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Abstract

The past 15 years have seen enormous advances in our understanding of the receptor and 

signalling systems that allow dendritic cells (DCs) to respond to pathogens or other danger signals 

and initiate innate and adaptive immune responses. We are now beginning to appreciate that many 

of these pathways not only stimulate changes in the expression of genes that control DC immune 

functions, but also affect metabolic pathways, thereby integrating the cellular requirements of the 

activation process. In this Review, we focus on this relatively new area of research and attempt to 

describe an integrated view of DC immunometabolism.

Dendritic cells (DCs) are a diverse group of related, haematopoietic cell types that are 

specialized for recognizing pathogens1 (BOX 1). They express various pattern recognition 

receptors (PRRs), such as Toll-like receptors (TLRs), nucleotide-binding oligomerization 

domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene I (RIG-I)-like receptors 

(RLRs) and C-type lectins, which are able to bind molecular motifs that are characteristic of 

particular pathogens or that are associated with cellular damage2–4. Ligation of PRRs 

initiates signalling pathways that lead to cellular activation and marked changes in gene 

expression and cellular biology3. DCs activated via PRRs have central roles in both innate 

and adaptive immunity, in which they drive the activation of antigen-specific T cells. As 

such, DCs have a central role in the immune system.

Box 1

Dendritic cell subsets

Dendritic cells (DCs) are defined by their uniquely efficient ability to activate naive T 

cells. Although originally defined as an apparently homogeneous population of adherent 

stellate cells in the spleen110, they are now known to comprise numerous subsets and to 

be present, during the steady state, within all lymphoid organs and the majority of 

peripheral tissues (reviewed recently in REF. 1). DCs are resting cells that have the 

characteristic ability to respond to pathogen-associated molecular patterns (PAMPs) or 
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damage-associated molecular patterns (DAMPs), and/or to cytokines, and become 

activated. In general, DCs express CD11c and MHC class II, but once activated, they 

increase their expression levels of surface MHC–peptide complexes and of co-

stimulatory molecules, and this allows them to effectively activate T cells. There are four 

major subsets of DCs: conventional DCs (cDCs), Langerhans cells, monocyte-derived 

DCs and plasmacytoid DCs (pDCs). These cells are related to each other as they have a 

common myeloid progenitor. cDCs within lymphoid organs are comprised of two major 

subpopulations, which are distinguished by the expression of CD8α or CD4. There are 

tissue-resident cells that are equivalent to, and related by lineage to, these populations 

and marked by the expression of CD103 and CD11b, respectively. These cells will 

migrate to lymph nodes in the steady state, and to a notably greater extent following 

peripheral infection, immunization, or other disturbances that lead to DC activation. Cells 

equivalent to CD8α+ DCs, CD4+ DCs and pDCs can be grown from bone marrow in 

vitro by stimulation with FMS-like tyrosine kinase 3 ligand (FLT3L). Langerhans cells 

are skin-resident cells that are similar to macrophages in many ways, but which can 

assume cDC-like properties when they migrate to lymphoid organs. Monocytes can 

develop into TNF and iNOS-producing (TIP)-DCs at inflammatory sites, but the extent to 

which these cells represent true DCs is questioned. CD11c+MHC class IIhi DCs can be 

grown from bone marrow cultured with granulocyte–macrophage colony-stimulating 

factor (GM-CSF); these bone marrow-derived DCs have been proposed to be equivalent 

to in vivo monocyte-derived DCs, but it is debatable how closely these cells are related to 

any in vivo population. pDCs are a distinct lineage of DCs that are more specialized for 

cytokine production, particularly type I interferon production, rather than antigen 

presentation. In this context, however, it should be stressed that upon activation, all DCs 

begin to secrete a variety of cytokines that markedly influence the cells that they are 

interacting with, and it seems reasonable to consider this facet of DC behaviour as 

integral to their biology. It is likely that additional subsets of DCs with specialized 

functions remain to be identified.

It is becoming increasingly clear that different stages of immune cell activation coincide 

with, and are underpinned by, different types of cellular metabolism that are tailored towards 

the bioenergetic and biosynthetic needs of these cells. The relevance of this to lymphocytes 

and macrophages has been extensively covered in a number of recent reviews5–7. The 

metabolic requirements of an activated DC are also distinct from those of a quiescent DC 

and, as such, changes in metabolism must be integral to the successful activation of these 

cells. This realization has led to interest in the cellular metabolism of DCs, not least because 

it is possible that manipulation of the metabolic state of DCs could be used to modify 

inflammatory and immune responses for therapeutic purposes8. Interest in this area has 

increased with the realization that cells can respond to metabolites themselves, thereby 

sensing metabolic changes within themselves or in other cells that may presage danger9. In 

this Review, we discuss the current understanding of DC metabolism, highlighting areas that 

we feel hold particular promise for future research in this fast-moving area.
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Metabolism in developing and resting DCs

Conventional DCs (cDCs) and plasmacytoid DCs (pDCs) originate from committed DC 

progenitors1 (CDPs) (BOX 1). DCs can also develop from monocytes, and CDPs and 

monocytes may have a common origin in a population of macrophage and DC progenitors 

(MDPs). At this time, little is known about the metabolism of CDPs (or that of MDPs). 

However, the differentiation of human monocytes into DCs in response to granulocyte–

macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) is accompanied 

by increased expression of peroxisome proliferator-activated receptor-γ (PPARγ)10,11, 

which is a key transcription factor controlling lipid metabolism, and PPARγ co-activator 1α 

(PGC1α), which is a master regulator of mitochondrial biogenesis. The upregulation of 

PPARγ and PGC1α is followed by increased mitochondrial biogenesis12. Moreover, 

inhibition of mitochondrial respiration in monocytes by the electron transport chain (ETC) 

inhibitor rotenone is able to block DC differentiation12,13. In these studies, there was a close 

association between increased citrate synthase activity and DC differentiation. Citrate gives 

rise to isocitrate and subsequently α-ketoglutarate (αKG) in the tricarboxylic acid cycle 

(TCA cycle), but it is also a precursor for fatty acid synthesis (BOX 2). In this role, citrate is 

exported from mitochondria and converted into cytosolic acetyl-CoA, which is an important 

intermediate in several pathways, including fatty acid synthesis. The differentiation of 

monocytes into DCs in vitro and the development of DCs in lymphoid organs and peripheral 

tissues in vivo have been shown to depend on fatty acid synthesis14, so it is reasonable to 

conclude that the differentiation processes that give rise to DCs are dependent on the 

metabolic pathways that integrate mitochondrial function with the synthesis of fatty acids 

(FIG. 1).

