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Immune checkpoint inhibitors propelled the field of oncology with clinical responses

in many different tumor types. Superior overall survival over chemotherapy has been

reported in various metastatic cancers. Furthermore, prolonged disease-free and

overall survival have been reported in the adjuvant treatment of stage III melanoma.

Unfortunately, a substantial portion of patients do not obtain a durable response.

Therefore, additional strategies for the treatment of cancer are still warranted. One of

the numerous options is dendritic cell vaccination, which employs the central role of

dendritic cells in activating the innate and adaptive immune system. Over the years,

dendritic cell vaccination was shown to be able to induce an immunologic response,

to increase the number of tumor infiltrating lymphocytes and to provide overall survival

benefit for at least a selection of patients in phase II studies. However, with the success

of immune checkpoint inhibition in several malignancies and considering the plethora

of other treatment modalities being developed, it is of utmost importance to delineate

the position of dendritic cell therapy in the treatment landscape of cancer. In this review,

we address some key questions regarding the integration of dendritic cell vaccination in

future cancer treatment paradigms.
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INTRODUCTION

Since William Coley made his early contributions to the study of cancer immunotherapy in the
1890s, harnessing the capabilities of the immune system to eliminate cancer cells remained a
long-sought dream (1). In the last decade, efforts to realize this dream were finally rewarded
with the introduction of immune checkpoint inhibitors (ICI). ICI showed the feasibility of
immunotherapy and revolutionized the treatment of cancer. The success of ICI spurred a
considerable amount of research activity into the field of immunotherapy. Despite its resounding
success, ICI still have two important limitations: they are associated with significant (immune-
related) toxicity and a portion of patients does not respond (2–7). Immunotherapy however,
encompasses more than ICI alone. Dendritic cell (DC) vaccination is an alternative form of
immunotherapy and is a prime candidate to enrich the treatment possibilities for cancer.
Considering the fact that the field of immunotherapy is a fast-moving field, it is of utmost
importance to delineate the position of DC vaccines in the therapeutic landscape of cancer. In this
review, we will explore some important questions regarding this position, with the focus on four
malignancies (glioblastoma, melanoma, prostate cancer, and renal cell carcinoma) in which phase
III trials with DC vaccines have been performed or are ongoing.
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The Evolving Field of Immune Checkpoint
Inhibition
Currently, the clinical application of immunotherapy is mainly
defined by ICI. ICI target immune checkpoint molecules such
as CTLA-4, PD-L1, and PD-1. These molecules have immune
response inhibiting functions and are involved in the prevention
of autoimmunity and the maintenance of peripheral tolerance.
It is well known that tumor cells are able to upregulate
the expression of checkpoint molecules, leading to anergy of
cytotoxic T-cells in the tumor microenvironment. CTLA-4,
PD-L1, and PD-1 have distinct functions; CTLA-4 exerts its
inhibitory functions on the initial T-cell activation whereas PD-1
and PD-L1 have roles in the inhibition of the effector functions
of T-cells (8, 9). ICI antagonize these molecules and thereby aim
to augment the anti-cancer immune response.

In 2010, ipilimumab (a monoclonal antibody targeting
CTLA-4) was the first immunotherapeutic agent providing
clinical benefit in cancer patients, extending median overall
survival (OS) to 10 months (compared to 6.4 months for the
control group receiving a gp100 peptide vaccine) in metastatic
melanoma (3). With an overall response rate (ORR) of ∼10–
20%, ipilimumab was a great improvement compared to the
standard of care at the time, but it still offers clinical benefit
in only a portion of melanoma patients (10, 11). However, in
a substantial portion of responding patients, clinical benefit is
durable (5). In 2014, twomonoclonal antibodies (pembrolizumab
and nivolumab) targeting the PD-1 pathway were also approved
for the treatment of metastatic melanoma. Compared to
ipilimumab, anti-PD-1 inhibition achieves a higher ORR of
∼40% (4, 5, 12, 13).

After these landmark studies, research into ICI accelerated.
With the addition of PD-L1 targeting agents avelumab,
atezolimumab, and durvalumab, the field of ICI now
encompasses six FDA and EMA-approved monoclonal
antibodies (mAb) (14–16). Most of these ICI are approved
for the treatment of multiple malignancies (Table 1). The
number of approved indications of these mAb is likely to grow
as they are currently tested in a large number of additional
malignancies (17).

Besides PD-1, PD-L1 and CTLA-4, other checkpoint
molecules (such as TIM-3 and LAG-3) have shown to inhibit
the anti-cancer immune response (18). Several mAb targeting
these alternative checkpoint molecules are in various stages of
clinical investigation. Therefore, it is expected that the number
of clinically available mAb will be further expanded (17). In
addition to the treatment of metastatic disease, research is
moving toward the application of ICI in the adjuvant treatment
of cancer. For example, adjuvant ipilimumab, nivolumab, and
pembrolizumab after surgically resected stage III melanoma
recently have shown to improve progression-free survival (PFS)
and in case of adjuvant ipilimumab, an prolonged OS was seen
(19–21).

