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Dendritic cells (DCs) play a pivotal role in the orchestration of immune responses, and
are thus key targets in cancer vaccine design. Since the 2010 FDA approval of the first
cancer DC-based vaccine (Sipuleucel-T ), there has been a surge of interest in exploiting
these cells as a therapeutic option for the treatment of tumors of diverse origin. In
spite of the encouraging results obtained in the clinic, many elements of DC-based
vaccination strategies need to be optimized. In this context, the use of experimental
cancer models can help direct efforts toward an effective vaccine design. This paper
reviews recent findings in murine models regarding the antitumoral mechanisms of DC-
based vaccination, covering issues related to antigen sources, the use of adjuvants
and maturing agents, and the role of DC subsets and their interaction in the initiation
of antitumoral immune responses. The summary of such diverse aspects will highlight
advantages and drawbacks in the use of murine models, and contribute to the design of
successful DC-based translational approaches for cancer treatment.

Keywords: cancer immunotherapy, dendritic cell-based vaccines, dendritic cells, dendritic cell maturation,
dendritic cell subsets, adjuvants

Introduction

Dendritic cells (DCs) form a network of antigen-presenting cells (APCs) that shape immune
responses by linking innate and adaptive immunity. Their ability to induce or suppress the pro-
liferation, activation, and differentiation of specific T-cell subsets renders them an attractive target
for cancer immunotherapies.

Tumoral antigens are mostly self-proteins (1). As a result, cancer is associated with T-cell deletion
and a defective T-cellmemory repertoire, which includes anergicCD8+ Tcells (hyporesponsive state
upon low co-stimulation or high co-inhibitory stimulation) and exhausted CD8+ T cells (decreased
cytokine expression and effector function upon chronic activation), as recently reviewed (2, 3).
However, T cells recognizing tumor-specific antigens and tumor-associated antigens (TAAs) that
can be targeted by vaccination have been described in the context of cancer (1, 4, 5). Therefore,
therapeutic vaccines should be able to prime naïve T cells, but most importantly, induce the
transition of existing memory T cells from non-protective to potent effector CD8+ T cells (6).
DCs are considered the most efficient APCs (7). In order to instruct naïve T cells into the required
functional profile, DCs must present tumor antigens via MHC class I and II molecules (signal 1),
express co-stimulatory ligands (signal 2), and inflammatory mediators (signal 3) such as IL-12 or
type I interferons (IFNs) (8, 9). Recent works have highlighted the importance of the innate immune
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system in the tumor microenvironment. This is the site where ini-
tial antigen sampling and activation of APCs take place, including
different subsets ofDCs. It was shown that a T-cell inflamed tumor
microenvironment phenotype is associatedwith clinical responses
to therapeutic cancer vaccines (10). Therefore, a complete descrip-
tion of the functional specialization and tissue distribution of DCs
deserves special attention in tumor models.

For over 20 years, clinical trials have been performed using
DC-based vaccines, and they have proven to be feasible, safe,
and to elicit immunological responses (11). Recent reviews that
have outlined the clinical effects of DC-based vaccines highlight
the discrepancy observed between the immunonogenicity and
the therapeutic efficacy in terms of inducing tumor rejection
(6, 12, 13). This clinical challenge emphasizes the importance of
employing adequate murine models in pre-clinical research. The
availability of different genetic backgrounds allows researchers
to gain insight into the function and relevance of specific DC
subsets, track vaccine cells once injected, evaluate antigen-specific
T-cell proliferation and activation, and work with human tumor
cells in humanized mouse models. In this review, the knowledge
gained through murine models will be summarized, with the aim
of helping in the design of efficient DC-based vaccines that can be
rapidly translated to human clinical trials.

Murine Models in Cancer Research

Murine models have been an invaluable tool in the study of DCs
and cancer immunotherapy. It was in mouse lymph nodes that
DCswere first identified by Steinman et al. as a novel cell typewith
distinct morphological features (14). Regarding tumor immunol-
ogy, the first evidence of the immune system’s ability to recognize
tumoral antigens and reject tumors was obtained using mice with
implanted or chemically induced tumors (15) or infected with
oncogenic viruses (16). Since then, much has been learned in this
field with the aid of wild type and genetically engineered mice
(GEM) strains. The approaches used to generate these GEMs and
some of their limitations have been reviewed in Ref. (17).

Murine cell lines have been established for a variety of tumor
cell types in many genetic backgrounds. The B16 melanoma cell
line and its derived sublines B16-F1 and B16-F10 (18) have been
used extensively as syngeneic transplants into C57BL/6 mice. B16
cells are poorly immunogenic, and express low levels ofMHCclass
I molecules (19). Therefore, immunotherapeutic strategies that
generate tumoral protection in other tumor models do not work
as efficiently with B16 tumors (20). For this reason, it is a good
model to evaluate the strength of antitumoral immunotherapies.

Although it has proved very useful for the evaluation of anti-
melanoma immunotherapies, this model has several features that
do not entirely reflect the human disease. Principally, the fre-
quently observed BRAFV600E mutation in human melanomas (21)
is absent from B16, B16-F1, and B16-F10 cells, which show
a distinct pattern of genetic alterations (22). In this context,
GEMs with conditional expression of the BRAFV600Emutation or
other mutations frequently observed in human melanomas have
been developed. Moreover, human melanomas may take years to
become clinically evident, and dormancy periods between pri-
mary tumor resection and metastatic disease offer a time-window

for therapeutic interventions aiming to prevent future recurrence
in high-risk patients. By contrast, all B16 cell lines cause rapid
in vivo growth, leading to measurable tumors within 15–20 days
of subcutaneous (s.c.) transplantation, and compromising the
study of therapeutic approaches. Their rapid s.c. growth does
not give cancer cells time to progress into metastatic disease
without previous resection of the primary tumor, poorly reca-
pitulating human clinical stages. To study metastatic disease, the
more aggressive B16-F10 cell line is usually injected directly intra-
venously (i.v.). However, stages such as detachment of tumor
cells from the primary tumor mass and intravasation into nearby
vessels are not represented. GEMs with PTEN deficiency and
melanocyte-specific induced BRAFV600E mutation develop malig-
nant melanoma with posterior metastasis to lymph nodes and
lung (23),more closely resembling human tumor progression. The
main challenge to widespread implementation of GEM models is
the technical difficulty and high cost of generating these strains.
Recently, there have been BRAFV600E cell lines isolated from
transgenic BRAFV600E mice and BRAFV600E PTEN−/− mice (24).
These cells recapitulate human BRAFV600E melanoma in vitro, and
can be transplanted into syngeneic mice for assessment of host-
tumor interactions. Using knock-in technology, mutations can be
targeted to the endogenous gene locus of interest, and so innate
regulation of gene expression can be achieved. Some examples of
GEMs that target oncogenes or tumor suppressor genes and that
may be useful for assessing the efficacy of tumor vaccines are those
that target KIT, TRP53, BRAF, KRAS, PIK3CA, and EGFR (25).

The ovalbumin (OVA)/OT-I and OT-II murine model have
been used to study specific T-cell responses. Briefly, mice are
immunized with the OVA antigen (whole protein or peptides),
and thenOVA-specific CD4+ or CD8+ T-cell restricted responses
are assessed using T cells obtained from transgenic animals that
recognize OVA epitopes on MHC class I molecules (CD8+ T
OT-I cells) or MHC class II molecules (CD4+ T OT-II cells).
Though this model has proven very informative in immunology,
it diverges critically from the cancer setting in that OVA is an
exogenous antigen, and so OT-I and OT-II cells have not been
subjected to negative selection or peripheral tolerance. Thismodel
can provide information about naïve T-cell distribution and acti-
vation but does not reflect the behavior of human tumor-specific
clones; so, the results obtained should be evaluated carefully. As
will be discussed later, the success of a particular immunothera-
peutic strategy may vary depending on whether the antigen is a
self-peptide or an exogenous peptide.

