of an example vDSGC and
nDSGC recorded in control conditions as well as their

binned dendrites.

Quantification of receptive and dendritic field sizes. To
quantify receptive field size, the locations in the excita-
tory and inhibitory pixels that had responses below a
set noise threshold of 50 pA were assigned a value of 1

while the other pixels were assigned a value of zero.
Next, we calculated the area total area of the grid with
responses that exceed the threshold. To quantify den-
dritic field size in a manner that is comparable to the re-
ceptive field size, we binned dendritic pixels into a
10� 10 matrix and then used the same method to cal-
culate dendritic area, without applying a threshold
since dendrites were skeletonized before this analysis
using the method described above.

Results

DSGCs with asymmetric dendrites exhibit greater

directional tuning of inhibition than DSGCs with

symmetric dendrites

Our goal was to determine if the synaptic organization onto
DSGCs is dependent on the dendritic morphology. We first
quantified the difference in dendritic asymmetry in vDSGCs
versus nDSGCs by calculating the magnitude of the vector
from the soma to the COM of the dendritic pixels. We found
that both ON andOFF dendrites of vDSGCs were significantly
more asymmetric than nDSGCs (Fig. 1A, Table 1). As reported
previously, the asymmetry in the dendrites of nDSGCs are not
consistently aligned with their preferred direction (Rivlin-Etzion
et al., 2011).
To assess the impact of dendrite morphology on the

tuning of inhibition, we conducted voltage clamp record-
ings of both vDSGCs and nDSGCs and isolated IPSCs in
response to a bar of light moving in eight different direc-
tions (Fig. 1B). Despite previous MEA studies showing
that comparable spike tuning of both DSGC subtypes
under our stimulus conditions (Yao et al., 2018), asym-
metric vDSGCs had a significantly higher DSI, compared
with nDSGCs (Fig. 1C, Table 1). Hence, vDSGCs with
asymmetric dendrites had greater tuning of inhibition.
Previous studies have reported differences in the rela-

tive timing of excitatory and inhibitory synaptic inputs
for preferred and null direction stimulation, consistent
with the presence of spatially offset inhibition (Fried et
al., 2002; Taylor and Vaney, 2002). Here, we report
similar differences in timing, with inhibitory inputs delayed
relative to excitatory input for preferred direction stimula-
tion in symmetric, nDSGCs (Figure 1D, Table 1), although
there was greater variability during preferred direction mo-
tion for asymmetric vDSGCs because of the small ampli-
tude of the inhibitory currents (Fig. 1E). For both nDSGCs
and vDSGCs, null direction motion elicited a much smaller
temporal difference between the excitatory and inhibitory
responses (Figure 1D, Table 1). We also represented these
timing differences as spatial offsets by multiplying by the
velocity of our stimulus (250mm/s=8.1°/s) (Figure 1E,
Table 1). These data suggest that, for both asymmetric
vDSGCs and symmetric nDSGCs, spatially offset inhibition
contributes to the DS computation.

Receptive field mapping of DSGCs reveals similar

spatially offset inhibition for DSGCs with symmetric or

asymmetric dendrites

Previously, we showed that in asymmetric vDSGCs, the
centers of mass of the spatial receptive fields for excitation
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and inhibition are both offset toward the preferred direction
with inhibitory receptive fields further offset than the excita-
tory receptive fields (El-Quessny et al., 2020). However, for
symmetric nDSGCs, the relative arrangement of excitatory
and inhibitory receptive fields is unknown. Hence, we
mapped the excitatory and inhibitory receptive fields by re-
cording synaptic currents evoked by squares of light se-
quentially presented at 100 block-shuffled locations within
a soma-centered grid (Fig. 2A). We stimulated a 500� 500
mm area spanned by a 10� 10 grid and we presented a
30� 30 mm light flash within the center of each grid to pre-
vent any blooming artifacts of the visual stimulus.
To characterize the relative position of excitatory and

inhibitory receptive fields, we computed the COM for den-

drites, excitatory receptive fields, and inhibitory receptive
fields (Fig. 2B) and compared both the relative displace-

ment and orientation of the inhibitory receptive field to the
excitatory receptive field (Fig. 2C). We found that the

excitatory and inhibitory receptive fields of both vDSGCs

and nDSGCs exhibited some spatial offset (Fig. 2D).