ICI come with a different toxicity profile compared to other
anti-cancer therapeutics, caused by specific immune-related side
effects. Monotherapy with anti-PD-1 mAb and anti-CTLA-4
mAb are associated with 10–16% and 30–40% grade 3 or 4
adverse events, respectively (3, 5, 6, 11, 22). In contrast, DC

TABLE 1 | Indications of the six currently approved monoclonal antibodies in the

treatment of cancer (as of May 2018).

Monoclonal antibody Target FDA/EMA-approved indications

Ipilimumab CTLA-4 Melanoma

Nivolumab PD-1 Melanoma, NSCLC, RCC, urothelial

carcinoma, MSI-high/dMMR CRC,

HCC, Hodgkin’s lymphoma, HNSCC

Pembrolizumab PD-1 Melanoma, NSCLC, HNSCC,

urothelial carcinoma, Hodgkin’s

lymphoma, MSI-high cancer,

gastric/gastroesophageal cancer

Avelumab PD-L1 Merkel cell carcinoma, urothelial

carcinoma

Atezolimumab PD-L1 Urothelial carcinoma, NSCLC

Durvalumab PD-L1 Urothelial carcinoma, NSCLC

Combined treatment with

ipilimumab and nivolumab

CTLA-4/PD-1 Melanoma, RCC

CRC, colorectal cancer; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; HCC,

hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; dMMR,

DNA mismatch repair deficiency; MSI, microsatellite instability; NSCLC, non-small-cell

lung carcinoma; PD-1, programmed cell death protein; PD-L1, programmed death-ligand

1; RCC, renal cell carcinoma.

vaccination is associated with little toxicity as grade 3 or 4 adverse
events are very uncommon (23–25). In addition, the application
of DC vaccination might further improve response rates on ICI.

Dendritic Cell Vaccination
Since their discovery by Steinman in 1973, it became clear
that DC are antigen-presenting cells crucial in activating the
adaptive immune system (26). DC are spread throughout the
body, constantly monitoring their surroundings for antigens and
danger signals. Once stimulated by an activating stimulus, they
undergo maturation and migrate to lymphoid organs where they
activate several effector cells of the immune system, primarily
T-cells and B-cells (27).

Through this process, DC are vital for immunosurveillance.
Immunosurveillance signifies the crucial role of the
immune system in the detection and elimination of both
pathogens and cancer cells. However, the development of
malignancy is an indolent process in its early stages, therefore,
immunosurveillance occasionally fails. At an early stage, tumors
sometimes silence an initiated immune response or fail to
express the “danger signals” necessary for the activation of the
immune system. When the process of immunosurveillance fails,
one of the hurdles for the outgrowth of cancer cells is omitted.
DC vaccination aims to correct this failure by reversing the
ignorance of the immune system to malignant cells. To achieve
this, DC are stimulated ex vivo with danger signals and loaded
with tumor-specific antigen(s) on their major histocompatibility
complex molecules with the intent of activating antigen-specific
T-cells which selectively eliminate antigen-bearing cancer cells
(Figure 1). The majority of research groups, including our own,
employ treatment schemes with multiple administrations of DC
vaccine to induce immunological memory (28).

DC vaccines are produced following some basic principles
(Figure 2). Natural circulating DC or monocytes are isolated
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FIGURE 1 | The induction of a tumor-specific immune response by dendritic cell vaccination. Tumor antigen-specific T-cells are activated by dendritic cells, which are

ex vivo loaded with tumor antigen(s). Activated T-cells subsequently patrol the body in search of their respective antigen. When their target is found, T-cells exert their

cytotoxic functions on cancer cells. CD8, cluster of differentiation 8 (cytotoxic T-cell); DC, dendritic cell; MHC, major histocompatibility complex.

FIGURE 2 | The process of generating dendritic cell vaccines. Autologous dendritic cells or monocytes are obtained via an apheresis procedure. Monocytes first have

to be differentiated into dendritic cells. Subsequently, dendritic cells are matured and loaded with tumor antigen. Finally, the dendritic cells are administrated to the

patient. DC, dendritic cell.

from autologous peripheral blood mononuclear cells obtained by
apheresis. In case of monocytes, ex vivo differentiation into DC
are required. Both natural circulating DC and monocyte-derived
DC are matured as this is essential for effective T-cell activation.
Maturation is associated with functional and morphological
changes in DC. Following maturation, DC show enhanced
expression of major histocompatibility complexes I and II,
co-stimulatory molecules and increased capability of cytokine

production. These processes are vital, as not or incompletely
matured DC can induce tolerance rather than immunity (29).
During the process of vaccinemanufacturing, DC are loaded with
relevant tumor antigen(s) to induce a tumor-specific immune
response in the patient. As with the other steps in the process
of manufacturing DC, several methods to load DC with antigen
exist (30). After quality control, vaccines are administered to the
patient.
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Despite these basic principles, protocols describing the
specific details of DC vaccination manufacturing in trails vary
widely. Differences in these protocols cover all aspects of DC
vaccination including culture methods, the usage of DC subsets,
maturation methods, antigen loading techniques, used antigens
and the route of administration. Especially, the subset of DC
used, the method of maturation and the choice of antigen(s)
are subject of intense research. For example, several groups,
including our own, use natural circulating DC instead of
monocyte-derived DC. Natural circulating DC do not require
extensive culturing which is believed to retain their functionality.
Different maturation techniques are also being explored, such
as the use of toll-like receptor ligands or electroporation with
mRNA-encoding proteins that induce DC maturation (31, 32).
Another exciting recent development is the use of neoantigens,
which are newly, formed antigens generated from tumor-specific
mutated genes, for loading on DC (33). Finally, a more recent
development is the recognition that DC, in addition to immune-
activating properties, can acquire effector functions (so called
killer-DC) following triggering with several differentiating and
maturating agents such as interferon (IFN) or lipopolysaccharide
(34). Despite these developments, addressing the differences in
the generation and production of DC vaccines extensively is
beyond the scope of this review.

