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Abstract— Artificial immune systems, more specifically the
negative selection algorithm, have previously been applied to
intrusion detection. The aim of this research is to develop
an intrusion detection system based on a novel concept in
immunology, the Danger Theory. Dendritic Cells (DCs) are
antigen presenting cells and key to the activation of the human
immune system. DCs perform the vital role of combining
signals from the host tissue and correlate these signals with
proteins known as antigens. In algorithmic terms, individual
DCs perform multi-sensor data fusion based on time-windows.
The whole population of DCs asynchronously correlates the
fused signals with a secondary data stream. The behaviour of
human DCs is abstracted to form the DC Algorithm (DCA),
which is implemented using an immune inspired framework,
libtissue. This system is used to detect context switching
for a basic machine learning dataset and to detect outgoing
portscans in real-time. Experimental results show a significant
difference between an outgoing portscan and normal traffic.

I. INTRODUCTION

Applications which monitor computer systems and net-

works for misuse and abuse are known as intrusion detection

systems (IDS). Misuse based IDSs use pre-defined paths and

patterns of program execution to detect intrusions, but are

blind to novel or variant attacks. Anomaly based intrusion

detection systems on the other hand generate profiles of

‘normal’ behaviour [7] [10]. Deviations from normal are

classed as ‘anomalous’ and an alert is generated providing

notification of a potential intrusion. Anomaly based systems

can produce large amounts of false alarms (false positives),

largely caused by the lack of environmental awareness or

context. This paper focuses on the development of a contex-

tually aware IDS, built on a foundation of immune inspired

components.

A variety of machine learning techniques has been ap-

plied to anomaly detection, including neural networks and

statistical learning algorithms [7]. Artificial Immune Systems

(AIS), based on the functioning of the human immune sys-

tem, have also been applied to anomaly detection. In 1999,

Hofmeyr [10] developed an artificial immune system based

on ‘negative selection’: detectors forming the normal profile

are deleted if they match a string denoting normal behaviour.

At the time, it was perceived to function in a similar way to

the selection of T-lymphocyte cells in the thymus. Problems

with negative selection were highlighted by Kim & Bentley

[12] and more recently by Stibor et al [16]. Aickelin et

al [4] proposed that the negative selection algorithm could

not work because it was based on a simplified version

of the immunological self-nonself theory. This theory has

been challenged within immunology itself and an alternative
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theory has been proposed - the Danger Theory [13]. The

Danger Theory states that the immune system does not

discriminate on the basis of self or nonself, but on the balance

between the concentration of danger and ‘safe’ signals within

the tissue of the body. The work described in this paper is the

application of danger theory ideas to anomaly based intrusion

detection.

It is our hypothesis that the inclusion of more biologically

realistic features alleviates some of the scaling problems and

reduces the amount of false alerts generated by negative

selection based systems. In this paper we propose and test

an algorithm based on the behaviour of DCs, who are

major players in the danger theory. DCs are responsible for

combining signals in the tissue and informing the immune

system of any changes in signal concentration. We have used

an abstraction of DC behaviour to develop the DCA. In

this paper, we demonstrate the application of the DCA to

two problems - a static machine learning problem and a

computer security related real-time problem. This work is

an extension of concepts and experiments described in [8].

We verify the correctness of the algorithm’s implementation,

and present experiments demonstrating real-time anomaly

detection properties of the DCA. Further experiments are

required to demonstrate the DCA’s effectiveness as an an

anomaly detector in other domains.

In this paper, Section II contains background information

describing the biological basis for the new algorithm and

information on the development of AIS for IDS; Section III

briefly describes the DCA; Section IV outlines experiments

performed on a static dataset, complete with results; Section

V contains experimental details from testing the algorithm

in a pre-intrusion scenario; Section VI contains results and

analysis of the intrusion experiment; and finally, Section VII

provides conclusions and future directions.

II. BACKGROUND

In order to describe the algorithm it is first necessary to

explain some of the biological concepts used and to place

these concepts in context within the field of artificial immune

systems. The biological basis for the functioning of DCs has

been described in detail in our previous work [8]. Subsequent

sections explain the relevance of the danger theory to the

DCA and how this can be applied to intrusion detection.