Although the relative magnitude of spatially offset in-
hibition (magnitude of the vector from excitation to in-

hibition) was slightly greater in nDSGCs, compared with

vDSGCs (Table 2, Fig. 2E), we were surprised to find that

they were comparable to each other despite their dis-
tinct dendritic morphologies. Moreover, we observed

that the direction of the spatially offset inhibition clus-

tered around the preferred direction though there was
significant variance for both nDSGCs, and vDSGCs

(Table 2; Fig. 2D,E).
Although we observed a shift in the position of inhibi-

tory receptive fields relative to excitatory receptive

fields in both cell types, there was also a striking corre-

lation between them. First, we observed a strong posi-

tive correlation between the location of excitation and

inhibition relative to the soma (Fig. 2F). Note, this
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Figure 1. DSGCs with asymmetric dendrites exhibit more asymmetric inhibition but similar temporal offset compared to DSGCs

with symmetric dendrites. A, Left, Skeletonized vDSGC (orange) and nDSGC (blue). Right, Summary data comparing dendritic
asymmetry of vDSGCs (n=23) and nDSGCs (n=16) as measured by the magnitude of the vector from the soma to COM of the ON
(filled) and OFF (open) dendrites. Red data points indicate the measurements for example cells on the left. Statistical significance

assessed by one-way ANOVA (p=4� 10–4) and Dunn–Sidak post hoc test (**p, 0.01). B, Example tuning curve and mean traces of
the IPSCs in vDSGCs (orange, left) and nDSGCs (blue, right) in response to a moving bar stimulus. ON (solid lines) and OFF (dashed

lines) tuning curves and vector sums are based on peak current amplitudes. C, Left, Scatter plot of the peak amplitude of IPSCs in
response to preferred versus null direction motion in vDSGCs (orange) and nDSGCs (blue). SEM for ON (dark shade) and OFF (light
shade) responses indicated on the plot. Right, Summary data presenting the tuning of vDSGCs (orange) and nDSGCs (blue) as

measured by the direction selectivity index. ON (filled) and OFF (open) responses separately. Unity line (gray dashed) indicating
where preferred (PD) = null (ND) IPSC peak amplitude. Statistical significance assessed by Wilcoxon rank-sum test (**p, 0.01,
***p, 0.001). D, Example IPSC and EPSC traces in response to the preferred direction (PD, top) and null direction (ND, bottom) for

a vDSGC (orange) and a nDSGCs (blue). Arrows indicating peak timing for IPSCs (magenta) and EPSCs (green). E, Summary data
representing spatial offset based on the timing differences of the peak excitatory (E) and inhibitory (I) currents in response to pre-

ferred direction (PD) and null direction (ND) stimulation for ON (filled) and OFF (open) responses in vDSGCs (orange) and nDSGCs
(blue). Statistical significance for nDSGCs assessed by paired t test (p. 0.05).
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correlation was stronger in asymmetric vDSGCs (Table

2) consistent with previous findings (El-Quessny et al.,

2020). Second, we observed a strong correlation be-

tween the strength of excitation and inhibition meas-

ured at each pixel (Fig. 2G), where the amplitude of

excitation explains on average 65% and 51% of the

variance in the amplitude of inhibition in vDSGCs and

nDSGCs, respectively (Fig. 2H). This strong local

correlation is consistent with the tight alignment of

ACh-GABA co-transmission from SAC varicosities

(Lee et al., 2010; Sethuramanujam et al., 2016;

Brombas et al., 2017; Jain et al., 2020).
To assess the organization of the excitatory and inhibi-

tory receptive fields along the preferred-null axis, we col-
lapsed the synaptic currents recorded with the static
stimulus along the axis orthogonal to their preferred direc-
tion and plotted the normalized distribution of excitation
and inhibition (Fig. 3A). We found both vDSGCs and
nDSGCs exhibit a comparable skew in the spatial distri-
bution of excitatory and inhibitory synapses toward their
preferred directions (Fig. 3B,C). Together, these data indi-
cate that nDSGCs and vDSGCs exhibited similar spatially
offset inhibition despite significant differences in their
dendritic morphology.