Box 2

Glucose metabolism

The glycolysis pathway allows the import of glucose and its conversion into pyruvate in 

the cytosol. There are offshoots of this pathway, including the pentose phosphate 

pathway (PPP), which allows the production of NADPH, a cofactor that is important for 

the synthesis of nucleotides and for fatty acid synthesis. Pyruvate has two possible main 

fates. The first is conversion into lactic acid and then conversion into lactate, which 

produces NAD+ that can then be reused for the production of ATP by glycolysis (see the 

figure; indicated by the dashed arrow). Alternatively, pyruvate enters mitochondria via 

mitochondrial pyruvate carrier 1 (MPC1), where it is converted into acetyl-CoA. The 

importance of this decision point in pyruvate metabolism pathways is indicated by the 

fact that it is regulated at many levels. Key enzymes in this regard are encoded by splice 

variants of transcripts of the Pkm gene (which encodes pyruvate kinase), which catalyse 

the production of pyruvate from its precursor phosphoenolpyruvic acid. Oxidation of 

pyruvate in the mitochondria is promoted by PKM1, but PKM2 promotes the expression 

of hypoxia-inducible factor 1α (HIF1α), which drives the conversion of pyruvate into 

lactate by inducing the expression of lactate dehydrogenase A (LDHA)30,111,112. 

Regulation of the balance of PKM1 and PKM2 activity is therefore an area of 

considerable interest (see REF. 113), but there are currently no studies on the biology of 
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these enzymes in dendritic cells (DCs). In mitochondria, acetyl-CoA from pyruvate 

enters the tricarboxylic acid (TCA) cycle as shown in the figure. Reactions in the cycle 

lead to the production of NADH and FADH, which serve as substrates for the electron 

transport chain (ETC), and thereby support oxidative phosphorylation (OXPHOS) and 

the production of ATP. Fatty acids and glutamine can also fuel the TCA cycle as 

indicated. Citrate — which can be made from glucose, fatty acids or glutamine — can be 

exported from mitochondria to fuel the production of acetyl-CoA in the cytoplasm, which 

is a substrate for fatty acid synthesis, a process which is crucial for Toll-like receptor 

(TLR)-induced activation of DCs33, and an acetate donor for protein acetylation. 

αKGDH, α-ketoglutarate dehydrogenase; F6P, fructose 6−phosphate; G6P, glucose 

6−phosphate; HK, hexokinase; IDH, isocitrate dehydrogenase; MDH, malate 

dehydrogenase; OAA, oxaloacetate; PDH, pyruvate dehydrogenase; ROS, reactive 

oxygen species.

Regulation by mammalian target of rapamycin

Anabolic processes are centrally regulated in cells by the serine/threonine kinase 

mammalian target of rapamycin (mTOR), which comprises two complexes — mTORC1 and 

mTORC2 — that together have key roles in the regulation of cellular metabolism15. These 

complexes are downstream of signalling pathways that sense growth factors, nutrient levels 

and energy status, and they are generally involved in the control of anabolic metabolism. 

Consistent with coordinated roles for mTORC1 and fatty acid synthesis in DC 

differentiation, inhibition of mTORC1 with rapamycin prevents the FMS-like tyrosine 

kinase 3 (FLT3) ligand (FLT3L)-driven outgrowth of mouse pDCs and cDCs from bone 

marrow cultures in vitro and reduces DC numbers in vivo16,17. Additionally, the 

differentiation and survival of human monocyte-derived DCs is impaired by rapamycin18,19.

Consistent with a role for mTOR signalling in DC development, the FLT3L-driven 

development of pDCs and cDCs from bone marrow is enhanced in the absence of 

phosphatase and tensin homologue (PTEN), which is a negative regulator of mTOR, and 

populations of CD8+ cDCs and CD103+ cDCs are expanded in vivo in mice in which Pten 
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has been conditionally deleted in DCs using the Cd11c–Cre system17. These effects can be 

inhibited by rapamycin17. Moreover, the Cd11c–Cre-mediated deletion of Raptor, which 

encodes a key component of mTORC1, alters steady-state DC populations, increasing the 

numbers of splenic cDCs20 but reducing the numbers of epidermal Langerhans cells21. 

Generally consistent with these findings, the tamoxifen-induced oestrogen receptor–Cre-

mediated deletion of floxed Tsc1 (which encodes tuberous sclerosis 1, another negative 

regulator of mTORC1), results in enhanced outgrowth of DCs from GM-CSF-stimulated 

bone marrow cultures22. However, other studies have shown that releasing cell-intrinsic 

inhibition of mTOR signalling by deleting Tsc1 (again using the oestrogen receptor–Cre 

system) reduces the number of cDCs and pDCs in vivo, and prevents the outgrowth of cDCs 

and pDCs from FLT3L-stimulated bone marrow cultures23. This is associated with increased 

expression of MYC (a molecule that is discussed in more detail below) and downstream 

dysregulation of mitochondrial respiration, fatty acid synthesis and glycolysis, diminished 

life expectancy and a reduced ability to activate T cells.

The divergent findings on the effects of deleting two different negative regulators of 

mTORC1 (PTEN and TSC1) may reflect detailed differences in the mode of action of these 

two proteins23. Moreover, the different effects of Tsc1 deletion on DC development in GM-

CSF bone marrow cultures compared with FLT3L-stimulated cultures could reflect the 

growth of distinct DC subsets in these two culture systems. Regardless, on balance, the data 

point to a crucial role for mTORC1 in the regulation of DC development and survival.