A. The Rise and Fall of Self-Nonself

Until relatively recently the human immune system was

thought to discriminate between antigens (proteins) be-

longing to ‘self’ versus antigens belonging to pathogens -

‘non-self’. The self-nonself theory relies on the expression

of antigen-recognising receptors present on T-lymphocytes.



These receptors are matched against self antigen during a

training period in the thymus, resulting in the deletion of cells

with the potential to interact with self antigens. Recently,

several questions have been raised regarding the validity

of this model as a central tenet. What is defined as ‘self’

actually changes throughout the lifetime of an individual, e.g.

a pregnant woman’s immune system does not react against

her unborn foetus despite consisting of ‘nonself’ proteins.

A modification to the self-nonself theory was proposed by

Janeway [11], namely the ‘infectious non-self’ model. This

states that an antigen must be associated with a PAMP

(pathogen associated molecular patterns) in order to trigger a

response, as recognised by the innate immune system. While

this model could explain the rationale for adding stimulatory

adjuvants to vaccines, it could still not answer pertinent

questions relating to autoimmunity (e.g. Multiple Sclerosis).

The Danger Theory [13] provides an alternative view of

the activation of the immune system. Unlike the detection of

non-self antigens or pathogenic molecules, the danger model

proposes that the immune system detects the presence of

danger signals, released as a result of necrotic cell death

within the host tissue. Necrosis is the result of cellular dam-

age and stress caused by pathogenic infection or exposure to

extreme conditions. The metabolites of internal cell compon-

ents are thought to form the danger signals and are released

into the surround buffer fluid. The cell membrane loses its

integrity, releasing its contents (e.g. DNA, mitochondria) into

the surrounding tissue fluid [14]. The Danger Theory pro-

poses that the immune system is sensitive to changes in the

danger signal concentration in the tissue. Conversely, when

then tissue is healthy, cells die in a controlled manner, known

as apoptosis. Immunosuppressive molecules (safe signals) are

released as an indicator of normality in the tissue. In essence,

the Danger Theory consists of active suppression while the

tissue is healthy (apopotosis), combined with rapid activation

on receipt of necrotic danger signals. This property can be

abstracted to form artificial tissue, as conceptualised in a

software framework in [17] or used for data representation

in [6].

DC’s first function is to reside in tissue, where they

are classed as ‘immature’. Whilst in tissue, DCs collect

antigen (regardless of the source) and experience danger

signals from necrosing cells and ‘safe’ signals from apoptotic

cells. Maturation of DCs occurs in response to the receipt

of these signals. On maturation, DC exhibit the following

behaviour: collection of antigen ceases; expression of co-

stimulatory molecules (necessary for binding to powerful T-

lymphocytes) and chemical messengers known as cytokines;

migration from the tissue to a lymphatic organ such as a

lymph node; and presenting antigen to T-lymphocytes. The

context of the tissue (i.e. the type of signals experienced)

is reflected in the output chemicals of the DC. If there is a

greater concentration of danger signals in the tissue at the

time of antigen collection, the DC will become fully mature

(mDC), and will express mDC cytokines. Conversely, if the

DC is exposed to ‘safe’ signals, the cell matures differently

becoming a semi-mature DC, expressing smDC cytokines

[15]. The mDC cytokines activate T-lymphocytes expressing

complimentary receptors to the presented antigen. Any peri-

pheral cells expressing that antigen type are removed through

the activated T-lymphocyte. The smDC cytokines suppress

the activity of any matching T-cell, inducing tolerance to

the presented antigen. The context of the antigen is assessed

based on the resulting cytokine expression of the DC. In

our model, a combination of Janeway’s Infectious Non-self

(PAMPs) model with Matzinger’s Danger model (signals) is

used to investigate an artificial DC algorithm.

B. AIS: The Story So Far

Similarly to immunology, AIS initially relied on self-

nonself principles to create algorithms such as negative

selection and the B-cell based clonal expansion. Negative

selection has been used extensively for the purpose of

intrusion detection [5], with numerous variations for antigen

representation. The algorithm described in [10] is used to

generate a normal profile based on a detector set. In their

work, network connections established by host machines are

monitored and mapped onto a schema for matching. Their

model uses a training period in which common connections

are deleted from the detector set based on an activation

threshold. Once the training period is finished, the detectors

are compared against new connections. Connections with a

sufficiently high match count to a particular detector are

classed as an anomaly and an alert is generated. This al-

gorithm has been criticised for problems with false positives

and scaling. False positives arise because the nature of a

machine’s connections can change over time as part of

normal behaviour. As the detectors are not dynamically re-

trained, once a connection rate threshold is set, any change in

the behaviour of the machine results in the AIS responding to

a seemingly anomalous connection. An additional problem

is detector generation. Initially, the values for the detectors

are created at random. As the size of the connection space

increases, the size of the random detector set grows at

an unsustainable rate. This criticism has been theoretically

validated by the work of Stibor et al [16].