DSGC dendritic morphology does determine the

organization of spatial receptive fields

We next explored whether the small displacements for
the EPSC and IPSC receptive field centers from the soma
were correlated with variations in the spatial arrangement
of the DSGC dendrites (Fig. 4A). To do that, we compared
the distance and orientation of the COM relative to the soma
of the EPSC and the IPSC peak current amplitudes of the ON
and OFF responses from the soma (Fig. 2B) to those of the
dendrites. Consistent with our previous study (El-Quessny et
al., 2020), we found that the orientation of vDSGC dendrites,
excitatory receptive fields, and inhibitory receptive fields were
all ventrally pointing (ventral corresponds to 270°, Table 3; El-
Quessny et al., 2020). In contrast, nDSGC dendrites, excita-
tory receptive fields, and inhibitory receptive fields did not ex-
hibit a biased orientation toward the nasal direction (nasal
corresponds to 0/360°; Fig. 4B,C; Table 3). We also found

that EPSC and IPSC receptive fields were significantly larger
than the dendritic fields in both vDSGCs (Fig. 4D, Table 3),
contrary to previous studies in rabbit DSGCs (Brown et al.,
2000; Yang andMasland, 1994).
In the above experiments, EPSCs are mediated by a

combination of activation of nicotinic acetylcholine re-
ceptors (nAChRs) and glutamate receptors. In a subset
of experiments, where we pharmacologically blocked
cholinergic excitation, we found that the orientation of
the glutamate receptive field in vDSGCs was also ven-
trally oriented Table 4. In contrast, the orientation of
the glutamate receptive field in nDSGCs was not ori-
ented toward its preferred direction but rather, on av-
erage, was oriented toward the DSGCs’ null direction
(Fig. 5A,B; Table 4). This is consistent with recent re-
ports investigating another nDSGC subtype, where
the glutamatergic receptive field was also skewed to-
ward the DSGC’s null direction (Ding et al., 2021).
Additionally, although glutamatergic receptive field
were significantly larger than dendritic field size (Fig.
5C), they were closer in area than mixed glutamater-
gic-cholinergic receptive field size (compare Fig. 5C
and D, left), indicating that cholinergic inputs from
SACs contribute excitatory inputs outside of the
DSGC dendrites. These data reveal that while asym-
metric dendritic morphology of vDSGCs can predict
the locations of the center of their receptive fields,
dendritic field size does not dictate the size of the in-
hibitory or mixed excitatory receptive fields in either
vDSGCs or nDSGCs.

Discussion
Dendritic morphology is thought to influence synaptic

organization. Here, we show that dendritic morphology
impacts the amount of tuned inhibition whereby DSGCs
with asymmetric dendrites exhibit more strongly tuned in-
hibitory inputs than DSGCs with symmetric dendrites but
both cell types exhibit comparable spatially offset inhibition.
Moreover, in both cell types, we found that the receptive
fields for excitation and inhibition were similarly oriented to
each other and were locally correlated in strength. Finally,
our results indicate that spatial receptive fields are signifi-
cantly larger than dendritic fields and are not strongly

Table 1: Summary data for Figure 1

ON responses OFF responses

vDSGCs nDSGCs vDSGCs nDSGCs

Mean SD (n) Mean SD (n) Mean SD Mean SD

Dendrite asymmetry (mm) 66.67 25.50 (23) 43.08 20.51 (17) 65.83 25.40 39.98 17.32

Dendrite angle (°) 242.11 41.70 (23) 146.87 67.12 (14) 230.80 40.56 234.14 76.06
IPSC amplitude (ND; pA) 794.60 309.80 (17) 665.99 146.30 (11) 574.92 181.10 449.37 102.50
IPSC amplitude (PD; pA) 290.70 136.81 (17) 325.75 101.98 (11) 173.58 88.61 212.96 63.23

IPSC DSI 0.48 0.19 (17) 0.34 0.14 (11) 0.56 0.11 0.31 0.17
E–I timing difference (ND; ms) 36.04 67.30 (7) �53.11 92.43 (5) 136.22 76.41 39.66 144.91

E–I timing difference (PD; ms) 81.63 �262.06 (7) �257.57 134.26 (5) �292.43 476.53 �173.50 325.06
E–I spatial offset (ND; mm) 13.32 13.07 (7) 21.77 12.73 (5) 35.31 16.23 33.52 5.58
E–I spatial offset (PD; mm) 36.04 57.12 (7) 64.39 33.57 (5) 109.55 76.79 74.67 44.58