An intermediate model between human cell culture and mouse
cancer models is the transplantation of human surgical specimens
or established cell lines (xenografts) into immunocompromised
mice. These have been used successfully to study human cancer
cells in an environment that better reflects tumoral complexity
and architecture (26). But when these models are used, it is not
possible to assess the patient’s immune response to the tumor.
This can be solved by the use of “humanized” mice, severely
immunodeficient mice with mutations in the IL-2 receptor com-
mon γ-chain locus, which can be engraftedwith humanperipheral
blood mononuclear cells (PBMCs) or human stem cells (HSCs)
(27). The IL-2 receptor γ-chain is necessary for the binding and
signaling several cytokines, and for NK development (28, 29),
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resulting in the absence of NK cells and improving human cell
engraftment and the analysis of antitumoral responses (30). In
the NOD-scid Il2Rγ−/−strain, multilineage engraftment includ-
ing human CD14+ cells, NK cells, and plasmacytoid BDCA-2+
DCs can be observed after HSC transplantation. The drawback
is that these mice have severely hypoplastic peripheral lymph
nodes, associated with impaired antibody class-switch and affin-
ity maturation (31). They also have proportionally low numbers
of human myeloid CD11c+CD86+ DCs, which fail to produce
IL12p40 or IFN-γ after CD40 stimulation (30). It is thus difficult
to evaluate DCmigration to secondary lymphoid organs and their
interaction with T cells to trigger adaptive responses. Nonetheless,
T-cell responses in vivo using donor-matched DCs have been

successfully assessed (32, 33). To facilitate the engraftment of
different cell types, GEMs expressing human cytokines (34) or
protocols administering such recombinant proteins have been
developed, and are reviewed by Drake et al. (35).

Differences between the murine model and the human dis-
ease may partially account for the lower efficiency observed in
human clinical trials. Hopefully, new models have been designed
that better recapitulate human disease or that allow studying
immunotherapies utilizing the patient’s own tumor and immune
cells. Therefore, researchers should take special care selecting the
model that best fits their objectives. The recommended applica-
tions and considerations for choosing a murine model for DC-
based vaccination in cancer have been summarized in Table 1.

TABLE 1 | Advice for choosing murine models for DC-based tumor immunotherapy.

Murine model Applications Disadvantages

Tumor cell lines
transplanted into
singeneic strains

Evaluate in vitro DC maturation, Ag presentation, and/or lymphocyte
activation (36, 37)

Different pattern of genetic alterations than human tumors (22)
[transgenic cell lines or cell lines isolated from GEMs, which carry
human genetic alterations may be used (24)]DC activation in vivo and migration to draining lymph nodes (38–41)

DC targeting in vivo with receptor-specific antibodies (42, 43)

Evaluate tumor growth and response to treatment in vivo; dissemination
after i.v. injection (44–46)

T cell activation in vivo, profile (effector or memory) of T cells (47–50)

Assess antibody production

Variable immunogenicity among cell lines

Variable responses depending on the genetic background of the
recipient strain. When choosing one model, there is a biased
immune response (genetically identical hosts)

Rapid in vivo growth which does not recapitulate human clinical
tumoral progression, difficult to assess therapeutic approaches
[modifications in tumoral challenge sites have been reported that
allow the study of primary tumors and posterior dissemination to
draining lymph nodes (51) or metastatic dissemination prior to
local growth (52)]

GEMs Mice are immunocompetent; so, immune responses can be studied Technical difficulty and high cost

Human genetic alterations can be induced in the tissue of origin (23) Tumor development is slow and variable (23, 54)

Tumoral protection can be assessed using a model that recapitulates
human clinical stages, including variability in tumor phenotype.
Appropriate to study therapeutic approaches (53)

Xenografts in
immunodeficient
strains

Study human cancer cells in an environment that better reflects tumoral
complexity and architecture (26)

Immune protection in vivo cannot be correctly assessed [human
immune cells can be transplanted, but there is short-term
persistence (55)]

Human tumor stroma and lymphocytes are lost in the initial
passages (26)

Stromal, endothelial, and residual immune cells are from murine
origin (56)

Selective pressures induce clonal expansion of an original
polyclonal tumor (57)

Low engraftment of human tumors and immune cells

Xenografts in
NOD-SCID
IL2RY−/−

humanized mice

Assess the patient’s immune response to the tumor Hypoplastic peripheral lymph nodes (impaired antibody class
switch and affinity maturation) (31)

Study of human tumor-stromal interactions (human tumor
microenvironment)

Test therapeutic efficacy of vaccines (32, 33, 59)

Study human DC subsets in vivo (60)

Graft-versus-host disease generated by human T cells reacting to
murine leukocyte antigen molecules. NOD-SCID IL2Ry−/− strains
lacking MHC-I or MHC-II have recently been developed (58)

After engraftment, low numbers of human myeloid CD11c+CD86+

DCs, which fail to produce IL12p40 or IFN-γ after CD40
stimulation (30)

To facilitate the engraftment of different immune cells, GEMs
expressing human cytokines (34)or protocols administering such
recombinant proteins have been developed (35)
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Lessons Learned from Murine Models

Characterizing DC Subsets
Recent reviews have described at length the ontogeny, pheno-
type, and transcriptional profile of the heterogeneous popula-
tion collectively named DCs (61–63). This network relies on the
differential expression of a group of transcription factors that
determine the specification of the different subsets of DCs (64).
Steady-state DCs can be classified into two groups: plasmacytoid
DCs (pDCs) and classical/conventional DCs (cDCs). Two further
subsets of cDCs can be distinguished in lymphoid tissues: CD8+
and CD11b+cDCs, while in non-lymphoid tissues, cDCs are clas-
sified into CD11b−CD103+ and CD11b+CD103−. Langerhans
cells (LCs) represent an additional population of DCs that reside
in the epidermis, although they can be found at draining lymph
nodes both in the steady state and after an inflammatory stimulus.
Lastly, during an inflammatory response, monocyte-derived DCs
(MoDCs) are induced and recruited to the siteswhere the response
was initiated, and migratory DCs can be found in draining lymph
nodes.

Deeper insights at the molecular level have improved the
distinction of DCs from other immune population, such as
macrophages, by providing a list of transcripts that define a “core
cDC signature.” This signature includes the chemokine receptor
CCR7, the transcriptional regulator Zbtb46, the Flt3L receptor,
and Kit (63). In coming years, transcriptional profiling should be
a helpful tool in the difficult task of assigning specific functions
to different DC population. So far, functional studies have shown
that each subset has particular abilities regarding antigen process-
ing, response to environmental signals, and the induction of naïve
T cells into effector lymphocytes (65). The response to environ-
mental signals is mediated by the expression of a set of innate
pattern recognition receptors (PRRs) that can bind conserved
antigen determinants of virtually all classes of pathogens, which
are called pathogen-associated molecular patterns (PAMPs), and
also recognize endogenous signals released during a stress or dam-
age response (damage-associated molecular patterns, DAMPs).
The pattern of expression of PRRs, scavenger, and lectin receptors
on different DC subsets is of great importance to predict their
potential activation in different physiological contexts, including
the tumor microenvironment. Some of the most relevant pheno-
typic markers, PRRs, and precursors to each subset are listed in
Figure 1. There are controversies regarding the involvement of
particular DC subsets in tolerogenic responses to tumors. This
section will focus on evidence regarding the observed contri-
butions of specific DC subsets in immune responses elicited by
DC-based vaccines in cancer.