While this algorithm advanced the development of AIS

by stimulating further work in this field, it also hindered

development by inspiring other algorithms to be based on

similar, simplistic views of immunology. The Danger Project,

initially proposed in 2003, aims to improve on the results

of negative selection based IDSs by re-thinking the use of

immunology within AIS. The work presented in this paper

is the implementation of ideas outlined in this proposal [4].

III. THE DC ALGORITHM AND libtissue

A. The DC Algorithm

DCs have a number of functional properties that can

be abstracted to form a useful algorithm. The abstraction

process, algorithm and a worked example of the signal

processing methods are described in detail in our previous

work [8]. Outlined below are the key characteristics of DC

behaviour used to generate the DCA:



• Immature DCs (iDC) collect multiple antigens and are

exposed to signals in the tissue.

• DCs can combine signals from multiple sources to gen-

erate different output concentrations of costimulatory

molecules, semi-mature cytokines and mature cytokines.

• Exposure to signals generates an increase in co-

stimulatory molecules, with a high amount leading to

migration to the lymph node.

• Exposure to signals causes the maturation of DCs into

either mature and semi mature states, assessed through

the differences in concentration of mature and semi-

mature cytokines.

For the purpose of this model, a simple interpretation of

the input signals has been derived. There are four signals

in our model, each from a different source and producing

different output cytokines:

• PAMPS (P) are based on pre-defined signatures. Expos-

ure to PAMPS causes an increase in mDC cytokines.

PAMPs are suppressed by safe signals.

• Danger signals (D) cause an increase in mDC cytokines.

Danger Signals can also be suppressed by safe signals.

Danger signals have a lower potency than PAMPs.

• Safe signals (S) cause an increase in smDC cytokines

and have a suppressive effect on both PAMPS and

danger signals.

• Inflammatory cytokines (IC) amplify the effects of the

other three signals, but are not sufficient to cause any

effect on DCs when used in isolation.

Our data and method of processing is very different from

other AIS, which rely on pattern matching of antigen to

drive their systems, e.g. [19]. In our algorithm, antigen is

only used for the labelling and tracking of data, hence we

do not have a similarity metric. The representation of the

antigen can be a string of either integers or characters.

Signals are represented as real-valued numbers, proportional

to values derived from the context information of the dataset

in use. For example, a danger signal may be an increase

in CPU usage of a computer. The value for the CPU load

can be normalised within a range and converted into its

real-valued signal concentration value. The signal values

are combined using a weighted function (Equation 1) with

suggested values of the weights derived from empirical data

based on immunologists’ wet lab results (Dr Julie McLeod,

Dr Rachel Harry and Charlotte Williams - University of the

West of England).

The function itself is a weighted sum of PAMP, danger

and safe signal concentration values, multiplied by a value

for inflammation (in the range of 0 and 2). The resulting

value is then normalised through division by the sum of

the weights. The function is used three times to calculate

the output cytokines of costimulatory molecules (CSMs),

mDC and smDC cytokines, as denoted. C represents a

concentration, with the subscript denoting the cytokine or

signal it represents (P,D, S, IC are PAMP, danger, safe

and inflammatory signals). Similarly, W corresponds to the

weights used. These values are updated each time a DC is

exposed to signals, which influence the state of the DC:

immature or mature, with immature being the initial, default

state for the cells. Transition to the mature state is facilitated

through the CSM value. Each cell is assigned an individual

migration CSM threshold value, which can vary between

cells should it be required. When a cell’s CSM value exceeds

the migration threshold, the status of the cell changes and

migration from the tissue is initiated.