Table related to Figure 1. ND, Null Direction; PD, Preferred Direction.
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Figure 2. vDSGCs and nDSGCs have similar spatially offset inhibition and exhibit strong local correlations in excitation and inhibi-
tion. A, Example vDSGC (top) and nDSGCs (bottom) receptive field displaying mean inhibitory and excitatory postsynaptic re-

sponses for each stimulus presentation. Asterisk in the center of the stimulus field denotes soma location. ON (cyan) and OFF
(purple) dendritic skeletons are overlaid. Inset shows stimulus presentation of 30� 30 mm light within a 50�50 mm area to evade

scattering effects. B, Heat map of dendritic density (left), the EPSC peak current amplitude (middle), and IPSC peak current ampli-
tude (right) for ON (top) and OFF (bottom) responses of the example vDSGC (top row) and nDSGC (bottom row) to the left. Scale
bar: 100 mm. C, Summary data plotting the average IPSC (I) receptive field centered on the EPSC (E) receptive field COM (ECOM).

ON (top) and OFF (bottom) responses are analyzed separately. Scale bar: 100mm. D, Summary data represented as polar plots of
the vectors from the excitatory (center) to the inhibitory receptive fields in vDSGCs (orange, left) and nDSGCs (blue, right) for ON
(solid) and OFF (dashed) responses. E, Left, Summary data showing magnitude of spatially offset inhibition (vector from E to I) for

vDSGCs (orange) and nDSGCs (blue). Spatial offset predicted from the temporal offset of excitation and inhibition during preferred
direction motion of a moving bar stimulus (Fig. 1) indicated in gray. Statistical significance across cell types assessed with Wilcoxon
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dictated by the dendritic structure. Here, we discuss the im-
plications of these findings for direction selectivity in the
mouse retina.

Asymmetric dendrites may lead to stronger tuning of

inhibitory inputs

We found that vDSGCs had stronger inhibitory tuning
than symmetric nDSGCs, driven primarily by a decrease

in the amount of inhibition during preferred side stimula-
tion (Fig. 1). One interpretation of these findings is that
the absence of preferred side dendrites reduces the
likelihood of these preferred side SAC-DSGC synapses.
Serial EM reconstructions indicate that the presence of
SAC-DSGC synapses is correlated with an anti-parallel

organization of SAC processes and the preferred direc-

tion of the DSGC; however, this wiring rule applies across

the entire dendritic tree of a symmetric DSGC (Briggman

continued
rank-sum test (*p, 0.05). Statistical significance between measured and predicted spatial offset determined by one-sided t test (all

p values ,0.001). Right, Summary data showing the angular deviation of spatially offset inhibition from the preferred direction of
vDSGCs (orange) and nDSGCs (blue). F, Summary data representing the orientation of the EPSC’s receptive field COM relative to
the orientation of the IPSC’s receptive field COM in vDSGCs (orange, top) and nDSGCs (blue, bottom) for ON (filled) and OFF (open)

responses. Pearson’s correlation coefficients presented in Table 2. G, Example scatter plots of EPSC versus IPSC amplitude per
pixel in vDSGCs (orange, left) and nDSGCs (blue, right) for ON (filled) and OFF (open) responses. Trend lines computed using least

squares regression. Pixels with current amplitude below 5% of the maximum were excluded. Inset, Coefficient of determination (R2)
for each example cell. H, Summary data of R2 values for each vDSGC (orange) and nDSGC (blue).

Table 2: Summary data for Figure 2

ON Responses OFF Responses

vDSGCs (n=17) nDSGCs (n=15) vDSGCs nDSGCs

Mean SD Mean SD Mean SD Mean SD

RF spatial offset magnitude (E–I; mm) 20.80 15.54 38.14 23.39 19.83 14.49 33.72 27.01
RF spatial offset deviation from PD (°) �7.53 86.59 7.90 86.95 �40.79 72.278 �4.97 70.20

R p R p R p R p
EPSC angle vs IPSC angle 0.83 2.7E-05 0.67 5.0E-03 0.92 1.6E-09 0.67 6.3E-03