Plasmacytoid DCs
Plasmacytoid DCs are found mainly in the blood and lymphoid
tissues. Their unique properties and phenotype separate them
from cDCs (Figure 1). Upon encounter with foreign nucleic
acids, pDCs produce massive amounts of type I IFNs, which can
activate both the innate and the adaptive arms of the immune
system. Despite the large body of knowledge acquired about pDC
biology, to date, their suitability for DC immunotherapy is only
recently being explored. In support of an immunogenic pDC role,

imiquimod (TLR7 agonist)-mediated regression of melanoma
tumors was shown to be dependent on TLR7 expression on pDCs;
neither mice lacking TLR7 nor pDC-depleted mice responded to
imiquimod therapy and both saw a reduction in apoptosis within
treated tumors (78). Other works have shown that the cross-
presentation pathway is under the control of TLR activation (79).
Moreover, results obtained from in vitro killing assays suggest
that pDCs may exert direct cytotoxic effects on tumor cells by
secreting soluble factors in response to imiquimod treatment (78).
Recent works have highlighted previously unknown functions of
pDCs in antitumor immunity. In work by Guery et al., antigen
presentation by pDCs was required for efficient antigen-specific
Th17 responses. Mice that were immunized with OVA plus CpG-
B (synthetic TLR9 ligand) and possessed pDCs lacking MHC
class II molecules showed reduced numbers of IL-17-secreting
OT-II cells, exhibited a significant increase in tumor growth, and
showed a reduction in the recruitment of tumor-specific cytotoxic
T lymphocytes (CTLs) into tumors (80). In a different model, the
injection of CpG-activated pDCs after a tumor challenge led to
a significant delay in the growth of B16 melanoma and MCA205
sarcoma tumors, and induced the recruitment of antigen-specific
CD8+ T cells and activated NK cells into tumors by a mechanism
dependent on endogenous cDCs and NK cells. In this work, CpG-
activated pDCs were able to stimulate NK cell cytolytic function
by secretion of type I IFN (81). This latter works highlight the
potential of activated pDCs to activate NK cells and orchestrate
a cytotoxic immune response against tumoral antigens.

On the other hand, several evidences in the human setting
support an immunosuppressive role for pDCs in the tumor
microenvironment: tumor-associated pDCs (TApDC) correlated
with unfavorable prognosis in patients with breast cancer (82),
where they were found to colocalize and correlate with tumor-
associated regulatory T cells (Tregs) (83); ovarian carcinoma
ascites-derived pDCs induced IL-10-producing Tregs in vitro
(84); tolerogenic pDCs were found infiltrating prostate tumors
(85), and together with inducible costimulator (ICOS)-expressing
FoxP3+Tregs, pDCs were strong predictors for disease progres-
sion in patients with ovarian cancer (86). In mouse models, fewer
works have studied the mechanisms of pDCs-induced immuno-
suppression. Watkins et al. used a transgenic adenocarcinoma
of mouse prostate to study tumor infiltrating DCs, and found a
predominant pDC population able to induce tolerance in antigen-
specific T cells. Furthermore, they studied the role of transcrip-
tion factor Foxo3 in mediating TApDC-induced suppression (85).
In accordance, the depletion of pDCs in mice bearing CpG-
treated Lewis lung carcinoma (LLC) tumors correlated with lower
numbers of intratumoral Tregs, an increase in the recruitment
of mature cDCs, and the arrest of tumor growth (87). Delayed
tumor growth was also observed after pDC depletion in an ortho-
topic mammary tumor model (88). However, in both works,
pDC depletion was induced by treatment with the m-927 anti-
body, which recognizes the antigen BST2. Although this antigen
is mostly restricted to pDCs in the steady state, it is upregu-
lated in several cell types following activation. In fact, pDCs
and plasma cells are indistinguishable based on BST2 expres-
sion after stimulation (89). Therefore, conclusions made about
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FIGURE 1 | Description of ontogeny, phenotype, and patterns of PRR expression in murine DC subsets in the steady state. Comparison to the equivalent
human subsets and to murine in vitro-derived DCs is provided (61, 62, 66–77).

pDC-depletion experiments should take this confounding fac-
tor into account. Additional evidence includes indoleamine 2,3-
dioxygenase (IDO)-expressing pDCs that were found at draining
lymph nodes of tumor-bearing mice. These IDO-pDCs showed
ability to activate Tregs in vivo (90). However, pDCs were defined
in this system as CD11c+B220+CD19+ cells, which it is still not
clear if it represents a rare subset of pDCs that express CD19, or
a distinctive B-lymphoid cell type with T-cell regulatory features
and phenotypic features of both B cells and DCs (91, 92).

Of main importance for translational research is the possi-
ble modulation of murine and human pDC immunosuppressive
activity into an effective protective phenotype. In vivo intratu-
moral administration of TLR7 ligands led to ICOS+ TApDC
activation and tumor regression in an orthotopic mammary
tumor model (88). In human breast cancer, in vitro neutralization
of ICOS molecule blocked pDC-induced Treg expansion and
reduced IL-10 secretion by memory TA-CD4+ T cells (93).

Langerhans Cells
Epidermal LCs were originally described as prototype DCs
because of their ability to capture antigens in the skin and migrate
to draining lymph nodes in response to foreign stimuli. Their
strategic location makes them attractive targets for epicutaneous
immunization or i.d. vaccination. However, recent discoveries
about their ontogeny and functional redundancy have set them
apart from other DCs. As opposed to their dermal counterparts,
LCs can originate from radio-resistant precursors present in the
skin, and their development is independent of Flt3L and Flt3,
and dependent on TGF-β1 (94, 95). Since finding that other DCs
population express the classical LC marker, langerin (CD207) (96,
97), functions that used to be attributed to LCs are being reevalu-
ated and assigned to dermal CD207+ DCs (65, 98–100). Although
CD207+ cells can mediate efficient antigen presentation (100–
103), recent works have shown that targeting antigens to LCs via
CD207 induces antigen-specific cross-tolerance, while targeting
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antigens to dermal CD207+ DCs elicits a cytotoxic response and
long-lived immunological memory. Surprisingly, the tolerogenic
effect mediated by LCs occurred only in the presence of adjuvants,
and not in the steady state. It is worth noting that authors observed
an initial proliferation response, regardless of the adjuvant used,
and only detected a difference between treatments by analyzing
the surviving OT-I CD8 T cells, which displayed a phenotype of
central memory T cells, at 8 weeks after immunization (47). Such
deep analysis of immune responses should be encouraged in all
experimental approaches when possible.

Lymphoid Tissue CD8+ and Non-Lymphoid Tissue
CD11b− CD103+cDCs
CD8+ and CD103+cDCs share many phenotypic and functional
features, including the expression of XCR1 shared by human
CD141+cDCs (Figure 1). They also display similar transcrip-
tional profiles (63). Given their superior ability to cross-present
antigens toCD8+ T cells, they are especially suitable as inducers of
antitumoral responses (66). Mice with defective Batf3 (transcrip-
tion factor also known as Jun dimerization protein p21SNFT) lack
splenic CD11chighCD8+CD205+ cells and show reduced num-
bers of CD11blow/−CD103+ dermal DCs in skin-draining lymph
nodes. Unlike their wild-type controls, Batf3−/− mice failed to
reject syngeneic fibrosarcomas, did not develop tumor-specific
CTLs, and showed reduced numbers of tumor-infiltrating CD8+
Tcells (104). A similar patternwas observed in amodel of B16. SIY
melanoma, in which CD8+cDCswere critical for the spontaneous
priming of tumor-specific CD8+ T cells (105). In this case, the
mechanism was shown to be dependent on type I IFN signaling
in the CD8+cDCs lineage (105, 106). However, the identity of the
specific DC subset of cells producing type I IFNs in response to
tumor growth remains to be elucidated, suggesting a collaborative
process for induction of effective antitumor T cell priming. In
support of these observations, CD8+cDCs pulsed with tumor
lysates were able to reduce tumor growth in fibrosarcoma-bearing
mice (107).