C[csm,mDCi,smDC] =

((WP ∗CP )+(WS∗CS)+(WD∗CD))
(WP +WS+WD) ∗

1+IC
2

(1)

TABLE I

WEIGHTS FOR THE SIGNAL PROCESSING FUNCTION

W csm semi mat

PAMPs(P) 2 0 2

Danger Signals(D) 1 0 1

Safe Signals (S) 2 3 -3

The DCA is a population based algorithm, with a user

defined number of DCs created to form a sampling pool.

While in the sampling pool, each DC is exposed to current

signal values and selects a slot in the antigen store. If an

antigen is present in the antigen store, the DC collects the

antigen and ingests it in the DC internal antigen storage.

Each DC has the opportunity to sample multiple antigens. For

every iteration of antigen collection, each DC re-calculates its

internal cytokine values based on the input signals received.

Each antigen can be sampled single or multiple times (a

tunable parameter).

Migration is simulated by the removal of a DC from the

pool and occurs when the cell’s internal CSM value exceeds

the DC’s migration threshold. At this point, the output

cytokines of each DC are measured. Antigen presented by

cells predominantly expressing mature cytokines is labelled

‘mature context antigen’, whilst antigen from cells expressing

predominantly semi-mature cytokines is labelled as ‘semi-

mature’. Each presented antigen’s context is recorded and

eventually a mean antigen context value (between 0 and 1)

is derived. Further details of the DCA can be found in [8].

B. System Integration

libtissue [17] is a software system which allows the

implementation and testing of AIS algorithms on real-world

computer security problems. Its design comes from detailed

research into innate immunology [18] and computer security.

It allows researchers to implement AIS algorithms as a

collection of cells, antigen and signals, interacting within a

tissue compartment. Input data to the tissue compartment

comes in the form of real-time events generated by sensors

monitoring a system under surveillance. Cells are actively

able to affect the monitored system through response mech-

anisms, though none are relevant to the DCA.

The system has a client/server architecture pictured in

Figure 1. The AIS algorithm is implemented as a libtissue



server, while libtissue clients provide input data to the al-

gorithm and provide response mechanisms. This client/server

architecture separates data collection by the libtissue

clients from data processing by the libtissue servers.

Client and server APIs exist, allowing new antigen and signal

sources to be easily added to libtissue servers, and the

testing of the same algorithm with a number of different

data sources. Client/server communication is socket-based

and uses the SCTP protocol, allowing clients and servers to

potentially run on separate machines, for example a signal

client may in fact be a remote network monitor.

libtissue clients are of three types: antigen, signal

and response. Antigen clients collect data and transform it

into antigen which are forwarded to a libtissue server.

Currently, a systrace antigen client has been implemented

which collects process system calls using systrace [3]. Sys-

tem calls are a low-level mechanism by which applications

request system services such as peripheral I/O or memory

allocation from an operating system. Signal clients monitor

system behaviour and provide the AIS with input signals.

A process signal client, which monitors a process and its

children and records statistics such as CPU and memory

usage, and a network signal client, which monitors network

interface statistics such as bytes per second, have also

been implemented. Currently, response clients which directly

modify a systrace system call policy and generate alerts are

also implemented. These clients are designed to be used

in real-time experiments and for data collection for offline

experiments.

The implementation is designed to allow varied AIS

algorithms to be evaluated on real-world systems and

problems[17]. When testing IDSs it is common to use preex-

isting datasets such as the Lincoln Labs dataset [1]. However,

our project is focused on combining measurements from a

number of different concurrent data sources. Pre-existing data

sets are not available containing the necessary data for our

system. To facilitate experimentation, a replay client has also

been implemented. This client reads in log files gathered

from previous real-time runs of antigen and signal clients. It

also has the facility to read logfiles generated by strace [2] as

an optional source of antigen in place of the systrace client. It

then sends these logs to a libtissue server. Variable replay

rates are available, allowing data collected from a real-time

session to be used to perform many experiments quickly.

The libtissue server itself provides a programming

environment in which AIS algorithms can be implemented.

Input data for these algorithms comes from data sources

provided by connected libtissue clients and is represented

in a tissue compartment. A tissue compartment is a space

in which cells, signals and antigen interact. Each tissue

compartment has a fixed-size antigen store where antigen

provided by libtissue clients is placed. The tissue com-

partment also stores levels of signals, set either by signal

tissue clients or cells.

libtissue cells, like tissue compartments, have antigen

and signal stores. They also have a number of different

receptors and producers which allow cells to interact with

others cells, antigen and signals in the tissue compartment.