Table related to Figure 2.
R: Pearson’s correlation.
p: p value.
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et al., 2011). Our finding that a DSGC with an asymmetric

dendritic tree exhibits a relative reduction in synapses

with SAC processes oriented parallel to the DSGC’s pre-

ferred direction would imply that the orientation of

the dendritic branch of the DSGC itself may play a role in

instructing this wiring, potentially by increasing the pro-

portion of antiparallel compared parallel SAC-DSGC con-

nections. Although there is no evidence for this in the
adult mouse DS circuit, this scenario has not been ex-
plicitly tested. For comparison, asymmetric dendritic or-
ganization is crucial for the wiring of inputs to DS
neurons in the Drosophila, where connectome analysis
reveals dendritic asymmetry mediates the physical dis-
placement of null and preferred side inputs (Shinomiya
et al., 2019). Another example can be found in the mouse
spinal cord, where the relative orientation of presynaptic

and postsynaptic processes instructs circuit wiring
(Balaskas et al., 2019).
Despite the difference in tuning of inhibition, vDSGCs

and nDSGCs have been shown to exhibit similar spike tun-
ing properties under our stimulus conditions (Yao et al.,
2018). We think that this is because of the fact that tuning
is set by the shunting inhibition generated by null direction;
namely if there is sufficient inhibition, then cells will be simi-
larly tuned (Koch et al., 1983; Taylor et al., 2000).
An alternative interpretation is that different subtypes of

DSGCs receive different levels of non-DS inhibition from
other sources (Pei et al., 2015; Morrie and Feller, 2018)
such as VIP amacrine cells (Park et al., 2015). For exam-
ple, in another population of nDSGCs, paired recordings
with SACs show that asymmetric inhibition is impaired
when the vesicular GABA transporter (VGAT) is knocked
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out from SACs, compared with wild-type animals (Pei et
al., 2015). In these knock-outs, the amplitude of inhibitory
input was reduced in response to null but not preferred di-
rection stimulation, pointing to a role for non-SAC sources
of inhibition during preferred direction motion.

DSGC dendrites and the spatial organization of their

receptive fields

Using receptive field mapping based on stationary stim-
uli, we find that there was an overall shift in the inhibitory
receptive field relative to the excitatory receptive field for
DSGCs with both symmetric and asymmetric dendrites.
This is consistent with our previous work which has
shown that vDSGCs exhibit ventrally offset inhibitory re-
ceptive fields, regardless of their altered morphology fol-
lowing dark rearing (El-Quessny et al., 2020).
In our present study, the spatial offset between the ex-

citatory and inhibitory receptive fields was on average
,50mm (Fig. 2E), which is the resolution of our mapping.
In a previous study, which uses a slightly larger stimulus
to map the synaptic input receptive fields of vDSGCs, a
slightly larger shift was observed in the excitatory and in-
hibitory receptive fields (Trenholm et al., 2013), indicating
the importance of the mapping resolution in estimating
spatial offset. Interestingly, the spatial offset between ex-
citatory and inhibitory receptive fields scales with that ob-
served in the rabbit retina, which predicted spatial offsets of
150 mm, or roughly half the dendritic tree of rabbit DSGCs
(Fried et al., 2002). Given the larger dendritic field of rabbit
ON-OFF DSGCs (;600mm in diameter; Yang and Masland,
1994; He et al. 1999; Oesch et al., 2005) compared with
mouse ON-OFF DSGCs (;200mm in diameter; Rivlin-Etzion
et al., 2011), we believe that the observed spatial offset scales
with dendritic field size across both species. Additionally, the

observed spatial offset is comparable but a bit smaller than

predicted by the temporal offsets induced by drifting bar (Fig.

1E). Similarly, the displacement of the inhibitory receptive

field is smaller than that predicted by the temporal offsets

previously reported for symmetric nDSGCs (270 ms at

500mm/s corresponding to 135mm; Pei et al., 2015). This

may be because of different stimulus sizes leading to differ-

ential recruitment of lateral inhibitory circuits. Another differ-

ence is that stationary stimuli may more strongly activate

symmetric sources of inhibition onto DSGCs that arise from

non-SACs (Morrie and Feller, 2018;Wei, 2018).
We also found that both excitatory and inhibitory re-