Regulation by MYC

mTORC1 induces the expression of MYC, which acts as a transcription factor to promote 

the expression of genes encoding proteins in the glycolysis pathway24. There are three MYC 

paralogues: MYC, MYCN and MYCL. During DC development, MYC expression is 

downregulated as MYCL expression is turned on in cDC progenitors25. CD103+ cDCs fail 

to develop normally in the absence of MYCL and, although CD8α+ cDCs do develop in 

MYCL-deficient mice, they are less capable of activating T cells during infections with 

Listeria monocytogenes or vesicular stomatitis virus, suggesting that they are unable to 

mature into efficient antigen-presenting cells25. Although the extent to which this reflects an 

important role of MYCL in DC metabolism is unclear at this point, it is intriguing that the 

ability of GM-CSF — which acts as a growth factor and signals through phosphoinositide 3-

kinase (PI3K)–AKT and presumably mTORC1 — to promote CD8α+ cDC survival ex vivo 

is substantially diminished in the absence of Mycl25. Moreover, key metabolism genes, 

including complex I (NADH oxidase) of the ETC, are expressed to a lesser extent in CD8α+ 

cDCs in the absence of Mycl, indicating that this gene has a role in the regulation of 

metabolic processes; this finding may reflect a broader role of MYC in mitochondrial 

biogenesis26. MYC is also crucial in the regulation of glutaminolysis27, the process by 

which glutamine is converted to αKG for use in the TCA cycle (BOX 2). However, the role 

of glutamine in DC biology has yet to be thoroughly addressed.

Metabolism of resting DCs

In resting cells that face relatively few anabolic demands, the catabolism of complex 

molecules can provide substrates for the TCA cycle within mitochondria. For instance, the 
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catabolism of proteins and triacylglycerols provides amino acids and fatty acids, 

respectively, and this fuels ATP production by oxidative phosphorylation (OXPHOS) (BOX 

2; FIG. 2). Resting GM-CSF-induced bone marrow-derived DCs (BMDCs) — which differ 

from activated DCs as they are relatively sessile, less secretory, and less able to interact with 

and activate T cells — were shown to use fatty acid oxidation to fuel OXPHOS28. It is 

currently unclear whether resting cDCs or pDCs similarly fuel OXPHOS with fatty acid 

oxidation. Resting BMDCs also consume glucose, but whether this is primarily used to fuel 

OXPHOS or is used as a carbon source for other anabolic pathways is also unclear28.

It is feasible that DCs use glucose to synthesize fatty acids that they subsequently oxidize. 

Although this cycle may seem futile, it has recently been shown to be essential for the 

development of memory CD8+ T cells29. It has been argued that the process may be 

beneficial in quiescent T cells as it enables the simultaneous maintenance of mitochondrial 

health and the glycolysis and fatty acid synthesis machinery that allows the T cells to 

respond strongly following restimulation by antigen29. The same could be true for DCs, 

which, as is addressed in the next section, have to be ready to respond rapidly when their 

PRRs are engaged.

Metabolism of activated DCs

In order to be used as a substrate for ATP synthesis, glucose has to be processed by the 

cytosolic glycolysis pathway to generate pyruvate (BOX 2). Pyruvate can enter 

mitochondria via mitochondrial pyruvate carrier 1 (MPC1) and be converted into acetyl-

CoA, which can enter the TCA cycle. However, pyruvate can have an alternative fate 

whereby it is converted to lactic acid, which is secreted into the extracellular environment as 

lactate. The conversion of pyruvate to lactate allows the coupled regeneration of NAD+ and 

the production of ATP via the glycolysis pathway (BOX 2). This allows cells to produce 

ATP when oxygen is limiting and places glucose, rather than fatty acids or amino acids, in 

the unique position of being essential for cells to survive under hypoxic conditions.

In some cells — notably, tumour cells — this pathway is used even when oxygen is not 

limiting, a process known as aerobic glycolysis or, famously, Warburg metabolism30. The 

TLR-driven activation of macrophages leads to the adoption of Warburg metabolism6. 

Similarly, BMDCs show an increase in their consumption of glucose and production of 

lactate following stimulation with TLR agonists28,31. It is now clear that these observations 

reflect two metabolic changes linked to activation: an early phase of increased flux through 

the glycolysis pathway that is common to monocyte-derived DCs and cDCs, followed by a 

fundamental change in cellular metabolism, whereby BMDCs commit to Warburg 

metabolism (FIG. 1). A detailed understanding of these issues was made possible, in part, by 

the development of techniques for measuring real-time changes in extracellular acidification 

and oxygen consumption rates32. When this approach was used to examine DC metabolism, 

it was found that increased glycolysis occurs in DCs within minutes of activation by a broad 

array of TLR agonists33. This rapid increase in glycolysis also occurs in activated CD8α+ 

and CD11b+ cDCs, suggesting that it is a fundamental feature of DC activation33. Blocking 

glycolysis using 2-deoxyglucose (an inhibitor of hexokinase (HK), the first enzyme in the 
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glycolysis pathway; BOX 2) results in marked inhibition of DC activation, showing the 

importance of glucose as a substrate to support the response of DCs to TLR agonists28,33.

Function of glycolysis in DC activation

The early increase in glycolysis that occurs in activated BMDCs is associated with an 

increase in lactate production, but does not reflect the mere engagement of Warburg 

metabolism, as OXPHOS is sufficient to supply all of the ATP needed by the cells33, and the 

transport of pyruvate (the end-product of glycolysis) into mitochondria via MPC1 is crucial 

for early DC activation33. Thus, a major function of increased glycolysis seems to be to 

increase the production of pyruvate to fuel the TCA cycle. This facilitates a transient 

increase in spare respiratory capacity34,35, an indication that the cells are more metabolically 

capable than resting BMDCs, which is consistent with the fact that there are more demands 

placed on them for cell–cell interactions, mediator secretion and migration.

It seems likely that increased spare respiratory capacity indicates that cells have the ability 

to use TCA cycle intermediates for purposes other than continuing to run the cycle. 

Consistent with this, a major consequence of the entry of glucose-derived carbons into the 

TCA cycle is the increased production of fatty acids downstream of citrate export into the 

cytosol33 (BOX 2). As discussed above, fatty acid synthesis is implicated in the 

differentiation of DCs from progenitor cells, and it is intriguing that it becomes important 

again during the transition of DCs from quiescence to activation following stimulation with 

TLR agonists (FIG. 1). Although it remains unclear why fatty acid synthesis is required 

during DC differentiation, the role of this pathway in activated DCs seems to be linked to 

the necessity to increase the mass of both endoplasmic reticulum (ER) and Golgi to support 

the increased demand for protein synthesis33 (FIG. 2). This is consistent with the fact that 

the major effects of pharmacologically inhibiting glycolysis or fatty acid synthesis during 

the initial stages of activation of BMDCs are post-transcriptional, indicating that both 

pathways are mainly required not for gene expression downstream of TLRs, but rather for 

the synthesis of proteins from transcripts made in response to activation33.