Lymphoid tissue CD8+cDC subset is a heterogeneous popu-
lation. CD207+CD8+cDCs were the only splenic DCs capable
of cross-presenting a systemic soluble protein antigen in vitro
and in vivo to CD8+ T cells, though their role in antigen pre-
sentation via MHC class II molecules to CD4+ T cells was
limited (108). Furthermore, CD207+CD8+cDCs were the main
producers of IL-12 after systemic injection of the iNKT cell ligand
α-galactosylceramide (α-GalCer), and contributed to the initial
burst of antigen-specific CD8+ T cell proliferation after i.v. injec-
tion of the OVA protein plus α-GalCer (108). Accordingly, co-
delivery of the protein antigen and α-GalCer to CD8+cDCs by
nanoparticles coated with anti-CD205 antibodies elicited potent
antitumor responses in a preventive scheme and delayed tumor
growth in a therapeutic setting, suggesting that this strategy opti-
mizes iNKT cell-mediated immune response (109). Furthermore,
a recent work has identified CD205+ CD8+cDCs as the key APCs
for multiple forms of α-GalCer (110). Of translational relevance,
these authors showed how the expression of costimulatory and
coinhibitory molecules on the surface of CD8+cDCs, such as
CD70, Rae-1, PD-L1, and PD-L2, was modulated in response to
different iNKT cell agonists. Future experiments on human cells

should take into account that, in contrast to the murine system,
there are five human isoforms of CD1, with differential ability to
bind and present lipidic antigens to T cells (111).

In non-lymphoid tissue, cDCs represent 1–5% of the cells.
In the case of the mouse intestine, CD11b−CD103+cDCs
are enriched in Peyers’ patches and their putative human
counterparts are DNGR-1+CD141+CD11b− DCs (112).
CD11b−CD103+CD8α+ have been shown to migrate from
intestine to mesenteric lymph nodes, and to be able to induce
OVA-specific CD8+ T-cell proliferation in vitro (113). In the
lung, CD11b−CD103+ were the only DC subset able to acquire
and transport apoptotic cells to draining lymph nodes, and
cross-present apoptotic cell-associated antigen to CD8+ T cells
(114). Their strategic location makes them suitable targets for
mucosal immunization. However, their relevance in tumor
models remains poorly understood. In fact, works on mucosal
immunization have not addressed the role of differentDCs subsets
in the outcome of vaccination. In a murine model of human
papillomavirus-associated genital cancer, s.c. vaccination route
was shown to be superior tomucosal (intranasal and intravaginal)
immunization route for inducing regression of established genital
tumors (115). By contrast, in a model of orthotopic head and neck
cancer, intranasal immunization provided better prophylactic
and therapeutic efficacy than intramuscular vaccination (116). In
a model of murine spontaneous adenomatous polyps, intrarectal
immunization decreased tumor formation and prevented
progression to invasive colorectal cancers, inducing potent local
cellular and humoral responses (117). Elucidating the role of
specific DCs subsets during mucosal immunization in diverse
tumor models is required in order to exploit their potential, and
represents an exciting field of research.

Much of the research on tumor immunology has focused on
the process of antigen presentation at lymph nodes rather than
local mechanisms that can occur at the tumor niche, which likely
influence the function of tumor CTLs. A recent work by Broz
et al. has elegantly dissected the composition of themyeloid tumor
microenvironment across a broad range of tumors (118). They
found a rare population of immunostimulatory cells at the tumor,
corresponding to CD103+cDCs that were capable of inducing
TCR signaling in both naïve and previously activated OT-I CD8+
T cells in ectopic and spontaneous mouse tumor models. Further-
more, characterization of different immune population highlights
the existence of functional diversity among intratumoral APCs.
In a different approach, Woo et al. showed that host APCs in the
tumor microenvironment can incorporate tumor-derived DNA,
which is proposed to be involved in the activation of the STING
pathway, leading to IFN-β production and priming of CD8+ T
cells against tumor antigens in vivo (119). These findings highlight
that triggering innate immune activation against tumors can be a
suitable antitumoral strategy if the adequate APC population is
targeted.

Classical CD11b+ CD8−cDCs
Among non-lymphoid tissue cDCs, the transcriptional profile of
the CD11b+CD103− subset reveals that the current classification
based on phenotypic markers defines a heterogeneous popula-
tion, with some cells belonging to the cDC lineage and others to
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the macrophage lineage (63). Furthermore, the phenotypic and
functional features of this subset can vary depending on the tissue
they reside. In the intestinal lamina propia, CD11b+ CD8−cDCs
comprise two population: CD11b+ CD8− CD103+ cDCs express
CCR7 and represent the primary DCs subset for antigen sampling
and migration to mesenteric lymph nodes, whereas the CD11b+
CD8− CD103− subset represents a non-migratory gut-resident
population with slower turnover rates (120).

Classical CD11b+ CD8−cDCs most often predominate the
lymphoid-resident cDCs population. They comprise a heteroge-
neous population of DCs that are preferentially involved in MHC
class II-restricted antigen presentation to CD4+ helper T cells
(66). At least two subsets can be distinguished in the spleen based
on their dependence on Notch signaling for differentiation (121).
CD11b+ CD8−cDCs in the spleen can be detected at the red pulp
and marginal zone (66), and so they represent a potential target
for i.v. immunization. The candidate vaccine CyaA-Tyr (detoxi-
fied adenylate cyclase carrying a HLA-A*02-restricted tyrosinase
369–377 CTL epitope), already being evaluated in clinical trials
(study identifier: PC1O0VAC02), targets CD11b+ cells (122).
Dadaglio et al. showed that i.v. immunization induced antigen-
specific CTL responses in mice by a mechanism dependent on
activation of the TLR4/TRIF pathway in cDCs. In vivo exper-
iments showed that the vaccine binds mainly to the CD11b+
CD8− DCs subset in the spleen, and induced DCs activation
and maturation. Surprisingly, CyA-Tyr administration induced
upregulation of CD86, CD40, andMHCclass IImolecules on both
CD8+CD11b− and CD8−CD11b+cDCs, probably by indirect
and direct effects, respectively (123).

Monocyte-Derived DCs
This subset, also described as inflammatory DCs, refer to a
population of DCs that can be found transiently in response
to inflammatory stimuli. MoDCs are phenotypically defined as
CD11cintCD11b+Ly6C+ cells (Figure 1); however, their distinc-
tion from macrophages has been challenging (124). Ly6Chigh

monocytes and early hematopoietic precursors upon TLR engage-
ment can serve as precursors (125, 126). Their putative human
equivalent has been recently described as CD11c+ MHC class II+
CD16− CD1c+ cells, with dendritic morphology and robust T-
cell stimulatory capacities. When cultured with allogeneic naïve
CD4+ T cells, this population was capable of potent stimulation
of Th17 responses (127).