Regardless of the precise protocol employed, DC vaccination
is associated with a very favorable toxicity profile. The majority
of side effects reported in various clinical trials were short-lived
grade 1 or 2 adverse events, consisting of self-limiting flu like
symptoms, fever and local injection site reactions. Treatment-
related grade 3 or 4 adverse events following DC vaccination as
standalone therapy are uncommon (23, 24).

The goal of DC vaccination is to kill tumor cells by the
generation of functional antigen-specific T-cells (23). Despite
the challenges associated with measuring the immunological
effect of DC vaccination, immunological endpoints are reported
in a substantial portion of phase I/II clinical DC vaccination
trials using various methods. Several studies even report the
generation of antigen-specific T-cells to be positively correlated
with survival, strengthening the believe that DC vaccination can
result in clinical benefit (25, 35, 36).

Besides the generation of T-cells, intense research is ongoing
to find biomarkers, not only for DC vaccination but for
immunotherapy in general. Considering ICI treatment, research
into predictive biomarkers has revealed several biomarkers
predictive for response on ICI (such asmutational burden, PD-L1
expression, and others) (37, 38). Similarly, an example of a
predictive biomarker prior to the start of therapy correlated with
clinical outcome after DC vaccination is the immune landscape
of tumors (39). Up until now, however, biomarkers cannot
reliably guide treatment decisions in the clinic for neither ICI
nor other forms of immunotherapy, probably owing to the fact
that a functional immune response is a complex and multi-step
process (40).

The Role of ICI and DC Vaccination in
Metastatic Disease
Response rates to DC vaccination vary among cancer types
with most studies showing response rates between 10 and 15%

(24). Most clinical studies concerning DC vaccination were
performed in patients with metastatic disease. Although head-to-
head comparisons are not available, ICI achieve superior clinical
benefit compared to DC vaccination in most malignancies. In
particular for metastatic melanoma and metastatic renal cell
carcinoma (RCC), ICI compare favorably in terms of response
rates (approximate ORR on anti-PD-1 mAb in RCC: 25%; in
melanoma: 40 and 58% when combined with anti-CTLA-4 mAb)
(4, 10, 11, 41). ORR in RCC and melanoma patients after
treatment with DC vaccines is less, 12 and 9%, respectively
(24). Even more important, whereas overall survival benefit for
patients with metastatic RCC and metastatic melanoma after ICI
treatment is well established, the OS gain for these patients after
DC vaccination is less clear (3, 11, 24, 41).

The immunotherapeutic landscape of metastatic castration-
resistant prostate cancer (mCRPC) is very different from that
of metastatic RCC and metastatic melanoma. Two phase III
trials investigating ipilimumab showed, both in pre-docetaxel
and post-docetaxel setting, no improvement in OS compared
to their control groups (42, 43). Pembrolizumab has shown
clinical activity in patients with any type of cancer bearing
DNA mismatch repair deficiency (dMMR) and/or microsatellite
instability. Individual reports of clinical benefit on anti-PD-
1 mAb for patients with dMMR prostate cancer do exist.
Unfortunately, dMMR is present in only about 5% of mCRPC
patients (44–47). Similar to patients with dMMR, ICI possibly
provide benefit in other subgroups of mCRPC patients. For
example, nivolumab combined with ipilimumab was tested on
patients with an ARV7 mutation which predisposes for a more
aggressive form of prostate cancer. In this study, 4 out of 15
patients showed clinical benefit (47). In addition, pembrolizumab
has shown some efficacy in a group of patients who progressed
after enzalutamide treatment. In a trial of 20 patients, 11 had a
partial response or stable disease (45). These patients might be
more susceptible to PD-1 antibodies, as PD-1 was shown to be
upregulated on DC in patients progressing after enzalutamide
(46). After the failure of ipilimumab in prostate cancer patients, a
delay in designing new studies with ICI occurred. Currently,∼35
clinical studies with ICI are enlisted for prostate cancer, usually
as combination therapies.

Notably, sipuleucel-T gained approval for the treatment of
asymptomatic or minimal symptomatic mCRPC. Sipuleucel-T is
manufactured from autologous mononuclear cells obtained via
apheresis. These cells are incubated with PA2024, a fusion protein
of the tumor antigen prostatic acid phosphatase (PAP) and
granulocyte-macrophage colony-stimulating factor (GM-CSF).
As DC are not specifically isolated from the apheresis product
and the end product contains a variety of cells, sipuleucel-T
should strictly speaking not be regarded as a pure DC vaccine.
Despite this, sipuleucel-T is generally addressed as a DC based-
vaccine and is considered to be the first DC-based therapy
approved by the FDA. The approval of sipuleucel-T followed
the results of a phase III trial including 512 mCRPC patients.
The median survival was prolonged with 4 months compared
to placebo (48). Another smaller phase III study confirmed these
favorable results (49).