The promotion of fatty acid synthesis in response to TLR stimulation also leads to increased 

lipid storage in lipid droplets33,36. In other cells, lipid stores of this type can be accessed by 

regulated pathways of lipolysis to provide free fatty acids for both catabolic (for example, 

fatty acid oxidation) or anabolic (for example, membrane synthesis) purposes37. Free fatty 

acids also serve as second messengers for signal transduction pathways initiated by nuclear 

hormone receptors38 (see below). In the liver, lipid content in DCs is positively correlated 

with immunogenicity and is dependent on de novo fatty acid synthesis39, whereas in the 

context of tumours, high lipid content in DCs is associated with impaired immune 

priming40,41. If and how neutral lipid stores are contributing to DC biology in either of these 

cases remains to be determined.

A link between ER stress and metabolic changes in activated DCs

As highly secretory cells, such as activated DCs, attempt to coordinate increases in gene 

expression with protein output they can experience ER stress, which is marked by the build-

up of unfolded proteins in the ER lumen42. Unchecked, this can lead to cell death; however, 
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the unfolded protein response (UPR) has evolved as a means for cells to mitigate this 

outcome42. The UPR enables the coordinated expansion of the ER through increased 

synthesis of fatty acids for ER membranes and of proteins that constitute the folding 

machinery. As one of the three sensors of ER stress, inositol-requiring protein 1α (IRE1α) is 

particularly important in DC biology. It targets mRNAs encoding X-box-binding protein 1 

(XBP1), generating a cleaved product that is a transcription factor that controls ER 

biogenesis43, thereby alleviating ER stress and promoting cellular survival42 (FIG. 2). 

Importantly, IRE1α and its target XBP1 have been found to be constitutively active in 

resting cDCs44. Moreover, XBP1 expression in early progenitor cells is essential for cDC 

and pDC development45, and its deletion at later times in DC development results in defects 

in CD8α+ cDCs (but not CD11b+ cDCs), including a disorganized ER, diminished 

expression of CD8α and CD11c, and the inability to cross-present dead-cell-associated 

antigens on MHC class I molecules to CD8+ T cells44.

Taken together, these findings indicate that the coordination of ER events has a particularly 

crucial role in DC biology. This is of note, given the recent interest in the link between 

innate immunity and the ER stress response46,47. For example, stimuli that promote ER 

stress increase TLR-driven macrophage activation, and both TLR2 and TLR4 activate 

IRE1α and XBP1, with XBP1 being essential for maximal cytokine production in response 

to TLR agonists in these cells46.

Changes in metabolism at times late after activation

BMDCs that have been activated by TLR agonists for more than 12 hours exclusively use 

Warburg metabolism to meet their bioenergetic needs. In these cells, there is very little (if 

any) measureable mitochondrial oxygen consumption, and OXPHOS is essentially switched 

off28,48 (FIG. 1). It is now clear that commitment of BMDCs to Warburg metabolism 

following activation is a direct response to the cellular expression of inducible nitric oxide 

synthase (iNOS), and the inhibition of the ETC by nitric oxide (NO). In the absence of 

functional OXPHOS, due to inhibition of the ETC by NO, BMDCs activated by TLR 

agonists are dependent on glycolysis for the synthesis of ATP for survival48. The ability of 

NO, made during inflammation, to inhibit OXPHOS is of considerable interest and shows 

how this effector gas is likely to influence the metabolism of pathogenic microorganisms 

that are themselves dependent on OXPHOS.

It is also clear that the metabolic status of bystander cells that are incapable of making NO 

themselves can be affected by exogenous NO49. Therefore, NO-producing inflammatory 

DCs and macrophages may exert metabolic control over cells with which they are 

interacting. This could be particularly pertinent to T cell activation by NO-producing DCs, 

as T cells translocate their mitochondria towards the immunological synapse50, making them 

particularly vulnerable to NO-mediated intoxication of their mitochondria51. Interestingly, 

neither mouse cDCs nor human DCs in general express iNOS; consistent with this, these 

cells do not commit to Warburg metabolism following activation in vitro48. Nevertheless, 

cDCs activated by TLR agonists in vivo do exhibit diminished mitochondrial activity and 

enhanced glycolysis over the long term, which they rely on for survival, similar to iNOS-
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expressing DCs. However, these changes are reported to be iNOS independent and driven by 

autocrine type I interferon (IFN) signalling through hypoxia-inducible factor 1α (HIF1α)52.

Metabolic regulators of DC activation

As discussed above, mTOR and its upstream activators PI3K and AKT are central regulators 

of cellular activation and proliferation due to their ability to control glycolysis and anabolic 

metabolism. Consistent with a role for mTOR in regulating DC activation, in the absence of 

TSC1, cDCs display an increased expression of maturation markers, such as CD40, CD80 

and CD86, at steady state23. Furthermore, in mouse and human pDCs, there is a clear 

dependence on mTOR for IFNα production, and in mouse BMDCs and/or human monocyte-

derived DCs, rapamycin selectively inhibits certain aspects of TLR-driven DC activation, 

including the expression of IL-6 and IL-10, and possibly tumour necrosis factor 

(TNF) 19,53–56.

Several studies have documented a positive role for the mTOR target HIF1α in the TLR-

driven activation of BMDCs and cDCs31,52,57. HIF1 comprises α- and β-subunits, and is 

classically considered to be activated by hypoxia. It has been implicated in promoting 

glycolysis in several systems by inducing the expression of many of the enzymes in the 

glycolysis pathway30 (BOX 2). However, recent evidence suggests that the early TLR-

driven induction of glycolysis that occurs during DC activation does not require mTOR- or 

HIF1α-mediated signalling33,58, but instead depends on AKT35,59. Interestingly, activation 

of AKT downstream of TLRs is dependent on TANK-binding kinase 1 (TBK1) and inhibitor 

of nuclear factor-κB kinase subunit-ε(IKKε) rather than PI3K33, which is more usually 

implicated in this process60. AKT is crucial because it directly phosphorylates and thereby 

activates HK2 to associate with the mitochondrial surface, where it is thought to be able to 

more effectively catalyse one of the rate-limiting steps of glycolysis, the phosphorylation of 

glucose to glucose 6-phosphate61,59 (BOX 2). Targeted inhibition of TBK1, IKKε or AKT, 

or blocking mitochondrial association of HK2 with mitochondria, markedly diminishes the 

ability of BMDCs to respond to TLR agonists and become activated33 (FIG. 2).