Several evidences about the role of MoDCs in models of
infection and inflammatory diseases have been recently reviewed
(124). Ma et al. have recently highlighted the participation of
MoDCs in immune recruitment to the tumor bed in response
to chemotherapy. These cells were found infiltrating tumors after
anthracycline-based chemotherapy in an ATP-dependent fashion,
and efficiently presented tumor antigens to CD8+ T cells in vitro
and in vivo (128). However, their relevance in diverse tumor
models has been incompletely described, and further research on
this subsetmay provide novel and useful data about their potential
modulation for cancer immunotherapies.

In Vitro Bone Marrow-Derived DCs
Given the low number of DCs that can be obtained from primary
culture of non-lymphoid and lymphoid tissue, the possibility of

obtaining high numbers of DCs from murine progenitors in vitro
has greatly contributed to the knowledge of DC biology. There
are two main experimental approaches to obtain murine DCs,
and they are both based on the culture of bone marrow cells
with specific cytokines. However, they give rise to DC population
differing in phenotype, morphology, functional properties, and
resemblance to in vivo subsets (Figure 1) (67).

In the first approach, bonemarrow precursors are culturedwith
GM-CSF alone, or with the addition of IL-4 (129). These cells
display an immature phenotype (low expression of co-stimulatory
and MHC class II molecules), express high levels of CD11b, and
have a low migrating capacity to draining lymph nodes after
s.c. injection (130). They can secrete IL-12p70, TNF-α, IL-10,
RANTES, and CCL2 in response to TLR agonists, and confer
protective immunity against tumor challenge in the presence
of maturation agents such as CD40L or after co-culture with
apoptotic/necrotic tumor cells (130, 131). The absence of IL-4
during in vitro culture leads to the presence of additional immune
population, such as F4/80+ macrophages and Ly6G+ neutrophils
(130, 132).

In the second approach, bone marrow precursors are cul-
tured with Flt3L (133). This culture is comprised of at least
three different DCs population that, according to their phe-
notype and pattern of TLR, chemokine receptor expression,
and cytokine production, highly resemble three DCs subsets
in vivo: B220+pDCs, CD24highCD11blow DCs (equivalent to
CD8+cDCs), and CD24lowCD11bhigh DCs (equivalent to CD8−
cDCs). In the absence of adjuvants, only the CD24highCD11blow

subset could efficiently cross-present antigens to CD8+ T cells
(68). Flt3L-derivedDCs can also secrete IL-12p70 andRANTES in
response to TLR agonists, while the opposite was found regarding
TNF-α, IL-10, and CCL2. Their ability to migrate to draining
lymph nodes after s.c. injection was superior to GM-CSF/IL-4-
derived DCs (67).

In contrast with themouse system, in vitro-derived humanDCs
are usually obtained from peripheral blood monocytes cultured
with GM-CSF and IL-4. These cultures render high numbers
of cDCs. Other approaches include culturing CD34+ progenitor
cells with GM-CSF and TNF-α, or with Flt3L and thrombopoi-
etin (134), or expansion of cord blood Lin− cells followed by
a differentiation step with SCF, GM-CSF, IL-4, and Flt3L (135).
These latter cultures allow the generation of CD141+ DC subset,
equivalent to mouse CD8+ DCs, and XCR1− DCs, equivalent
to MoDCs (136). Recently, an improved culturing method has
shown to support the development of all the three major types
of DCs (CD1c+ cDCs, CD141+ cDCs, and pDCs) used a com-
bination of mouse BM stromal cells and defined human cytokines
(Flt3L, SCF, and GM-CSF). These cultures also produced gran-
ulocytes, monocytes, NK cells, and B cells, and they resemble
their blood-derived counterparts as assessed by gene expression,
surface phenotype, and cytokine production (137).

Antigen Transfer Between APCs and Interaction
Between DC Subsets
A novel mechanism for the induction of specific CD8+ T cell
responses upon vaccination with DCs is antigen transfer between
ex vivo-loaded DCs and resident DCs. Recent papers in which
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selective DC subsets are ablated have allowed authors to identify
key players in the induction of immune responses. Petersen et al.
made use of transgenic mice in which CD207+ cells can be
selectively depleted to show how resident CD207+ CD8α+ DCs
are required for efficient induction of CD8+ T cells, but not of the
CD4+ T cell counterpart, after the administration of OVA-loaded,
bone marrow-derived DCs (108, 138). Antigen transfer has also
been reported in endogenousDCs subsets such as LCs and dermal
DCs (97, 139).

Using transgenic mice that express a specific MHC class II
haplotype under the control of a CD11c promoter, Kleindienst
et al. have shown that specific T cell responses following antigen-
loaded DC vaccination are enhanced by endogenous DCs that
express the correct restriction elements through an antigen trans-
fer mechanism dependent on direct cell-to-cell interaction. In
this setting, few injected DCs reached the draining lymph nodes,
while most of them were retained at the injection site (140). This
observation has been confirmed by several groups (38, 130), and
it suggests a putative mechanism in which antigens are taken up
in situ by endogenous DC.

Several other works support the notion that injected in vitro-
derived DCs have a minor role in the direct priming of T cells
in vivo. In a work by Yewdall et al., authors injected an OVA-
pulsed, DC vaccine into mice with chimeric bone marrow that
lacked the hematopoietic compartment necessary to present the
OVA peptide. They showed that both i.v. and s.c. administration
of OVA-loaded or OVA-expressing DCs required the transfer of
antigens to host DCs for efficient CD8+ T-cell priming (141).

Given these observations, and the complexity of the DCs net-
work, how can we exploit the potential synergy among different
immune population? There is compelling evidence that antitumor
responses may be enhanced by the interaction between different
DCs subsets. In an original and novel approach, recruitment
and activation of immune cells in situ were elicited by matrices
implanted into s.c. pockets, containing CpG danger signals, GM-
CSF, and tumor lysates. Vaccinated mice were challenged with
live B16-F10 melanoma tumor cells at day 14 and showed signifi-
cant protection from tumor-induced lethality (up to 90% survival
rate). In this setting, the number of CD8+cDCs and pDCs at
the vaccination site correlated strongly with the magnitude of
protective antitumor immunity, and a significant expansion of
antigen-specific CTLs was observed in the spleens of vaccinated
mice. Furthermore, two doses of this vaccine elicited protection
in 20–47% of mice in a therapeutic setting of established tumors
(142). In a different approach, a peptide-pulsed CpG-activated
pDC vaccine induced an antigen-specific CD8+ T cell response
directly and also affected cDCs priming capacity, resulting in a
synergic antitumor response. Although the detailed mechanism
was not described, it required cell-to-cell contact (143).

Cross-dressing is a recently described mechanism for antigen
presentation. It involves the transfer of intact peptide-MHC class
I or II complexes from dead donor cells to DCs. DCs use these
complexes to activate CD8+ or CD4+ T cells that are peptide-
specific and restricted to the MHC genotype of the donor cells
(144, 145). Although the role of cross-dressing in antitumor
immunity requires further study, a recent work by Li et al. has
shown that CD8α+ and CD103+ DCs induce proliferation of

naïve and memory CD8+ T cells both by cross-dressing and
cross-presentation of antigens (146). This novel mechanism could
explain some of the observations of antigen transfer between host
and injected DCs, or among different resident DCs subsets.

Analysis of Immunogenic Tumoral Antigens
Loading DCs with Tumoral Antigens
Tumor antigens originate from mutated or abnormally expressed
endogenous proteins, including differentiation antigens, or are
derived from viral proteins. The common strategy to load DCs
with antigens is to use short peptides that, independent of the
processingmachinery, can bind directly toMHCmolecules. How-
ever, the main drawback is the requirement of specific haplotypes
to be identified for efficient antigen presentation. The utilization
of longer peptides or whole proteins could overcome this problem
and minimize tumor evasion.