Initial enthusiasm about sipuleucel-T has somewhat subsided
in recent years since labor intensive production resulted in
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a highly priced cellular product (around $125.000). At the
moment, sipuleucel-T is only available in the USA as market
authorization was not granted by the EMA. Recently, a Chinese
conglomerate (Sanpower) acquired Dendreon (producer of
sipuleucel-T) for over $800 million with the intention to
extend the market to Asia. Sipuleucel-T enhanced immune
responses toward its antigen (PAP/PA2024). A PAP/PA2024-
specific immune response (which is defined as the generation
of antigen-specific antibodies, antigen-specific T-cell activation
and/or antigen-specific T-cell proliferation) was seen in 79% of
patients. The immune responses correlated with OS and could
be beneficial for the response on subsequent or concomitant
immunotherapeutics, a paradigm which will be detailed in the
final chapter of this review (50).

In conclusion, in metastatic malignancies such as non-small-
cell lung cancer, melanoma, urothelial cancer and RCC, where
ICI are particularly effective, it is unlikely DC vaccination will
gain a role as monotherapy in widespread metastatic disease due
to its less established clinical benefit.

Rationale for DC Vaccination in the
Adjuvant Treatment of Cancer
Besides the application of anti-cancer therapeutics in the
treatment of metastatic disease, the adjuvant treatment of
patients after surgery of local disease is also common practice
in oncology. Surgical resection with curative intent aims to
excise all tumor burden. However, depending on the type of
malignancy, occult residual disease remains in a variable portion
of patients and can eventually lead to relapse (51). Adjuvant
treatment aims to kill cancer cells, thereby reducing the chance
of relapse. With advancing knowledge of the interaction between
the immune system and cancer, it becomes increasingly clear
that higher tumor load is associated with higher tumor-induced
immune suppression. For example, regulatory T-cells (Treg) and
myeloid derived suppressor cells (MDSC) attracted by tumor
cells induce anergy in T-cells (52). Moreover, several soluble
factors secreted by tumor cells, such as TGF-β, IL-10 and
VEGF, are recognized to suppress infiltrated effector T-cells
(53–55). Also, tumors are able to upregulate indoleamine 2,3-
dioxygenase (IDO) which converts tryptophan to kynurenine,
inhibiting effector T-cells through a mechanism not completely
understood (56). Tumor load-associated immune suppression is
generally regarded as the underlying cause of the low clinical
response to DC vaccination in metastatic disease (57). Indeed,
in our group we detected antigen-specific T-cells in 71% of
melanoma patients following adjuvant DC vaccination compared
to 23% following vaccination in the metastatic setting (58,
59). In the adjuvant setting, the possibly remaining occult
disease represents a low tumor burden, and hence less immune
suppression (Figure 3). Therefore, DC vaccination may be
more successful in the adjuvant compared to the metastatic
setting.

There are some additional arguments to consider DC
vaccination as an adjuvant treatment option. Besides efficacy,
a low toxicity profile is an important hallmark of any
adjuvant treatment as a substantial portion of cancer patients

receiving adjuvant treatment would not endure a relapse
even without this adjuvant therapy. As noted before, DC
vaccination is associated with little toxicity, not only compared
to chemotherapy but also compared to ICI. In addition, besides
a direct clinical benefit for patients, adjuvant DC vaccination
might also prove to be beneficial in improving response to
subsequent treatment in case of relapse. In theory, tumor-
specific T-cells induced by adjuvant DC vaccination might
result in an increased tumor-specific immune response when
ICI are given at a later moment in the metastatic setting.
Indeed, this effect has been observed retrospectively with
administration of ipilimumab in patients with relapse after
adjuvant DC vaccination for stage III melanoma (60). In addition
to ipilimumab, a similar effect was also seen retrospectively in
glioblastoma (GBM) patients receiving chemotherapy after DC
vaccination (61). These additive effects should be considered
when integrating DC vaccines in the therapeutic landscape
of cancer. Considering these arguments, the next part will
focus on data obtained with DC vaccines in the adjuvant
setting.

Adjuvant DC Vaccination in Glioblastoma
Adjuvant DC vaccination has been studied in GBM. In contrast
to most malignancies, distant metastases seldom occur in GBM
(62). Nonetheless, GBM represents a lethal disease, with patients
having a median survival of∼15months (63). GBM is commonly
treated with maximally safe surgery and adjuvant temozolamide
(TMZ) in conjunction with radiotherapy, the so-called Stupp
protocol (64). However, even with extensive treatment, residual
disease invariably remains, and recurrence is certain. This results
from the infiltrative growth and lack of a distinct border between
normal brain tissue and tumor. Therefore, DC vaccination in
the adjuvant setting after surgery in GBM is different from for
example adjuvant DC vaccination in RCC and melanoma in
which complete disease control after surgery is possible. In this
review, we consider DC vaccination to be adjuvant when it is
integrated in treatment protocols after maximally safe surgery in
newly diagnosed GBM.