Currently, four types of receptors have been implemented:

antigen, cytokine, cell and vr receptors. Antigen receptors

allow cells to transfer antigen from the tissue compartment

to their own internal antigen store. Cytokine receptor allow

cells to read signal levels in the compartment. Cell receptors

allow cells to bind to other cells. Binding is necessary for vr

receptors, which match antigen presented on another cell, to

be activated. Antigen from a cell’s internal store are presented

on antigen producers, one of the three types of producers

currently implemented. The other two types, cytokine and

response producers, allow cells to change cytokine levels

in the tissue compartment and communicate with response

clients respectively.

antigen

response

signal

antigenstore

signalstore

compartment

cells

clients server

systrace

signalcollector

(AIS,DCs)

Fig. 1. libtissue System Architecture

IV. WISCONSIN BREAST CANCER DATA

Previous work with the DCA included preliminary ex-

periments using the Wisconsin Breast Cancer dataset [9] to

form the signals and antigen, and produced class switching

behaviour in the DCs. Here we repeat and extend these

experiments to verify the implementation of the DCA within

the libtissue framework [8].

The Wisconsin Breast Cancer dataset [9] consists of 700

items: 240 items in class 0, 460 in class 1 and with each data

item containing nine normalised attributes. The static nature

of the dataset enables testing for detection accuracy and

provides two different data contexts which can be ‘replayed’.

Although we are aware that using static data to test an

intrusion detection algorithm is not ideal, it nevertheless

provides a predictable test-bed for examining the algorithm

itself. The antigen context output of the DCA classifies the

data into class 0 or class 1. This value is then compared

against the original classification and the number of errors

recorded.

A. Signals and Antigen

In our experiments, five out of the nine attributes are

used to form the signals. The five attributes with the largest

standard deviation are chosen. Cell shape, bare nuclei and

normal nucleoli are danger signals. Clump size has the

highest standard deviation out of all attributes and is used

to calculate PAMP and safe signal values for each data item.



The PAMP and safe signal value equals the deviation from

the mean of the class [8].

The signal concentration values are accumulated and pro-

cessed within each DC using the weighted signal processing

function described in Section III. Weightings used for this

experiment are derived from empirical immunology and are

shown in Table 1. The total signal values form the basis of

discrimination for the detection of context changes in the

original data.

In this experiment we have not included values for in-

flammatory cytokines, as no suitable mapping exists. Antigen

provides a label for each data item. A migration threshold for

removal from the sampling pool is implemented. Once this

threshold is exceeded, a DC is removed from the sampling

pool and its antigen plus context is written in a log file.

Once all the data items are processed the log file is analysed.

The number of ‘mature’ and ‘semi-mature’ presentations per

antigen is calculated. Ultimately, a mean value is calculated

from the context data. A threshold reflecting the distribution

of the original data is used to discern between antigens

presented in a class 0 or class 1 context. Values exceeding

the threshold are categorised as class 1.

B. Tissue Clients and Parameters

In this experiment, a tissue client is used to convert the

dataset from a text file into a data-stream structure. These

values are represented as signal concentrations and are passed

to the tissue server. Parameters are chosen to provide similar

conditions as used in previous work [8]. A summary of the

parameters used is shown in Table II.

TABLE II

TISSUE SERVER PARAMETER SETTINGS

Parameter Breast Cancer Expts Port Scan Expts

Tissue antigen capacity 1 antigen 500 antigen
Cell antigen capacity 50 antigen 50 antigen
Number of DCs in pool 100 DCs 500 DCs
Antigen sampling probability 0.10 1.00
Signal decay rate 100% 100%
Cell cycle rate 1 sample/s 1 sample/s
Number of times a single 10 1
antigen is sampled

C. Experiments

Two series of experiments are performed using the cancer

dataset, with all experiments performed on a Debian Linux

machine (kernel 2.4.10, AMD Athlon 1GHz). All code is

implemented in C (gcc 4.0.2). Each experiment is performed

20 times, with 7000 antigen collected per run. The context

values from each run are used to derive an overall mean

context value for each antigen. A threshold of 0.65 (reflective

of the class distribution of the dataset) is used to determine

the final class label of each antigen. Antigen with context

values of over 0.65 are designated class 1 and vice versa.