Notably, as TBK1 and IKKε are also activated downstream of RLR signalling, it is possible 

that rapid induction of glycolysis is a common response to any innate sensing of pathogens 

by DCs, enabling a rapid metabolic response to these danger signals (FIG. 3). This suggests 

that the mTOR–HIF1α signalling axis modulates DC activation independently from 

regulation of glycolytic metabolism62,63. However, this signalling axis is important for the 

long-term commitment of DCs to glycolysis following activation by TLR agonists28,32,54,55 

(FIG. 1). Interestingly, rapamycin-treated BMDCs survive longer following TLR activation 

than their untreated counterparts. Furthermore, they exhibit prolonged and increased 

expression of co-stimulatory molecules and are more effective at inducing T cell responses 

that promote antitumour immune responses54. These findings seem at odds with the well-

known reduced immunogenicity of rapamycin-conditioned human monocyte-derived DCs19. 

This discrepancy might be explained by the fact that in mouse BMDCs, mTOR inhibition 

reduces iNOS expression, with the subsequent maintenance of mitochondrial function and 

prolonged lifespan of these cells54,64. By contrast, in human DCs, the immunosuppressive 

effects of rapamycin may dominate in the absence of iNOS expression.
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Recent reports have revealed a crucial role for the histidine solute carrier SLC15A4 in the 

activation of pDCs by agonists of TLR7 and TLR9, which are TLRs that are located in 

endosomes65. Based on recent work in B cells, SLC15A4 is necessary for endolysosomal 

acidification, and in the absence of this, TLR-initiated, mTOR-dependent, IFN-regulatory 

factor 7 (IRF7)-mediated type I IFN production is inhibited66. Moreover, autocrine 

signalling by type I IFNs through the IFNα/β receptor — which leads to further increased 

type I IFN production and the activation of additional genes, and is mTOR dependent — is 

also inhibited in Slc15a4-deficient cells66. These data are consistent with the fact that 

mTORC1 localizes to lysosomes where it acts as sensor of lysosomal amino acid 

concentrations, which are an indicator of metabolic status67. The data from the Slc15a4 

studies imply that mTORC responsiveness to lysosomal amino acid levels, or perhaps 

acidity, is a crucial component in cellular responsiveness to agonists of endolysosomal 

TLRs.

A key signalling pathway that opposes mTOR-controlled anabolic metabolism is regulated 

by the metabolic sensor AMP kinase (AMPK). AMPK is known to antagonize biosynthetic 

pathways, such as fatty acid synthesis, and has instead been shown to promote catabolic 

processes via several pathways, including the activation of PGC1α, which promotes 

mitochondrial biogenesis to increase OXPHOS6,68. In DCs, knockdown of AMPK 

potentiates TLR-induced DC activation, whereas pharmacological activation of AMPK 

suppresses TLR-induced glucose consumption and concomitant activation of DCs28,69. This 

indicates that AMPK signalling has a prominent role in the metabolic control of DC 

activation. Consistent with a role for PGC1α in regulating DC activation, treatment with 

resveratrol — a drug that, in addition to its many other effects, is thought to favour catabolic 

metabolism through activation of the histone deacetylase (HDAC) sirtuin 1, leading to 

suppressed HIF1α expression but enhanced PGC1α expression70–72 — reduced TLR-driven 

DC activation and rendered these cells more tolerogenic. Conversely, DCs deficient for 

nuclear factor erythroid 2-related factor 2 (NRF2) or PPARγ, which are downstream targets 

of PGC1α, display increased maturation and T cell-priming capacity73–75. Hence, these 

studies suggest an important role for the AMPK–PGC1α axis in antagonizing metabolic 

pathways that promote activation and immunogenicity of DCs, and may point to the 

intriguing possibility that the immunogenicity or tolerogenicity of DCs is determined by the 

balance between anabolic versus catabolic metabolic pathways in these cells.

Signalling by intracellular metabolites in DCs

Recent findings have led to the realization that cellular metabolism is not only a source of 

building blocks and ATP to support proper DC differentiation and function, but also that 

products of metabolic pathways act as signalling molecules to trigger cellular responses 

(TABLE 1). One example of this is provided by the important recent finding that in M1 

macrophages, HIF1α is activated by succinate — an intermediate in the TCA cycle that is 

produced from glutamate in cells that are committed to Warburg metabolism (BOX 2) — 

and has a crucial role in the production of IL-1β63. Interestingly, extracellular succinate is 

also able to promote DC activation by binding to the G protein-coupled receptor (GPCR) 

succinate receptor 1 (REF. 76). Another example concerns reactive oxygen species (ROS), 

which are a normal byproduct of the function of the ETC. Cellular concentrations of ROS 
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are increased when the ETC is inhibited — for example, with rotenone or antimycin77 — 

and this activates the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) 

inflammasome77, leading to the activation of caspase 1 and the production of IL-1β and 

IL-18 (REF. 9) (FIG. 3). This pathway can be induced by agonists of TLR1, TLR2 or TLR4, 

which promote the activation of TNF receptor-associated factor 6 (TRAF6) and its 

relocation to mitochondria, where it interacts with evolutionarily conserved signalling 

intermediate in Toll pathway (ECSIT) leading to increased ROS production78 (FIG. 3). In 

DCs, inflammasome activation is important for cellular activation and for the ability of the 

cells to induce adaptive antitumour immunity in certain settings79. A third example is 

provided by the NAD+/NADH ratio, which has a crucial role in the regulation of protein 

acetylation and has far-reaching consequences for cellular activation and metabolism (BOX 

3; TABLE 1).