Historically, the central nervous system is considered an
immune-privileged site, casting doubt whether GBM could be
susceptible to immunotherapy. However, in recent years it has
become increasingly clear the central nervous system is subject
to active immunosurveillance even with an intact blood-brain
barrier (65). Albeit not yet vigorously explored, the research into
the treatment of GBM with ICI has not yet resulted in proof of
efficacy. Nivolumab is the ICI furthest in clinical development,
a phase III trial comparing nivolumab to bevacizumab for the
first recurrence after radiotherapy and TMZ is currently ongoing
(NCT02017717). Final results are not yet reported in a peer-
reviewed journal, but presented results revealed that the primary
end-point was not met (median OS in recurrent disease: 9.8
months with nivolumab vs. 10.0 months with bevacizumab) (66).
Individual reports of response on anti-PD-1 mAb monotherapy
do exist, although these are isolated cases concerning tumors with
high mutational load (67–69). With these results in mind and
the fact that mutational load and number of tumor infiltrating
lymphocytes in GBM are generally low, it is doubtful whether
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FIGURE 3 | The difference in tumor load-associated immune suppression between minimal residual disease and a situation with high tumor load. Antigen-specific

T-cells induced by dendritic cell vaccination eliminating minimal residual disease after surgical resection of cancer (A). Minimal residual disease is associated with less

immune suppression as opposed to a situation with more tumor load (B). Tumor load-associated immune suppression is caused by (among other factors) regulatory

T-cells, myeloid derived suppressor cells, soluble immune suppressive factors (such as IL-10, TGFβ and VEGF) and indoleamine 2,3-dioxygenase activity.

Vaccination-induced T-cells can be rendered anergic by this immune suppression, resulting in inferior clinical results. Therefore, dendritic cell vaccination might be

more effective in the adjuvant setting. IDO, indoleamine 2,3-dioxygenase; MDSC, myeloid derived suppressor cells; Treg, regulatory T-cells.

ICI as monotherapy have promise as a future treatment option
(70, 71).

Next to monotherapy with ICI, ICI combined with other
standard treatment modalities is being investigated in phase
III trials. For example, CheckMate 498 (comparing TMZ
and radiotherapy to nivolumab and radiotherapy) and
the CheckMate 548 (comparing radiotherapy, TMZ, and
nivolumab to radiotherapy, TMZ and placebo), both involving
nivolumab, are currently ongoing. Similar phase I and II
trials combining pembrolizumab or ipilimumab with TMZ
and radiotherapy are being performed. Results on such
integration of ICI in standard treatment strategies are not yet
reported.

Considering DC vaccination studies concerning GBM, DC-
based therapy is often integrated into the standard adjuvant
treatment for GBM. As of now, the only available phase III
trial data involving DC vaccines in GBM are the very recently
published interim results of an ongoing clinical study involving
a vaccine called DCVax R©-L (see also Table 2) (72). DCVax R©-L
is a vaccine manufactured from autologous DC loaded with
tumor lysate derived from autologous GBM cells. Unblinded
data on 331 patients with newly diagnosed GBM was presented.
After surgery, patients were randomized (2:1) to receive either
DCVax R©-L incorporated into standard of care (TMZ and
radiotherapy) or standard of care alone. Due to the study
design, which enabled crossover from the standard of care to
the vaccination arm upon progression, a total of 86% of patients
received vaccination at the time of interim analysis. The authors
compare the median OS of 23.1 months for the entire study
population with OS data from comparable patients in different

TABLE 2 | Active phase III clinical trials concerning dendritic cell vaccination as

adjuvant treatment in various malignancies (as of May 2018).

Disease Vaccine formulation Status Identifier

Melanoma

(stage III)

Natural dendritic cell

subsets loaded with

melanoma-specific peptides

Recruiting NCT02993315

Uveal melanoma

(high risk)

Dendritic cells loaded with

autologous tumor RNA

Recruiting NCT01983748

Glioblastoma

(newly diagnosed)

DCVax®-L: dendritic cells

loaded with tumor lysate

Active, not

recruiting

NCT00045968

trials (which have a reported median OS of 15–17 months), from
this comparison they suggest a clinical benefit from their vaccine.
The definite results on clinical outcome, including PFS data, are
eagerly awaited.

Previously, the favorable toxicity profile of DC vaccination
was shown in several phase I/II studies showing the safety of
adjuvant DC vaccination in GBM (73–78). Important to consider
is that in these studies, DC vaccination was often combined with
chemotherapy and/or radiotherapy, this combination had little
added toxicity compared to chemotherapy and/or radiotherapy
without DC vaccination. Despite not being designed for the
purpose of assessing clinical outcome, these studies reported
favorable median OS compared to their respective control groups
ranging from 15 up to 41 months (74, 75, 77, 78). Furthermore, a
positive correlation was shown between survival and presence of
an immune response after vaccination (61).
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Clinical outcome as primary endpoint was reported in several
phase II studies. One of the largest studies completed to date
involving DC vaccination in GBM, was performed by Ardon
et al. and included 77 patients with newly diagnosed GBM
(79). There was no control group, all patients received adjuvant
DC vaccination integrated in standard treatment with TMZ
and radiotherapy after complete resection of their GBM. The
study reported favorable median OS of 18.3 months compared
to the 14.6 months achieved in the landmark study by Stupp
et al (64).