Several tumor antigens are produced only by specific pro-
teasomes (1, 147, 148). For example, cells exposed to IFN-γ
express different proteasome subunits in addition to the standard
counterparts and consequently a different spectrum of peptides
with variable immunogenic potency (147). Mature DCs used for
immunotherapy express immunoproteasomes and do not express
constitutive proteasomes (149). Recent reports show that DC pro-
teasome composition can be manipulated to increase antitumoral
responses (150). In a phase I clinical trial, mature melanoma
antigen-loaded human DCs were engineered to process antigens
through constitutive proteasomes, proving to be superior induc-
ers of antigen-specific T-cell immunity and clinical responses.
As in this clinical trial, it becomes relevant to test the outcome
of vaccination with functional assays to evaluate whether the
induction of peptide-specific CD8+ T cell renders better tumor
reactivity (151).

An obvious advantage in employing autologous tumor cells
as antigen source for DCs is that they contain patient-specific
mutated antigens that have not been subjected to central toler-
ance. It has been proven that mutated epitopes with single amino
acid substitutions can provide tumor control (152). However,
these formulations face significant difficulties, such as standard-
ization, scarce autologous tumor cell samples, and technical issues
regarding the establishment of successful cell cultures from those
tumors. Consequently, the rationale for using allogeneic tumor
cell lines instead of autologous tumor cells is that they share
several common antigens that could serve as targets, generating
comparable responses (153, 154).

Recurrence or relapse after therapies could be due to cancer
stem cells being partially or totally untargeted by vaccination.
Therefore, one novel and interesting approach is the use of isolated
cancer stem cells from the tumor bulk as the source of antigens
(155, 156). Mice vaccinated with DCs pulsed with cancer stem cell
lysates significantly inhibited tumor growth and displayed higher
amounts of lytic IgG antibodies and mononuclear cells (156).

Irradiation of tumor cells provides a safe source of anti-
gens for DC uptake. Loading DCs with a mixture of apoptotic
and necrotic cells induces phagocytosis and the upregula-
tion of co-stimulatory molecules on DCs (131, 157), lead-
ing to improved protective antitumor immunity compared to
other loading approaches (158). The presence of the remaining
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non-phagocytosed apoptotic/necrotic cells is relevant to the
process of DC maturation (38, 131), and probably also for the
recruitment of host CD207+ cells to the vaccination site and
draining lymph nodes (39). Recently, radiation-mediated antitu-
mor immunity has been found to require a STING DNA-sensing
pathway inDCs,whichmediates IFN-β DCproduction (159). The
authors hypothesize that DNA from irradiated tumor cells could
be delivered to DCs during cell–cell contact processes. Necrosis
can be obtained by repeated freeze-thaw cycles but these lysates
assayed as source of tumor antigens have provided discrepant
results (157, 160–163). It is likely that their utility is influenced
by tumor cell type and whether an immunogenic cell death was
induced to generate the lysates. Consequently, and in opposition
to the past dichotomy between apoptotic and necrotic tumor
cells, approaches would have to be reviewed to evaluate whether
the applied procedure renders an immunogenic source of anti-
gens through an immunogenic cell death (164). The enhanced
immunogenicity can be mediated by DAMPs being recognized by
the PRRs expressed on immune cells (165), or by the presence of
chaperone or heat shock proteins (HSPs). The intracellular stimu-
lation of HSPs can be induced by various stressors (166, 167), and
HSPs derived from stressed tumor cells are able to bind and trans-
port tumor antigens to APCs. This approach turned out to be an
interesting possibility to direct antigens to DCs or as an adjuvant
therapy to enhance the immune visibility of poorly immunogenic
TAAs (157, 162, 166, 168–170). The isolationmethod and the type
of HSP enriched thereafter are crucial factors that may account
for efficacy limitations (171). HSP70-peptide complexes derived
fromDC-tumor fusion cells are enriched in peptideswith superior
antigenic properties as compared to its tumor cell counterpart
(172). Due to this variability, further experimental investigation
is required in this promising field. Finally, DCs are also able to
acquire antigens from live cells through a mechanism associated
with trogocytosis, where individual DCs physically extract plasma
membrane from other cells, generating endocytic vesicles up to
1 µm diameter (173). Along this line, authors assayed a vaccine
preparation consisting of a 16-h incubation of DCs with live or
apoptotic B16-F10 tumor cells, followed by CD11c+ cell enrich-
ment and γ-irradiation before administration (44). Live tumor
cells improved cross-presentation byDCs bymaintaining antigens
in a more native form than apoptotic cells. In a therapeutic assay
of B16-F10 lung metastasis, mice were protected upon tumor
challenge using the same approach (44, 45). In this study, tumoral
protection correlated with lower levels of IL-10 and stronger
tumor-specific CD8+ T cells response (45).

The origin of the APCs assayed in the vaccine formulation
is also relevant. For this reason, allogeneic DC-based vaccines
emerged as an alternative strategy to avoid the potential dysfunc-
tion of autologous DCs obtained from cancer patients. Allogeneic
DCs can induce a stronger vaccine-specific immune response than
syngeneic DCs (174). This is thought to trigger a broader T cell
reactive repertoire, in which tumor-reactive T cells are generated
by incidental cross-reactivity. The enhanced fraction of helper
T cells (in response to alloantigens) leads to a better activation
of specific CTLs. Stronger NK activity (175, 176), the presence of
Th1-type cytokines, and the absence of the Th2-type cytokines
IL-10 and IL-4 (177) were also reported. To simulate a clinical

trial, Yasuda et al. analyzed the validity of semi-allogeneic DCs,
where some MHC class I and II molecules are likely to be shared
by recipients. This approach induced the most effective antitumor
immune response in a therapeutic setting. While allo-MHC class
II molecules may provide favorable T helper activity, it is likely
that partial MHC class I matching is required to induce a CTL
response. The flawed aspects of this approach are, on one hand,
the possible promotion of regulatory T cell expansion, limiting
antitumoral immunity via the suppression of not only T helper
cells but also CTLs. On the other, repeated vaccination with
allogeneic antigens could potentially elicit an alloreaction, which
could blunt its immunizing potential (175). Therefore, a more
efficient response will probably be provided by syngeneic cancer
cells that express allogeneicMHCmolecules, which could act as an
adjuvant without counteracting the cancer-specific CTL response.
Finally, DC culture conditions can introduce variability in rele-
vant aspect as vaccine quality and immunogenic potency. Trivial
conditions as detachment (178) and oxygen percentage (179) are
able to alter the maturation state of DCs and antigen-specific CTL
activation, respectively.

The fusion of DCs and tumor cells results in a heterokaryon
without nuclear fusion, which includes molecules from DCs
(MHC class I and II, and co-stimulatory molecules) and abun-
dant TAAs that can be efficiently processed and presented by
DC-presentation machinery (180). Several animal studies have
demonstrated thatDCs fused to tumor cells could be administered
as a vaccine, eliciting protection upon challenge with tumor cells
and regression of established tumors (181–187). Mice immunized
with a fusion cell vaccine induced effective cellular and humoral
responses against the antigen MUC1 in MUC1-transgenic mice,
whose characteristic is to be unresponsive to the MUC1 anti-
gen without a potent stimulation (188). Moreover, they con-
ferred sufficient antitumor immunity to block or delay mammary
tumor development in the same model of transgenic mice (189).
When translated to human trials, this vaccine strategy might be
improved with strategies to inhibit the immunosuppressive activ-
ity of Tregs or by combination with more conventional therapies
(180). An interesting feature of these cells that is relevant to the
clinical setting is that DC-tumor fusion cells could be efficiently
frozenwithout loss of either antigen presentation potency orT-cell
stimulatory capacity inducing polyclonal CTL responses (190).