Box 3

Acetylation, methylation and glycosylation in dendritic cell biology

Post-translational modification of proteins by acetylation, methylation and/or 

glycosylation has a crucial role in modulating protein function108. Acetyl-CoA converted 

from citrate is a major acetyl donor for the acetylation pathway. The importance of 

histone acetylation in the epigenetic regulation of gene expression is now well 

recognized, but many other proteins — including the majority of enzymes in glycolysis 

and fatty acid metabolism — are also acetylated, and acetylation of key participants, such 

as pyruvate kinase M2 (PKM2) and peroxisome proliferator-activated receptor-γ 

(PPARγ) co-activator 1α (PGC1α) modulates function in these pathways114,115. Among 

deacetylases, certain sirtuins are regulated by NAD+/NADH ratios, such that they 

become activated when NAD+ levels are high. In muscle cells, activation of the 

AMP/ATP sensor AMP kinase (AMPK) results in increased NAD+/NADH ratios and 

sirtuin 1 (SIRT1) activation116, resulting in deacetylation of PGC1α and promotion of 

metabolic pathways that restore NAD+/NADH ratios. In dendritic cells (DCs), SIRT1 

mediates the deacetylation of interferon (IFN)-regulatory factor 1 (IRF1) and, in doing 

so, inhibits the ability of cells to produce interleukin-27 (IL-27) and IFNβ117. SIRT1 has 

also been reported to regulate the balance of IL-12p70 versus IL-23 production118 and to 

repress PPARγ activity in DCs119. In other cell types, SIRT6 has been shown to repress 

the ability of hypoxia-inducible factor 1α (HIF1α) to promote glycolysis and of MYC to 

induce glutaminolysis, by acting to deacetylate histone H3 (REFS 120,121). Reversible 

methylation of histones H3 and H4 at different sites can also repress or promote 

transcription, and inducible inflammatory genes can be regulated in this fashion in 

DCs122. Histone methyltransferases catalyse the transfer of methyl groups to key lysines 

or arginines in histones, using S-adenosyl methionine, an intermediate of sulphur 

metabolism, as the methyl donor123; S-adenosyl methionine is made from methionine 

plus ATP. Glycosylation events, which have crucial roles in the folding and secretion of 

proteins destined for export, and in regulating intracellular protein function, are 

dependent on the sugar donor uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), 

which is the major product of the hexosamine biosynthetic pathway106, a metabolic 

pathway that has received very little attention in DCs. Indeed, relatively little is known of 
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the role of regulated acetylation, methylation or glycosylation in the biology of DCs and 

these areas are ripe for investigation.

Signalling by exogenous metabolites in DCs

Lipid sensing by GPCRs

We have discussed the ability of PRRs to promote changes in metabolism that support 

parallel changes in gene expression during activation. DCs are also able to respond directly 

to exogenous metabolites. For example, the short-chain fatty acid butyrate — which is one 

of three short-chain fatty acids (the other two being propionate and acetate) that are made by 

commensal bacteria as a byproduct of the fermentation of dietary fibre — has a range of 

effects on DC biology. Through the GPCR GPR109A; (also known as HCAR2), butyrate 

promotes the expression of IL-10 and the enzyme aldehyde dehydrogenase, which catalyses 

the conversion of retinal to retinoic acid80. Retinoic acid and IL-10 mediate many of the 

anti-inflammatory and tolerogenic effects exerted by DCs in the context of the normal 

interaction of the immune system with the intestinal microbiota (TABLE 1). Of considerable 

interest, GPR109A is also a receptor for niacin (also known as nicotinic acid and vitamin 

B3), which has effects on DCs that phenocopy those of butyrate80.

In addition to its effects through GPCRs, butyrate that enters cells through the Na+-coupled 

monocarboxylate transporter SLC5A8 can act as a potent HDAC inhibitor, and consequently 

regulate gene expression through this pathway. In this way, butyrate prevents the GM-CSF-

driven development of DCs in vitro81,82. Of acetate and propionate, which are also taken 

into DCs by SLC5A8, only propionate is a HDAC inhibitor, and it inhibits DC development 

in a similar fashion to butyrate81. In BMDCs, butyrate simultaneously promotes IL-23 

expression while suppressing IL-12 production in response to TLR agonists82.

As alluded to below, oxysterols can act as ligands for nuclear hormone receptors. However, 

the oxysterol 7α,25-dihydroxycholesterol (7α,25-OHC), which is made by stromal cells 

within lymphoid organs, is a ligand for the GPCR GPR183 (also known as EBI2) and, in 

addition to having important roles in regulating B cell movement, the 7α,25-OHC–EBI2 

axis was recently shown to be essential for the differentiation and appropriate localization of 

CD4+ cDCs in the spleen83.

Lipid sensing by nuclear hormone receptors

DCs can sense lipids and lipid-soluble ligands through nuclear hormone receptors, which act 

as transcription factors when activated by ligand binding. There has been considerable 

interest in the role of a subset of these receptors that form heterodimers with the retinoid X 

receptor (RXR) on DC biology. RXR can form heterodimers with retinoic acid receptors 

(RARs), liver X receptors (LXRs), PPARs and vitamin D receptors (VDRs), and mediate 

recognition and responsiveness to a variety of external ligands including retinoic acid 

(RXR–RAR), oxysterols (RXR–LXR), polyunsaturated and oxidized fatty acids (RXR–

PPAR), and 1α,25-dihydroxyvitamin.D3 (for a recent, exhaustive review on this subject, see 

REF. 38). In brief, ligation of these receptors in DCs is generally associated with reduced 

responsiveness to TLR agonists and attendant anti-inflammatory effects. Moreover, it is 
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important to realize that, as they become activated, DCs can acquire the ability to make 

ligands for many of these receptors. For example, TLR2 signalling induces the expression of 

the enzymes that enable DCs to produce retinoic acid from vitamin A84, and this can have a 

marked effect on whether regulatory or effector T cell responses are induced, especially in 

the intestine85–88.

Adenosine and ATP sensing

DCs are also able to respond to extracellular adenosine and ATP. Adenosine is recognized 

by the A2A GPCR on DCs and it conditions the cells to become anti-inflammatory, limiting 

DC activation89,90. ATP can also be sensed by P2YRs, which are GPCRs that promote DC 

migration91, or through ligand-gated ion channels (P2XRs) that provide an activating 

signal92 and stimulate the caspase 1-dependent cleavage and secretion of IL-1β93 (FIG. 3).

Lactic acid

Recent reports have indicated that lactic acid may also directly affect DC biology. Lactate 

promotes alternative activation of macrophages, reflected by the expression of genes 

typically associated with IL-4 stimulation, such as Arg1 (which encodes arginase), Fizz1 

(also known as Retnla), Mgl1 (which encodes macrophage galactose-type lectin; also known 

as CLEC10A) and Mgl2. This effect was found to be largely dependent on HIF1α, which is 

stabilized by lactate under normoxic conditions. This is interesting because it is likely that 

DCs will be exposed to increased levels of lactate as they become activated and as they 

infiltrate tumours or sites of infection. In this context, tumour cell-derived lactic acid was 

shown to inhibit IL-12 production and antigen presentation by DCs in co-culture assays94. 