Experimental series 1 explores the class-switching beha-

viour of the DCs by investigating the influence of the data

order. Three data orders are explored: class 0 followed by

class 1 (one-step); the first half of class 0, all of class

1, followed by the remainder of class 0 (two-step); and a

random distribution. A further experiment is performed using

the two-step data order where each antigen is sampled only

once, not 10 times as in previous experiments. The migration

threshold for each DC is generated randomly within the range

of 5-15 (mean value of 10).

The series 2 experiments use the one-step data order to

assess the effect of changing the migration threshold value.

The migration threshold value limits the amount of antigen

a DC can collect. A larger migration threshold increases

the sampling window size for antigen collection. We are

interested to see what effect variations of this value have on

the amount of errors produced by the system. The migration

threshold is fixed at 1, 5, 10, 15 and compared to the

previously used random number within the range of 5-15.

Each experiment is run 20 times with the context values for

each antigen derived from the mean of all runs.

D. The Results
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Fig. 2. The experiment shown features a one step data order (n=20). The
data set contains 240 data items of class 0 followed by 460 class 1 items.
The context switching of DCs is demonstrated in accordance with change
in the data.

The results from series 1 are shown in Figure 2 and in

Table III. Figure 2 shows the class switching behaviour of the

DCs from class 0 to class 1 in line with the data order. These

results produce comparable trends with previous results[8].

However, there is some loss of accuracy as seen from the

increased amount of errors listed in Table III. This is due

to the addition of new components in libtissue, such

as antigen overwriting and random selection of cells in the

update cycle of the DCs. When each antigen is sampled once,

the results for the 2-step experiment improve as shown in

Table III. This is due to the strong linkage between antigen

and signals in this experimental set-up. As expected when

the data order is completely random the performance of the

algorithm is poor, due to the lack of linkage between antigen

and signals.

TABLE III

NUMBER OF ERRORS FOR EACH DATA ORDER

Data Order Number of Errors

1-step 57
2-step 133
Random 349

2-step (single Ag sample) 4



The results from series 2 are presented in Table IV.

The results show that variation in the migration threshold

significantly alters the classification of data items (using a

paired t-test, p < 0.01) around the class-switch boundary.

Analysis based on the number of errors suggests that CSM=1

is the best value for the threshold. However, the magnitude of

the errors generated using CSM=1 (error values not reported)

is greater than those reported when CSM=5, making CSM=5

a more suitable value. The variable threshold was expected

to perform within the same range as CSM=10, being the

mean of the random range. However, the number of errors

produced using CSM=variable was smaller than expected

and significantly different to the results from CSM=10. The

variable threshold adds robustness to the system; furthermore

a set value need not be specified, as long as the values fall

within a sensible range.

TABLE IV

NUMBER OF ERRORS FOR EACH DATA ORDER

Migration Threshold Number of Errors

1 14
5 41
10 83
15 182
Variable 57

V. PORT SCAN EXPERIMENTS

Port scanning is used primarily for network administration

and consists of sending packets to machines for the purpose

of understanding the topography of a network. However, this

tool is often used for malicious purposes to search out vul-

nerable machines. Detection of port scans is a key step in the

detection of an attack and makes an ideal small scale, real-

time experiment for testing the DCA. An essential purpose

of this experiment is to ensure the tissue server, clients and

algorithm can cope with real-time data processing.

A. The ICMP scan

The port scan used is a ping (ICMP) scan performed across

a range of IP-addresses, using the nmap tool. In order to

perform this port scan, a remote shell (via ssh on a selected

port, 2222) is established, from which nmap is executed,

providing an example of anomalous behaviour. To capture

normal behaviour, a file transfer is performed from the host

machine to another, in addition to ssh demon processes and

shells running in the background. The port scan and the

file transfer are not performed simultaneously, to allow for

a baseline of comparison. Four different experiments are

performed varying the combinations of the different signals

and the safe signal weighting for the mature cytokine value.