In conclusion, preliminary results on ICI in GBM make it
very doubtful monotherapy with ICI will ever gain traction for
this indication, results of large trials concerning ICI combined
with chemoradiotherapy are pending. For DC vaccination in
combination with chemoradiotherapy in GBM, occasionally
favorable clinical outcomes have been reported. Due to strict
inclusion criteria of these studies, the results are hard to
interpret and compare with existing literature. Therefore,
these result warrant further research with randomized phase
III trials and additional data from the DCVax R©-L trial are
awaited.

Adjuvant DC Vaccination in RCC and
Melanoma
Besides GBM, both RCC and melanoma in certain stages also
exhibit high recurrence rates after surgery. For melanoma,
the risk of relapse is particularly high when the disease has
metastasized to regional lymph nodes (stage III). Melanoma with
lymph node metastasis has a 5-year survival rate ranging from
40% (stage IIIC) to 78% (stage IIIA) (80). In RCC, recurrence of
disease following surgery is also common, resulting in a declining
survival rate with increasing stage (81).

Melanoma and RCC are similar in the sense that both tumors
are very chemo-resistant and that their adjuvant treatment
strategy in the pre-ICI era was mainly based on cytokine
treatment with IL-2 and IFN-α (82, 83). In both cancers, IL-
2 and IFN-α provide little clinical benefit and are associated
with high toxicity. For melanoma, ipilimumab showed clinical
activity in the adjuvant setting with a 5-year recurrence-
free survival rate of 41% compared to 30% in the placebo
group (hazard ratio for recurrence or death, 0.76; p<0.001).
Importantly, 5-year distant metastasis-free survival rate was also
improved with 48% compared to 39% (hazard ratio for death
or distant metastasis, 0.76; p = 0.002) (21). Although these
results show efficacy, the application of adjuvant ipilimumab is
opposed by its significant toxicity (∼40% of patients experience
immune-related grade 3 or 4 adverse events) (21, 84). In
addition, both nivolumab and pembrolizumab have shown
to increase PFS in the adjuvant setting for melanoma (19,
20). Adjuvant nivolumab was tested against ipilimumab in
completely resected stage IIIB, IIIC and IV melanoma. In
this study adjuvant nivolumab improved the 1-year PFS rate
to 72.3% compared to 61.6% in ipilimumab-treated patients.
Similarly, adjuvant pembrolizumab was compared to placebo
in stage IIIA, IIIB and IIIC melanoma. The 1-year PFS
rates were 75% and 61%, respectively. Despite pending OS

data, both the FDA and EMA recently granted approval for
adjuvant nivolumab and are considering approval for adjuvant
pembrolizumab.

For RCC, adjuvant treatment is also available. Adjuvant
sunitinib, a tyrosine kinase inhibitor, for RCC has gained
approval by the FDA based on improved PFS (6.8 months
vs. 5.6 months for placebo; hazard ratio for recurrence, 0.76;
p = 0.03). However, utility is limited due to high toxicity and
lack of OS gain (85). Based on these considerations, the EMA
has, in contrast to the FDA, adopted a negative opinion for
the adjuvant application of sunitinib. In contrast to melanoma,
for RCC no results on adjuvant ICI have been reported.
However, several adjuvant clinical trials are ongoing, including
the combination of ipilimumab and nivolumab (NCT03138512);
atezolizumab (NCT03024996); pembrolizumab (NCT03142334)
and nivolumab (NCT03055013) (82).

In both melanoma and RCC, DC vaccination has also
been investigated as adjuvant treatment. Retrospective analysis
from our group showed clinical benefit in stage III melanoma
patients adjuvantly treated with monocyte-based DC vaccination
compared to matched controls. In this study, OS for 78 patients
treated with DC vaccines doubled compared to the 209 controls
(63.6 months vs. 31.0 months; hazard ratio 0.59; p = 0.018)
(58). Markowicz et al. have shown similar results in a prospective
study concerning a peptide-loaded DC vaccine. In 22 vaccinated
patients the study achieved a 3-year OS of 68% compared to
26% in the 22 patients of the matched historical control group
(p= 0.029). The primary endpoint however, 3-year PFS rate, was
not significantly improved probably due to the small number of
patients (vaccinated patients: 41%; controls 15%; p= 0.108) (86).
No phase III trials currently have been completed on adjuvant
DC for melanoma. However, our group is currently conducting
a trial which involves the employment of natural circulating
DC vaccines in patients with stage IIIB or stage IIIC melanoma
(NCT02993315) (Table 2).

In RCC, research on DC vaccination is mainly focused
on metastatic disease and little data regarding adjuvant
DC vaccination is available. However, a phase III trial was
performed with adjuvant DC vaccination in various stages
of disease. Patients vaccinated with DC loaded with tumor
lysate in combination with cytokine-induced killer cells
were compared to patients treated with IFN-α. Mainly due
to a very heterogeneous study population, no definitive
conclusions could be drawn. However, the study showed
significant PFS and OS benefit suggesting that further
research on adjuvant DC vaccination in RCC is warranted
(87).