Target Receptors for In Vivo Antigen Delivery
The development of antigen-coupled APC receptor-specific anti-
bodies, single-chain variable fragments (scFv), and troybodies is
another strategy to deliver TAAs to APCs in vivo. The ideal target
receptor should present a specific pattern of expression to allow
the exclusive targeting ofAPCs. It should be an endocytic receptor,
and its activation should result in the presentation of antigen
peptides via MHC molecules. Furthermore, in order to induce a
potent immunogenic response to the delivered antigen, the pro-
cess should lead toAPC activation andmaturation (191). A variety
of target molecules have been assayed for mouse antitumor vac-
cines (MHC class II, CD11c, DEC205, DCIR2, Dectin-1/2, F4/80-
like receptor, CIRE,mannose receptor, CD36, Clec 9A,MadCAM,
CD80/CD86, CD40, Siglec-H). This strategy requires a lower
antigen dosage than uncoupled peptides to stimulate immune
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responses in mice (42). The main drawback could be the lack
of specificity of expression of the targeted molecule. By targeting
XCR1, a chemokine receptor exclusively expressed onmurine and
human cross-presenting DCs, CD8+ T cell cytotoxicity could be
successfully induced (192). This makes this specific and efficient
approach, a very interesting candidate for the clinical setting.

Many of the studies were carried out employing proteins like
OVA, BSA, ormicrobial protein or peptides. Further experimental
vaccines using targeted delivery of TAAs may contribute to a
better understanding of the potential benefit from this approach.
One successful example of translational research is the use of
HER2/neu as a target for breast cancer immunotherapy. The
delivery of the HER2 antigen targets many DC surface molecules
(CD80, CD86, CD11c, CD40, mannose, Fc-γ, and DEC-205),
and results in potent immunization with significant CD8+ and
IFN-γ+CD4+ T cell responses and cytokine secretion (IFN-γ,
TNF-α, and IL-2) (43). More recently, a human trial employing
an antibody targeted to DEC-205 fused with the tumor antigen
NY-ESO-1 plus TLR agonists as adjuvants demonstrated to be a
safe vaccine, effective to mount humoral and cellular response.
The inclusion of immune checkpoint inhibitors to overcome the
immunosuppressive tumor environment points this design as a
promising immunotherapeutic strategy (193).

Exploring DC Response to Maturation Antigens
and Vaccine-Adjuvant Combinations
Defining DC Maturation Status
Dentritic cell maturation is a very complex process involving
diverse signaling pathways. It is characterized by the acquisition
of distinctive functional properties involved in antigen processing
and presentation, migration, and T cell co-stimulation (194). Cos-
timulatory DC molecules, MHC-II, and CD40 are usually used to
assess DC maturation status and immunostimulating potential.
Nonetheless, these do not always correlate with the observed
in vivo response. Recently, CD70, which binds to CD27 in T cells,
has emerged as a very relevant T-cell costimulatory molecule
(195, 196). Adoptively transferred CD70-expressing immature
DCs were capable of priming CD8+ T cells into effectors, to
control B16melanoma tumor growth, to generate complete tumor
rejection, and to induce memory CD8+ T cells (48). These results
highlight the relevance of CD70 readout as an antitumoral efficacy
DC marker.

On the other hand, without relying on a few specific mark-
ers which may not correlate with in vivo DC immunostimulat-
ing capacity, DC functionality can be evaluated as a whole by
expression profiling. For example, in the steady state, a frac-
tion of cDCs undergo homeostatic (tolerogenic) maturation,
upregulating MHC class II molecules to almost the same levels
as found under inflammatory conditions (197). Using murine
models, it has been possible to isolate different DC subtypes
involved in either homeostatic or TLR-induced (immunogenic)
maturation, and to characterize the genes involved in these pro-
cesses (63). Based on bioinformatic analysis, Dalod et al. describe
a core set of genes induced in different DC subsets during
both homeostatic and TLR-induced maturation (69), suggest-
ing overlapping instructional signals in both maturation pro-
cesses. On the other hand, there are certain genes that are
differentially upregulated (63), and which could account for the

difference inDC immunostimulating capacity. Analysis of expres-
sion profiles is becoming a useful tool to assess DC functionality,
and could eventually lead to predict their immunotherapeutic
potential.

Potentiating DC Immunotherapeutic Capacity
Tumor necrosis factor α (TNF-α) was one of the first agents
assayed that was able to upregulate CD83 in DCs in vitro, and
thereby improve DC T-cell stimulatory capacity (36). At this time,
Jonuleit et al. developed a cytokine cocktail containing the proin-
flammatory cytokines IL-1β, IL-6, and TNF-α, and prostaglandin
E2 (PGE2) (198), which was used for many years as the gold
standard for DC maturation. Although this cocktail efficiently
induced the upregulation of DC maturation markers and DC T-
cell priming ability, there were impairments observed in IL-12p70
production by human DCs treated with this cocktail (199). IL-
12 production is essential in DC-based cancer immunotherapy
because of its important role promoting CD8+ T cell responses
(200). It is tightly regulated, and recently it has been observed
that for high expression levels both myeloid differentiation factor
88 (MyD88) andTRIF (TIR-domain-containing adapter-inducing
IFN-β)-dependent pathways must be triggered simultaneously
(195). Thus, other maturation cocktails are being explored to
achieve an optimal IL-12-producing DC maturation.

Using murine models, it was shown that IL-12, as well as type
I IFNs, induces a complex gene regulation program, involving
chromatin remodeling and the induction of the transcription
factors Eomes and T-bet, which are important for Th1 differentia-
tion (201). Many DC-based vaccination studies have explored the
use of IL-12 (186, 202). There have been dose-limiting toxicities
associated with systemic IL-12p70 administration (203), leading
to more careful analysis in preclinical models. The use of IL-12
adjuvancy has now advanced to clinical trials (204–206).

The hematopoietic growth factor and immunemodulator, GM-
CSF, is another of the most evident DC-based vaccine adjuvants,
as it was the first cytokine described to efficiently promote DC
development in vitro (207). GM-CSF has been shown to increase
antitumoral effects when administered or produced locally at the
vaccination site (208–210). Both GM-CSF and Flt3L are capable
of inducing local and systemic expansion of DCs when used as
adjuvants, but the antitumoral efficacy of GM-CSF is significantly
higher (211).

The complex combination of TLR expression in different
murine DC subsets andmonocytes is essential for their functional
specialization (63, 69). TLR triggering in DCs induces NF-
kβ activation (212) and subsequently, the production of pro-
inflammatory cytokines that are important not only for the innate
immune response but also for T-cell polarization. TLR3, TLR7,
TLR8, and TLR9 are intracellular TLRs recognizing nucleic acids.
Nucleic-acid sensing TLRs and TLR4 are able to induce IRF3 or
IRF7 activation, leading to type I IFN expression. Type I IFNs can
induce Th1 differentiation and IFN-γ production (213), and thus
cytotoxic CD8+ T cell responses. In particular, IFN-β signaling
in CD8+ DCs has been found to be responsible for sponta-
neous tumor antigen-specific T cell priming and tumor rejec-
tion (105). Triggering TLR3, TLR7, and TLR9 can also enhance
antigen cross-presentation by DCs (79, 214). Thus, triggering
these nucleic-acid sensing TLRs in DCs is a good strategy to
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elicit potent antitumor responses, and several combinations and
administration schedules are being evaluated.