The protocol describing the port scan procedure is as follows:

• Remotely log-in to host using ssh port 2222

• Run the nmap (nmap -sP), ICMP scanning over 1000

IP addresses

• Wait for 30 seconds

• Transfer a file from the host machine (3.3MB)

• Close the remote session

B. Signals and Antigen

Process IDs from all processes running through the remote

shell are captured using a systrace tissue client, as described

in Section III. The process IDs are the antigen of the system

and are classed as either ‘semi-mature’ or ‘mature’ dependent

on the percentage of DCs expressing an antigen with mature

cytokines. The proportion of mature context antigen (per

process) are used to identify misbehaving processes. This

context is generated by exposing the DCs to various signals

representative of machine behaviour. Signals have been se-

lected to reflect a network based attack. An ‘ideal’ PAMP

would be a signature or definite indicator of a pathogenic

presence. In this instance the number of ICMP ‘destination

unreachable’ errors are converted into PAMP signals. These

signals are generated if a scanned IP address does not have

an associated machine - a potential sign of port scanning.

The amount of packets transmitted per second is measured

and forms the danger signals. The higher the amount of

packets per second, the greater the concentration of the

danger signal. The safe signals are viewed as the opposite of

danger signals. Safe signals are derived from the inverse rate

of change of packets per second, based on a moving average

over a 2 second time window.

Inflammatory signals are reflective of the machine beha-

viour in general, but not specific to the scan. In this instance,

the inflammatory signal was set to zero to indicate ‘user

present’ or set to 1 to simulate ‘user absent’. This is based

on the assumption that it is less likely to comply as normal

data should a port scan take place without a user present

at the machine. An example of the incoming signals to the

tissue server is shown in Figure 3.
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Fig. 3. The PAMPs, danger signal and safe signal inputs.

C. Parameters, Settings and Scripts

The parameters used in this experiment are shown in Table

II. All experiments were performed using nmap version 3.2.1

on an AMD Athlon machine (1GHZ) running Debian Linux

kernel version 2.6.10. OpenSSH version 4.2 was used for the

remote shell, with all code written in C (gcc version 4.0.2).

Signal collection scripts are written in bash to extract relevant



data from the /proc file system, in addition to the use of

the netstat program. These samples were taken once per

second. Each experiment was performed ten times, with the

mean percentage of mature antigen calculated to assess the

anomalous or normal nature of the individual processes. A

process monitor script is used to capture which processes

have run throughout the course of the experiment for the

purpose of antigen identification. Forked or child process IDs

are also captured.

Experiments with the port-scan tissue clients are per-

formed using different combinations of signals. A summary

of the experiments is detailed in Table V. As PAMPs did not

feature in experiment 1, the weighting for the transformation

of safe signals to CSMs was changed from -3 to -1. In these

experiments all other weighting values are as described in

Table I. This weighting was increased to -2 for experiments

3 and 4 to explore the relationship between detection of

normal processes and an increase in safe signal suppression.

In experiment 4, the inflammatory signal was used for the

first time, to assess the usefulness of the signal. A summary

of the experiments performed is detailed in Table V.

TABLE V

PORT SCAN EXPERIMENTS

Experiment Signal Types Safe Signal to CSM Weight

1 danger & safe -1
2 danger, safe & PAMP -1
3 danger, safe & PAMP -2
4 danger, safe, PAMP -2

& inflammation

VI. PORT SCAN RESULTS AND ANALYSIS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bash sshd jqg@pts/8 nmap -sP X forward agt scp blufire.ai

Process type

% mature context antigen

2 sigs -1
3 sigs -1
3 sigs -2
4 sigs -2 

Fig. 4. The mean % mature antigen derived for each process of interest,
shown for each signal combination.

In experiment 1, all process IDs presented as antigen

are analysed and a mean percentage mature antigen value

(% mAg) is calculated. The results in Table VI show that

although antigen is presented for numerous sshd processes,

negligible amounts are detected as dangerous. Similar values

are found for experiments 2, 3 and 4 and thus the sshd

child processes are omitted from the corresponding results

TABLE VI

TWO SIGNALS (EXPT 1)

Process Name Num antigen Mean % mAg Std Dev

ssh script 10.4 0 0
sshd -p 2222 31.9 0 0
sshd:jqg[priv] 246.2 0 0.002
sshd:jqg[net] 26.7 0 0
sshd:jqg[pam] 10.4 0 0
bash 293.6 0.205 0.159
sshd jqg@pts/8 476.0 0.437 0.090
nmap -sP 3536.4 0.843 0.069
X forward agt 471.7 0.297 0.115
scp blufire.ai 285.3 0.378 0.157