Currently, too little data is available to claim that DC
vaccination is effective in the adjuvant setting. Yet, the above
presented data, show favorable clinical results and consistently
confirm the limited toxicity in a variety of cancers. More robust
prove of efficacy may be under way as several phase III trials
on adjuvant DC vaccination are currently being performed
(Table 2). Whether DC vaccination acquires a definitive role
in the adjuvant treatment of cancer will also be dependent on
the results of ongoing phase III trials assessing other adjuvant
treatments, including trials with ICI (88).
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TABLE 3 | Ongoing clinical trials concerning dendritic cell vaccination in combination with clinically approved immune checkpoint inhibitors (ipilimumab, nivolumab,

pembrolizumab, avelumab, atezolimumab, and durvalumab) in solid tumors.

Immune checkpoint inhibition

(target molecule)

Vaccine formulation Malignancy Status NCT-identifier

Combined Ipilimumab and Nivolumab

(CTLA-4/PD-1)

DC with the insertion of the p53 gene SCLC Recruiting NCT03406715

Nivolumab (PD-1) DC loaded with CMV pp65 mRNA Recurrent brain tumors Active, not recruiting NCT02529072

Nivolumab (PD-1) DC loaded with NY-ESO-1 peptide NY-ESO-1+ solid tumors Recruiting NCT02775292

Nivolumab (PD-1) DC loaded with autologous tumor lysate Recurrent glioblastoma Not yet recruiting NCT03014804

Pembrolizumab (PD-1) DC loaded with peptide Melanoma Recruiting NCT03092453

Pembrolizumab (PD-1) DC-CIK Solid tumors, NSCLC, Mesothelioma Recruiting NCT03190811

NCT03360630

NCT03393858

Nivolumab or Pembrolizumab (PD-1) DC-CIK Refractory solid tumors Recruiting NCT02886897

Avelumab (PD-L1) DC/AML fusion vaccine Colorectal cancer Not yet recruiting NCT03152565

CIK, cytokine induced natural killer cells; CMV, cytomegalovirus; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; DC, dendritic cells; NSCLC, non-small-cell lung cancer; SCLC,

small-cell lung cancer; PD-1, programmed death-1; PD-L1, programmed death ligand 1.

The Combination of DC Vaccination and
Other Modalities for the Treatment of
Metastatic Disease
As noted before, the clinical benefit of monotherapy DC
vaccination for patients with metastatic disease is probably
limited. However, the ultimate role for vaccines may lie in the
combination with other modalities. The generation of a cellular
immune response upon DC vaccination is commonly reported
and may potentiate the effect of other anti-cancer therapeutics
(23). Conversely, tumor reduction caused by chemotherapy,
radiation therapy or targeted therapy can alleviate tumor-
induced immune suppression which hinders efficacy of DC
vaccination. However, possible synergies involve more than
the mere reduction of tumor load as modalities other than
immunotherapy also exhibit immunogenic effects on tumors
(Figure 4). For example, although chemotherapeutics are
associated with lymphodepletion, positive immune modulatory
effects are described, including the induction of immunogenic
cell death and depletion of Treg and MDSC (89–92). In addition,
radiotherapy and different forms of targeted therapy are
known to have immunostimulatory properties, i.e., enhanced
T-cell infiltration and killing capacity (93–96). Clinical studies
combining DC vaccination with chemotherapy, radiotherapy,
and/or targeted therapy have been performed. Without extensive
elaboration on these studies, the safety of combining DC
vaccination with these modalities is confirmed in phase I
trials (97–100). Futhermore, ample data exist suggesting
efficacy (101, 102). Besides these treatment modalities,
the combination of DC vaccination with other forms of
immunotherapy intervening in additional steps of the cancer
immunity cycle may be of particular interest as it is thought
to result in more additive immunogenic effects. For example,
it would be very interesting to explore the combination of DC
vaccination with chimeric antigen receptor (CAR) T-cell therapy,
oncolytic viruses, or other investigational immunotherapies.
Here, we will discuss the combination of DC vaccination

with the most successful immunotherapeutic agents to
date, ICI.

Both ICI and DC vaccination exert their effects primarily
through the modulation of the immune system and do so on
different steps in the cancer immunity cycle. For response on
ICI, tumor-specific T-cells have to be present in the tumor
microenvironment, the generation of which may be aided with

DC vaccination (103). As introduced before, a higher number
of tumor-infiltrating lymphocytes are associated with a better

response on ICI. In this respect, especially in tumors with low

mutational burden, the addition of DC vaccines could prove to
be beneficial (104).