A synergistic effect was observed when activating both TLR7
and TLR3 in GM-CSF-cultured bone-marrow derived DCs (215).
DCs stimulated with R-848 (TLR7/8 agonist) and Poly I:C (TLR3
agonist) were stronger stimulators of specific CD8+ and CD4+
T cells in vitro and induced superior CTL priming in vivo.
This was probably due to the simultaneous activation of the
MyD88-independent pathway triggered by TLR3 and theMyD88-
dependent pathway triggered by TLR7. In another work, Flt3-
cultured bone marrow-derived DCs were also stimulated with
various concentrations of several TLR agonists (37). Simultaneous
stimulation of TLR4, which signals through MyD88 and/or TRIF,
and TLR2 or TLR7, which signal through MyD88-dependent
pathways, led to higher levels of IL-6 and IL12p70 production.
Interestingly, they also observed a synergistically enhanced pro-
duction of inflammatory cytokines when triggering TLR7 with
TLR2 or TLR9, all of which signal through MyD88-dependent
signaling pathways. Thus, it is important in order tomaximize DC
activation, to explore triggering simultaneously different TLRs
and signaling pathways.

Due to their DC-stimulating capacity, TLR agonists have been
assayed as adjuvants for many cancer immunotherapies. Above
all, TLR7 agonists are especially interesting candidates because
apart from activating APCs, they induce T-cell, NK, and NKT
activation in vitro (46). Oral doses of the TLR7 agonist imiquimod
generate antitumoral responses in several murine tumor models
as MC-26 colon carcinoma, LLC, and RIF-1 sarcoma (216).
Additionally, the combination of DC-based immunotherapies
with peritumoral or topical imiquimod has also shown to be
a successful approach (46, 217). Topical administration of
imiquimod cream induces a strong inflammatory response in the
skin and enhances migration of LCs or immature GM-CSF/IL-
4-cultured bone marrow-derived DCs to the draining lymph
nodes of treated mice (40, 41), inducing a potent CTL response
(41). More recent works show that imiquimod skin treatment
leads to local recruitment of pDCs and induces melanoma tumor
regression (78). It was demonstrated that pDCs are required for
the antitumoral imiquimod-mediated effect. Furthermore, the
s.c. administration of a GM-CSF gene-transduced tumor vaccine
(GVAX) and imiquimod induced the recruitment of activated
pDCs to tumor vaccine sites and tumor draining lymph nodes,
and elicited the suppression of tumor growth (210).

Sanchez et al. proved in vivo that OVA immunization with a
combination of TLR and CD40 agonists generated more potent
primary and memory CD8+ T cell responses that either ago-
nist alone (49). They report a synergistic effect when combina-
tions of TLR and CD40 agonists were administered i.p. together.
They argue that the increase in classical DC activation mark-
ers, such as CD80, CD86, and CD40 induced by TLR ago-
nists is necessary for the initial CD28-dependent CD8+ T cell
stimulation, but that CD70 induction by anti-CD40 is needed
to stimulate long-term memory. Furthermore, CD70 binding
to CD27 in T cells was found to be critical for potent CD8+
T cell responses, since antigen-specific CD8+ T cell expansion
in vivo was abrogated by CD70 blockage. The authors observed
that the combined stimulation of TLR and CD40 pathways

gives maximal CD70 expression. In a promising clinical trial for
advanced melanoma, autologous DCs were electroporated with
mRNA encoding CD40L, a constitutively active TLR4 and CD70
(TriMix), thereby improving DCs immunostimulatory capacity
(218). In another melanoma clinical trial, autologous DCs were
activated with CD40L and IFN-y, and a higher level of IL-12p70
production by patient’s DCs correlated with a better clinical
outcome. Interestingly, IL-12p35 deficient production by some
patient’s DCs could be corrected in vitro by using TLR agonists
like poly I:C and R848.

Other TLR-independent innate signaling pathways were found
to cooperate with the adaptive signaling CD40 pathway to induce
CD70 expression in DCs and a potent CD8+ T cell response
in vivo (50). These TLR-independent stimuli include type I IFNs
and α-GalCer (219, 220). Maximal CD70 expression and CD8+
T cell memory were found to be induced when α-GalCer or
type I IFNs were used in combination with anti-CD40 antibody
(50). Therefore, CD40 triggering in combination with TLR ago-
nists or TLR-independent stimuli like type I IFN and α-GalCer
is a promising strategy for inducing DC maturation in cancer
immunotherapy approaches.

In cancer, vaccine-induced immunity may be dampened by
self-regulatory mechanisms, and adjuvants may exacerbate them.
Indeed, interesting experiments in amammary carcinomamurine
model have shown that when imiquimod was administered intra-
dermally with the self-antigen IGFBP-2, no antitumor effect was
elicited due to the induction of a potent immunosuppressive reg-
ulatory response (221). Serum levels of IL-10 and systemic levels
of myeloid-derived suppressor cells and Tregs were increased.
Furthermore, when GM-CSF was applied as a sole adjuvant, it
significantly inhibited tumor growth, but when combined i.d.
with imiquimod, the antitumoral effect was abrogated. On the
other hand, when imiquimod was used by the same authors in
an exogenous OVA-peptide based immunization, DC maturation
andmobilization, andOVA-specific CD8+ andCD4+ T cells were
detected. This emphasizes the importance of extensive preclinical
modeling in cancer vaccine development, and the need of models
that do not rely on exogenous antigens in order to detect self-
regulatory mechanisms.

Conclusion

Dendritic cell-based vaccination has the potential to make a
difference in cancer treatment. It is not sufficient to be a safe
approach and to elicit measurable immunological responses.
A potent CD8+ T cell effector memory response should be trig-
gered, able to control and eliminate tumors. The rationale to
design these vaccines comes from clinical observations and, as
depicted in this work, from pertinent investigations performed
using murine models. However, each model has specific limita-
tions and biases. Established cell lines, which are easily propagated
and studied, transplanted into syngeneic mice have been utilized
for many decades. Although they have answered many questions
regarding DC functionality and DC use in cancer vaccines, their
contribution to approved therapeutics has been limited. This
could be due to the fact that heterogeneity and diversity of human
cancers are not covered. Though more technically challenging,
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GEM models, which recapitulate genetic alterations present in
human tumors, and humanized mice, which allow the study of
human tumors in the context of their own immune system, are
useful tools that will contribute to the design of more effective
DC-based vaccines.

It is of great importance in order to break immune tolerance
to the tumor to induce a proper activation of DCs by triggering
several activation pathways. As discussed in this work, this can
be done by ex vivo manipulation of DCs, or by using the appro-
priate adjuvants to boost DC response in vivo. The selection of
adjuvant and site of administration will result in the activation
of a distinct APC profile. Furthermore, given that synergy and
cooperation between DC subsets has been observed, a vaccine
design that targets several DC population presents itself as a
potent immunization strategy. As shown in this work, DC-based
therapies have been efficient in activating tumor-specific CD8+ T
cells. In patients, analysis of the tumoral microenvironment has
shown T-cell infiltration (222), thus immune failure appears to
occur in the effector phase, with a dominant effect of inhibitory
mechanisms within the tumor. As has been observed in a recent
clinical trial (193), DC-based immunotherapies will surely benefit

from combination with recently developed immunomodulatory
agents that block negative regulators of T cell immunity, opening
a promising field in cancer immunotherapy.

The results presented in this work show that many authors
report in vitro immunological and short-term protection results
using murine models. We conclude that this is not sufficient to
draw relevant conclusions involving the efficacy of DC-based
therapies. It is important to perform experiments analyzing long-
term tumoral protection and memory CD8+ T-cell profile, and
identifying the tumoral antigens that are able to generate long-
lasting responses. To help the fieldmove forward, it is vital to reach
a consensus in this matter.
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