TABLE VII

THREE SIGNALS WITH -1 SAFE SIGNAL WEIGHTING (EXPT 2)

Process Name Mean % mAg Standard Deviation

bash 0.212 0.152
sshd jqg@pts/8 0.441 0.159
nmap -sP 0.910 0.0456
X forward agt 0.421 0.176
scp blufire.ai 0.428 0.187

tables, Tables VII, VIII and IX respectively. The tables show

the mean percentage mature antigen for each process in

addition to the standard deviation from the mean, found to be

reflective of the actual data distribution. The five processes

of interest presented in Figure 4 include: the bash shell

from which the scan was performed; the ssh demon; the

nmap performing the port scan; the graphical forwarding

agent for the remote shell; and the file transfer (scp). The

scp file transfer provides us with a baseline comparison. If

the DCA works correctly, nmap is expected to produce a

significantly greater mean % mature antigen than the file

transfer. Indeed, analysis of data from all experiments shows

that nmap produces significantly greater mean % mature

antigen than the baseline normal file transfer (see Table X),

especially in experiment 3. This is true for any combination

of signals. Furthermore, the mean % mature antigen for the

normal file transfer is significantly reduced when the safe

signal weight is changed to -2. All significance are assessed

through paired t-tests, with 95% confidence demonstrated.

A. Analysis

In each experiment the nmap process generates signific-

antly more mature context antigen than any other process,

as shown through the paired t-test results given in Table

X. The standard deviations of these results are within an

acceptable range indicating that all means are representative

of the sample. The good detection rate of the anomalous

process indicates that the DCA may be suitable as a general

purpose anomaly detector. The addition of PAMPs does not

significantly increase the detection of the ‘anomalous’ nmap

(p > 0.05), but combined with a higher safe signal weight,

significantly lowers the % mature antigen value of the normal

processes. This implies that in future experiments a much

higher level of safe signal can be used without reducing

the detection of the misbehaving process. This in turn may

reduce the amount of false positives in comparison with



TABLE VIII

THREE SIGNALS WITH -2 WEIGHT (EXPT 3)

Process Name Mean % mAg Standard Deviation

bash 0.107 0.115
sshd jqg@pts/8 0.271 0.077
nmap -sP 0.829 0.083
X forward agt 0.172 0.203
scp blufire.ai 0.176 0.196

TABLE IX

FOUR SIGNALS (EXPT 4)

Process Name Mean % mAg Standard Deviation

bash 0.103 0.054
sshd jqg@pts/8 0.423 0.121
nmap -sP 0.796 0.139
X forward agt 0.319 0.160
scp blufire.ai 0.348 0.227

previous AIS intrusion detection systems.

It is also interesting to note that the inclusion of inflammat-

ory signals in experiment 4 produces an increase in the de-

tection of the normal process (0.348 %mAg) when compared

to experiment 3 (0.176 %mAg). On closer inspection of the

output data we discovered that fewer antigen are presented

per DC (0.25 antigen per DC) versus 0.42 antigen per DC in

all three previous experiments. Two implications are evident

from these results: First, DCs spend a shorter time in the

tissue as the CSM threshold is exceeded at twice the rate;

second, as the DC spend less time in the tissue, less antigen

is collected. This is analogous to the effects of inflammation

in the human immune system.

VII. CONCLUSIONS AND FURTHER WORK

In this paper we have demonstrated the use of a Dend-

ritic Cell inspired Algorithm (DCA) on two datasets. The

results from the Wisconsin Breast Cancer experiments have

validated the use of the algorithm within the libtissue

framework. The promising results shown in the port scan

experiments imply that the DCA plus the libtissue frame-

work can be used for the purpose of anomaly detection under

real-time conditions.

Future work includes the incorporation of the replay client

outlined in Section III. This client will allow us to collect

more data of our choice, and to study the behaviour of

the DCA in detail. Sensitivity analysis performed using the

replay client will give us greater understanding of the DCA,

necessary before any further development of the algorithm. A

suitable method of comparison with other anomaly detection

techniques is also under investigation. Ultimately, we would

like to apply this data to real-time system monitoring to

detect exploits, botnets or scanning worms. Results from this

will assist in deriving an answer to the original question[4]:

is Danger Theory the missing link between AIS and IDS?
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