Conversely, T-cells induced by DC vaccination are often

hindered by the immune suppressive milieu of tumors. ICI
might aid the effector functions of these T-cells by reducing

inhibition through PD-1 signaling or by enhancing T-cell
activation through the modulation of CTLA-4. The idea that

tumor-specific T-cells activated by DC vaccination can be further
stimulated with ICI is also supported by pre-clinical data. For
example, upregulation of PD-1 on T-cells derived from the
blood of vaccinated patients has been shown in vitro (105).
Subsequent blockade of these upregulated PD-1 molecules could
augment T-cell function. In addition, ICI exert several immune
augmenting effects besides the direct antagonism of PD-1 and
CTLA-4. For example, Treg depletion by anti-PD-1 mAb was
shown in a mouse model (106).

In contrast to preclinical data, clinical data on combined

treatment with ICI and DC vaccination in humans is scarce. In

2009, Ribas et al. reported safety of combining tremelimumab
(CTLA-4 mAb) and DC vaccination in melanoma patients (107).

Despite the trial was not designed to assess clinical outcome, 4 out
of 16 patients (25%) achieved an objective clinical response. The

authors state that clinical benefit was at the higher end of what
can be expected from monotherapy tremelimumab. In addition,
Wilgenhof et al. showed a promising ORR of 38% in 39metastatic
melanoma patients treated with the combination of ipilimumab
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FIGURE 4 | Combinational strategies to achieve synergy between several treatment modalities and dendritic cell vaccination. CTLA-4, cytotoxic

T-lymphocyte-associated protein 4; DC, dendritic cell; mAb, monoclonal antibody; CD8, cluster of differentiation number 8 (cytotoxic T-cell); MDSC, myeloid derived

suppressor cells; PD-1, programmed cell death protein; PD-L1, programmed death-ligand 1; Treg, regulatory T-cells.

and DC vaccination (108). In 36% of patients grade 3 or 4 adverse
events were seen, which is comparable with rates seen in large
clinical trials withmonotherapy ipilimumab (5, 84). This suggests
little added toxicity from the addition of DC vaccines to ICI.

Considering its lower toxicity and better response rates
compared to anti-CTLA-4 mAb, anti-PD-1 mAb might be more
suitable combinational partners for DC vaccines. As of now,
no data is published on the combined anti-PD-1 mAb and
DC vaccination. However, several clinical trials investigating
combinations of DC vaccination with clinically approved ICI are
currently being performed (Table 3).

Besides currently approved ICI, DC vaccination can also be
combined with ICI targeting alternative immune checkpoints
(not -yet- clinically approved mAb). Currently, mAb targeting
LAG-3 and TIM-3 are in various stages of clinical development
as monotherapy and might be good candidates for combination.
LAG-3 mAb for example, were shown to reduce expansion of
Treg (109). TIM-3 was shown to be present in conjunction
with PD-1 on dysfunctional T-cells after vaccination, suggesting
they might form a target for mAb in addition to anti-PD-
1 (110). Finally, the combination of multiple ICI and DC
vaccination might be a promising strategy, albeit requiring
careful considerations concerning the related toxicities (111).

Despite several ongoing clinical trials, an important aspect
of combinational strategies, the timing of administration, might
be under-investigated. In theory, it would seem logical to
first administer DC vaccines to generate tumor-specific T-cells
and consequently release immune suppression with anti-PD-1
mAb. Conversely, the timing of administering DC vaccines and
ipilimumab may be more complex as both ipilimumab and these
vaccines exert their functions in the priming phase of T-cells.
Indeed, in a pre-clinical prostate cancer model optimal response

on ipilimumab was shown when given on the same day as
vaccination (112). Whether the timing of anti-PD-1 mAb and
DC vaccination is equally important is not known and forms an
interesting subject for further research.

In conclusion, combinational strategies for the treatment of
cancer incorporating DC vaccination are a promising field of
research. Considering the favorable results on the combination
of DC vaccination and anti-CTLA-4 mAb, the results on the
currently ongoing combinational clinical trials with anti-PD-1
and anti-PD-L1 mAb are eagerly awaited.

CONCLUSION

Immunotherapy for the treatment of cancer is a fast-moving
field. It is important to determine the relative position of
DC vaccination to other treatments in this rapidly evolving
landscape. Ideally, patients can be selected based on biomarkers
predictive for response to therapy. Currently, no predictive
biomarkers for DC vaccine response are applied in the clinic
to guide treatment decisions but the immune landscape of
the tumor might hold promise. Also, few clinically useful
predictive biomarkers for ICI are known. With the success
of ICI and the lesser clinical benefit of DC vaccination in
metastatic disease, it becomes increasingly clear that the future
of DC vaccination in extensive metastatic disease as standalone
treatment is probably limited. However, the immune-inducing
properties of DC vaccination makes it a prime candidate for
combination with other anti-cancer modalities, especially ICI.
The currently ongoing research on DC vaccination combined
with ICI such as anti-PD-1 mAb has to determine whether
this combination has a future perspective. The theoretical basis
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and the promising clinical data on anti-CTLA-4 mAb combined
with DC vaccination does imply this perspective exists. With
its highly favorable toxicity profile, another application of DC
vaccination might lie in the adjuvant setting. Furthermore, DC
vaccination as monotherapy may be more effective in adjuvant
setting compared to its application in metastatic setting.

Consequently, for DC vaccination to gain a definitive role in
the therapeutic landscape of cancer, research should be focused
on well-designed trials in the adjuvant setting, combinational
strategies, and patient selection.
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