ceptive fields were much larger than dendritic fields
(Fig. 3). Blockade of nAChR signaling reduced the size
of the excitatory receptive field to that of the dendrites
(Fig. 5), consistent with a larger excitatory receptive
field because of cholinergic inputs from SACs (Lee et
al., 2010; Sethuramanujam et al., 2016). These data are
in line findings that glutamatergic receptive fields being
closely aligned to the DSGC dendrite (Yang and
Masland, 1994; Sethuramanujam et al., 2018; Jain et
al., 2020; Rasmussen et al., 2020). Another possibility
not explored here is the role of gap junctions in expand-
ing receptive field size as recently described for F-mini
ON RGCs (Cooler and Schwartz, 2021) and in vDSGCs
(Trenholm et al., 2013).
It is important to note that the strength of synapses re-

vealed by stationary receptive field mapping is different
from what is activated during moving stimuli. Motion stim-
uli evoke directional release of GABA from SACs (Euler et
al., 2002; Ding et al., 2016; Vlasits et al., 2016), and gluta-
mate from bipolar cell terminals (Matsumoto et al., 2019).
Paired recordings between SACs and DSGCs indicate
that the strength of ACh synapses are symmetric, and
likely mediated by diffuse release of ACh (Lee et al.,
2010), while motion stimuli may lead to asymmetric re-
lease of ACh during low contrast stimuli (Poleg-Polsky
and Diamond, 2016; Sethuramanujam et al., 2016).
Furthermore, optogenetic stimulation of SACs expressing
channelrhodopsin leads to cholinergic excitation preced-
ing GABAergic inhibition and exhibiting faster receptor ki-

netics, during preferred direction motion, with all other

mechanisms of synaptic inputs blocked (Hanson et al.,

2019; Pottackal et al., 2020). However, receptive field

mapping informs us of the overall synaptic distribution

onto DSGC dendrites that could be activated by a variety

Table 3: Summary data for Figure 4

ON responses OFF responses

vDSGCs (n = 20) nDSGCs (n = 18) vDSGCs nDSGCs

Mean SD Mean SD Mean SD Mean SD

Soma to EPSC COM vector magnitude 50.80 25.04 37.01 29.58 42.04 20.21 31.51 28.83

Soma to EPSC COM vector angle (°) 267.38 45.43 195.73 65.68 260.72 44.74 196.60 60.52
Soma to IPSC COM vector magnitude 63.00 27.20 45.05 29.69 53.89 20.79 37.50 31.94
Soma to IPSC COM vector angle (°) 264.90 41.45 295.957 74.89 259.79 42.78 279.54 75.55

EPSC area/dendrite area 1.9 0.76 2.273 1.19 1.90 0.93 2.87 1.35
IPSC area/dendrite area 1.64 0.62 2.323 1.30 1.86 0.91 3.31 1.54

R p R p R p R p
EPSC angle vs dendrite angle Pearson’s correlation 0.09 0.72 0.49 0.1 0.08 0.73 0.4 0.19
IPSC angle vs dendrite angle Pearson’s correlation �0.08 0.74 0.78 *6e-4 0.24 0.31 0.39 0.17

EPSC area vs dendrite area Pearson’s correlation 0.35 0.14 0.35 0.24 0.13 0.59 0.21 0.50
IPSC area vs dendrite area Pearson’s correlation 0.13 0.60 0.13 0.62 0.11 0.66 �0.05 0.83

Table related to Figure 4.
R: correlation coefficient.
p: p value.
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of different visual stimuli. For example, a recent study has

also implicated variations in the strength of excitatory re-

ceptive field, along the null-preferred axis, is critical for

the ability to encode the location of moving stimuli and is

revealed when the motion stimulus is interrupted by sta-

tionary occluder (Ding et al., 2021).
Here, we find that the while the glutamatergic receptive

fields of nDSGCs are skewed toward the DSGC’s null direc-
tion, consistent with previous reports (Ding et al., 2021), the
glutamatergic receptive fields of vDSGCs are skewed to-
ward their preferred side. However, vDSGCs were previ-
ously reported to exhibit lag normalized synaptic responses
because of gap junction coupling, enabling them to encode
object location (Trenholm et al., 2013). Together, these data
indicate that vDSGCs and nDSGCs may employ distinct
mechanisms for encoding object location.