Moreover, high lactate concentrations affect the differentiation of DCs from monocytes, 

favouring the emergence of less inflammatory DCs that are biased towards producing IL-10 

(REF. 95).

At this time, the molecular mechanisms underlying the effects of lactate on DC biology are 

unknown, but it is interesting to speculate that the lactate receptor GPR81 (also known as 

HCAR1) may be involved. This receptor, which binds lactate and inhibits lipolysis in 

adipocytes96, is reported to suppress pro-inflammatory TLR- and inflammasome-mediated 

responses in macrophages97.

Mitochondrial metabolism and danger sensing

In addition to the TLRs, which sense exogenous signals either outside the cell or within 

endosomal or lysosomal compartments, cells express cytoplasmic RNA sensors known as 

the RLRs98, which promote antiviral cDC responses99. RLR agonists induce the interaction 

of these receptors with mitochondrial antiviral signalling protein (MAVS) — a protein that 

localizes to the mitochondria100 and to mitochondria-associated membranes (MAMs)101 

(FIG. 3) — and this initiates signalling for induction of expression of antiviral genes 

including those encoding type I IFNs. MAMs are junctional regions between mitochondria 

and the ER, and are structures of increasing interest in terms of the link between cellular 

metabolism and innate immune functions102. They are primarily sites for the regulated 

transfer of Ca2+ and lipids between the ER and mitochondria103. In mitochondria, Ca2+ has 
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a crucial role in the activation of pyruvate dehydrogenase, αKG dehydrogenase and 

isocitrate dehydrogenase. As such, the regulated supply of Ca2+ to mitochondria is essential 

for maintaining TCA cycle activity103. Moreover, uptake of substrates such as glutamate 

into the mitochondrial matrix is Ca2+ dependent104. Enzymes that are important in lipid and 

glucose metabolism also localize to MAMs, as do ER stress sensors103.

Available data suggest a close functional link between MAMs, mitochondrial activity and 

antiviral responses78,102,105. For MAVS to function in RLR signalling, it has to be localized 

to mitochondria100. Moreover, the function of MAVS is enhanced by interactions with 

mitofusin 1 (MFN1), a protein that is involved in mitochondrial elongation and fusion 

events106. In addition, consistent with a role for RLR-mediated signalling in modulating 

mitochondrial function, mitochondria have been found to elongate when RLRs are 

activated106. Interestingly, it is clear that RLR signalling is dependent on mitochondrial 

membrane potential107 and that other mitochondrial proteins — such as MFN2, NLR family 

member X1 and receptor for globular head domain of complement component 1q — 

negatively regulate MAVS78, suggesting that the reverse may also be true in that 

mitochondrial metabolism regulates innate sensing by RLRs.

Conclusion

There is a growing appreciation for the role of metabolic changes in the phenotype and 

function of DCs. Moreover, evidence is accumulating that many fundamental cellular 

processes in DCs — such as transcription factor activation, gene and protein expression, 

organelle homeostasis, danger sensing and stress responses — are regulated by metabolic 

processes or the metabolites that they generate. However, we are only beginning to 

understand the extent to which metabolism is interlinked with these processes and how this 

affects the functional properties of DCs. For instance, most studies to date have used well-

controlled in vitro experiments with ample nutrient availability and perturbations in only a 

single gene or metabolite. However, the extent to which this models the metabolic 

complexity of the microenvironment in which DCs reside in situ — such as in tumours or 

sites of inflammation where nutrient and/or oxygen availability may be limiting — is still 

poorly understood. Furthermore, little is known about whether different DC subsets (for 

example, cDCs and pDCs) have distinct metabolic requirements or whether they rely on 

common metabolic programmes for their function. Finally, the regulation of generation of 

metabolites for the post-transcriptional modification of proteins by acetylation, methylation 

or succinylation, and the effects of these changes on signalling pathways and/or gene 

expression108,109, remain largely unstudied in DCs and are ripe for investigation (BOX 3). 

Clearly, it will be important to more fully characterize how metabolism controls the immune 

priming function of DCs and whether metabolic manipulation of DCs can be used to alter 

their immune-polarizing properties. This will not only improve our fundamental 

understanding of the biology of DCs, but will also be key to the development of 

metabolism-based approaches to improve the efficacy of DC-based immunotherapies.
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Glossary

Electron transport 
chain (ETC)

The electron transport chain links nutrient oxidation to ATP 

production by oxidative phosphorylation. It consists of 

complexes I–V in the mitochondrial inner membrane

Tricarboxylic acid 
cycle (TCA cycle; also 
known as the Krebs 
cycle or citric acid 
cycle)

This pathway catalyses the oxidation of acetyl-CoA (from 

glucose or fatty acids, or indirectly from amino acids) to 

generate NADH and FADH, which fuel the electron transport 

chain and thereby oxidative phosphorylation and ATP 

production. It also serves as a source of precursors for amino 

acid and lipid synthesis

Bone marrow-derived 
DCs (BMDCs)

These monocyte-derived dendritic cells (DCs) are generated 

from bone marrow cultures supplemented with granulocyte–

macrophage colony-stimulating factor and are used to model the 

behaviour of DCs that develop from monocytes under 

inflammatory conditions in vivo

Spare respiratory 
capacity

The amount of energy generating capacity, beyond that needed 

for basal biology, that a cell maintains in reserve to be used 

when called upon

M1 macrophages Macrophages that have been activated by a Toll-like receptor 

agonist, usually in combination with interferon-γ
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Figure 1. Changes in dendritic cell metabolism through development, quiescence and activation
The development of dendritic cells (DCs) from progenitor cells is associated with 

mitochondrial biogenesis, which is driven by peroxisome proliferator-activated receptor-γ 

(PPARγ) co-activator 1α (PGC1α) and promoted by PPARγ, mammalian target of 

rapamycin (mTOR) and MYC. Differentiated DCs populate their niches as immature DCs. 