Local dendritic computations support direction

selectivity in DSGCs

As noted above, the extent of direction-selective tuning
is set by the presence of a sufficient level of inhibition.
Interestingly, there is strong evidence that the direction-
selective computation is made locally on DSGC dendrites,
i.e., that motion stimuli confined to small segments of the
DSGC dendritic tree still elicit a directional responses
(Wei, 2018). First, we found that for both vDSGCs and
nDSGCs, inhibitory and excitatory receptive fields exhibit-
ing correlated synaptic strengths (Fig. 3), indicating that
regions of the receptive field with a higher number of exci-
tatory synapses is countered by an increase in inhibitory
synapses. Second, local asymmetric release of GABA are
supported by the SAC plexus (Sun et al., 2013) where di-
rectional computations are localized with the SAC den-
drites (Koren et al., 2017; Morrie and Feller, 2018; Poleg-
Polsky et al., 2018). In fact, changes in this density of this
plexus appears to be correlated with tuning whereby de-
creases in the coverage factor of SAC dendritic arbors
(Morrie and Feller, 2018) diminishes DS tuning, while in-
creases in the coverage factor of SAC dendritic arbors in-
creases DS tuning (Soto et al., 2019) indicating that the
density of the SAC dendritic plexus determines asymmet-
ric inhibition of all DSGCs.
Computational modeling showed that nonlinear conduct-

ance within the dendritic tree promotes a multicompartmen-
tal model, allowing local interactions between excitation and
inhibition to shape dendritic DS, while SAC ablation abol-
ished DS (Jain et al., 2020; Sivyer and Williams, 2013). A
multicompartmental model is specifically relevant for
vDSGCs, whose form-function correlation enables them to
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Figure 5. DSGC glutamatergic receptive field is more restricted
to the dendritic field. A, Left, Summary data represented as

polar plots of the vectors from the soma to the excitatory gluta-
mate receptive field COM in the presence of 100 mM

Hexamethonium in vDSGCs (orange, top) and nDSGCs (blue,
bottom) for ON (solid) and OFF (dashed) responses. Right,
Summary data representing the deviation of the vector angle

(right) from the vDSGC (orange, top) and nDSGC (blue, bottom)
preferred direction. Data for ON (filled circle) and OFF (open
circle) plotted separately. B, Summary data displaying the rela-

tionship between the orientation of the vector from the soma to
the glutamatergic excitatory receptive field (EPSCGlu) COM, rel-

ative to the orientation of the dendritic COM in vDSGCs (or-
ange, n=5 cells) and nDSGCs (blue, n=9 cells). C, Summary
data comparing the relationship between dendritic area and the

glutamatergic excitatory (EPSCGlu) response areas within the re-
ceptive field, and the area of the dendrites for each vDSGC (or-

ange) and nDSGC (blue). Data for ON (filled circle) and OFF
(open circle) plotted separately. Statistical significance of the
EPSCGlu/dendrite ratio determined with one-sided t test and

compared with a ratio of 1 (EPSCGlu = dendrite area). All p val-
ues ,0.001.

Table 4: Summary data for Figure 5

ON responses OFF responses

vDSGCs (n = 5) nDSGCs (n = 9) vDSGCs nDSGCs

Mean SD Mean SD Mean SD Mean SD

Soma to EPSCGlu COM vector magnitude (mm) 58.28 22.44 41.09 24.23 52.30 30.23 39.74 19.98

Soma to EPSCGlu COM vector angle (°) 266.94 47.11 200.47 67.99 272.88 53.75 220.88 71.83
EPSCGlu area/dendrite area 1.61 0.28 1.83 1.40 1.98 0.43 2.15 1.13

R p R p R p R p
EPSCGlu area vs dendrite area Pearson’s correlation 0.96 0.003 �0.14 0.7 0.88 0.02 �0.12 0.76
IPSC area vs dendrite area Pearson’s correlation 0.13 0.60 0.13 0.62 0.11 0.66 �0.05 0.83

Table related to Figure 5.
R: correlation coefficient.
p: p value.
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nonlinearly integrate synaptic inputs along their dendrites
(Trenholm et al., 2011, 2013; El-Quessny et al., 2020). This
may explain how vDSGCs rely more heavily on asymmetric
versus spatially offset inhibition, relative to nDSGCs which
do not have a form-function relationship.
In conclusion, we show that DSGCs exhibit two parallel

mechanisms for computing motion direction. The first is
based on tuned inhibition, which we find is influenced by
the morphology of the DSGC, and the second is based on
spatially offset inhibition which is not influenced by the
DSGCs’ dendritic orientation, size or asymmetry.
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