Immature DCs use fatty acid oxidation as a core metabolic process. Activation of DCs by 

Toll-like receptor (TLR) agonists leads to a rapid increase in flux through glycolysis and the 

associated pentose phosphate pathway, with an accompanying increase in spare respiratory 

capacity and fatty acid synthesis. These metabolic changes are initiated by a pathway 

downstream of TLRs that involves AKT, TANK-binding kinase 1 (TBK1), inhibitor of 

nuclear factor-κB kinase subunit-ε (IKKε) and hexokinase 2 (HK2), and they are crucial for 

DC activation. After being activated, DCs remain glycolytic. This process is essential for 

continued DC survival and is controlled by mTOR and hypoxia-inducible factor 1α 

(HIF1α). CDP, committed DC progenitor; OXPHOS, oxidative phosphorylation.
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Figure 2. Toll-like receptor signalling integrates endoplasmic reticulum stress and changes in 
metabolism to support activation
In resting dendritic cells (DCs), fatty acid oxidation is engaged and the endoplasmic 

reticulum (ER) is relatively constrained. Following exposure to agonists of pattern 

recognition receptors (PRRs), signalling pathways are activated that lead to the expression 

of a broad array of nuclear factor-κB (NF-κB)- and interferon-regulatory factor (IRF)-

responsive genes. This may lead to ER stress and the activation of the unfolded protein 

response (UPR) as the cells attempt to accommodate the production of a large set of proteins 

destined for secretion. A downstream effector of the UPR is X-box-binding protein 1 

(XBP1), which transcriptionally activates the genes encoding enzymes for fatty acid 

synthesis; the UPR seems to be constitutively active in DCs. For Toll-like receptors (TLRs), 

and potentially other PRRs, this is coupled with activation of AKT, TANK-binding kinase 1 

(TBK1), inhibitor of NF-κB kinase subunit-ε (IKKε) and hexokinase 2 (HK2), which 

promotes increased flux through the glycolysis pathway with resultant increases in citrate 

export for fatty acid synthesis. This is supported by the coincident increase in activity of the 

pentose phosphate pathway (PPP), which facilitates the production of NADPH, a crucial 

cofactor for fatty acid synthesis. Synthesis of new fatty acids allows expansion of the ER, 

which is likely to relieve ER stress and lead to the production and secretion of effector 
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molecules that are central to DC activation. Thick arrow indicates that fatty acid oxidation is 

the primary metabolic signature of resting DCs. TCA, tricarboxylic acid.
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Figure 3. Mitochondria are foci for the integration of metabolism and innate responses
The mitochondria-associated membranes (MAMs) are areas of close interaction between 

mitochondria and the endoplasmic reticulum (ER). The MAMs are the sites at which 

mitochondrial antiviral signalling protein (MAVS) and the NOD-, LRR- and pyrin domain-

containing 3 (NLRP3) inflammasome localize and they serve as a Ca2+ store to maintain 

mitochondrial calcium concentrations. MAVS interacts with retinoic acid-inducible gene I 

(RIG-I)-like receptors (RLRs) that have sensed viral RNA. The MAVS–RLR complex is 

then able to initiate signalling to induce expression of cytokines and theoretically promote 

increased glycolytic flux to support dendritic cell (DC) activation and type I interferon (IFN) 

responses (indicated by the dashed arrows). MAVS–RLR signalling is dependent on active 

mitochondria with a high mitochondrial membrane potential (Δψm) and reciprocally serves 

to promote mitochondrial expansion. NLRP3 is sensitive to reactive oxygen species (ROS) 

that are produced by the electron transport chain (ETC) and also senses ATP-driven 

decreases in intracellular potassium concentrations. Once activated, NLRP3 activates 

caspase 1, which is able to cleave and thereby activate the pro-forms of interleukin-1β 

(IL-1β) and IL-18. Increased ROS production can be promoted by Toll-like receptor 1 

(TLR1), TLR2 and TLR4 signalling through the activation of tumour necrosis factor 

receptor-associated factor 6 (TRAF6), which relocates to the mitochondria. There, in 

conjunction with evolutionarily conserved signalling intermediate in Toll pathway (ECSIT), 

TRAF6 promotes ROS production by the ETC. IKKε, inhibitor of nuclear factor-κB kinase 
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subunit-ε; IRF, IFN-regulatory factor; NF-κB, nuclear factor-κB; P2X7, P2X purinoceptor 

7; TBK1, TANK-binding kinase 1.
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Table 1

A selection of key metabolites to which dendritic cells can respond*

Source Metabolite Receptor or sensor Molecular effect DC response

Exogenous Lactate GPR81? HIF1α stabilization • Differentiation to 
IL-10-producing DCs

• Alternative DC 
activation?

ATP • A2A

• P2YR

• P2XR

ND • Induction of 
tolerogenic DCs

• Promotion of DC 
migration and 
activation with 
production of active 
IL-1β and IL-18

Butyrate • SLC5A8

• GPR109A

• GPR41

• GPR43

Deacetylase inhibition • Induction of IL-10 
and aldehyde 
dehydrogrenase 
expression

• Induction of 
tolerogenic DCs

• Reduced rate of DC 
differentiation

Propionate • SLC5A8

• GPR41

• GPR43

Deacetylase inhibition Reduced rate of DC 
differentiation

Endogenous Succinate Prolyl hydroxylases • HIF1α stabilization

• Succinylation?

Induction of IL-1β expression

Reactive oxygen species NLRP3 Caspase 1 activation Production of active IL-1β and 
IL-18

NAD+ Sirtuins PGC1α deacetylation Altered mitochondrial metabolism

Endogenous and exogenous All trans retinoic acid RAR Suppression of pro-
inflammatory genes

Induction of tolerogenic DCs

Oxysterols LXR Expression of pro-
inflammatory genes

Enhanced DC immunogenicity

Polyunsaturated or 
oxidized fatty acids

• PPARα, PPARδ

• PPARγ

Inhibition of NF-κB signalling • Reduced IL-12 
production

• Increased lipid 
metabolism

Vitamin D VDR Suppression of pro-
inflammatory genes

Induction of tolerogenic DCs

*
Note that this list is not exhaustive. A2A, adenosine receptor A2A; DC, dendritic cell; GPR, G protein-coupled receptor; HIF1α, hypoxia-

inducible factor 1α; IL, interleukin; LXR, liver X receptor; ND, not defined; NF-κB, nuclear factor-κB; NLRP3, NOD-, LRR- and pyrin domain-
containing 3; PGC1α, PPARγ co-activator 1α; PPAR, peroxisome proliferator-activated receptor; P2XR, P2X purinoceptor; P2YR, P2Y purinergic 
receptor; RAR, retinoic acid receptor; SLC, solute carrier; VDR, vitamin D receptor.
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