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Dendritic cells (DCs) are sentinels of the immune system and detect pathogens at sites
of entry, such as the skin. In addition to the ability of DCs to control infections directly
via their innate immune functions, DCs help to prime adaptive B- and T-cell responses by
processing and presenting antigen in lymphoid tissues. Infected Aedes aegypti or Aedes
albopictus mosquitoes transmit the four dengue virus (DENV) serotypes to humans while
probing for small blood vessels in the skin. DENV causes the most prevalent arthropod-
borne viral disease in humans, yet no vaccine or specific therapeutic is currently licensed.
Although primary DENV infection confers life-long protective immunity against re-infection
with the same DENV serotype, secondary infection with a different DENV serotype can
lead to increased disease severity via cross-reactive T-cells or enhancing antibodies. This
review summarizes recent findings in humans and animal models about DENV infection
of DCs, monocytes, and macrophages. We discuss the dual role of DCs as both targets of
DENV replication and mediators of innate and adaptive immunity, and summarize immune
evasion strategies whereby DENV impairs the function of infected DCs. We suggest that
DCs play a key role in priming DENV-specific neutralizing or potentially harmful memory
B- and T-cell responses, and that future DC-directed therapies may help induce protective
memory responses and reduce dengue pathogenesis.

Keywords: dengue virus, dendritic cells, monocytes, macrophages, innate immunity, antibody-dependent enhance-
ment, immune evasion

INTRODUCTION
DENDRITIC CELLS, MONOCYTES, AND MACROPHAGES: LOCATION AND
FUNCTION
Dendritic cells (DCs) reside and migrate into barrier tissues such
as the skin and mucosal epithelium that are the sites of pathogen
invasion. In the steady state, DCs display high levels of phagocytic
activity, take up antigen, and probe for pathogens via pattern-
recognition receptors. DCs express Toll-like receptors (TLRs) and
C-type lectins as transmembrane proteins as well as intracellular
sensors, such as retinoic acid-inducible gene I (RIG-I), melanoma
differentiation factor 5 (MDA-5), and cyclic GMP-AMP synthase
(cGAS) that recognize conserved microbial patterns (1, 2). Upon
pathogen recognition, DCs become activated, produce inflamma-
tory cytokines and chemokines, migrate to lymph nodes (LNs),
and present antigen to prime naïve T-cells (3).

Subsets of DCs, monocytes, and macrophages (MΦs) reside
in different tissues and fulfill distinct functions. Classical DCs
(cDCs) display the characteristic DC dendrites, are present in LNs,
spleen, and bone marrow as well as skin, lung, liver, and intes-
tine, and have the greatest ability to stimulate naïve T-cells (4).
All cDCs can present endogenous antigen from the cytosol via
MHC I to CD8+ T-cells (5). In addition, most subsets of cDCs
present exogenous antigen via MHC II to CD4+ T-cells, whereas
only specialized subsets can cross-present exogenous antigen via

MHC I to CD8+ T-cells (6, 7). In addition, plasmacytoid DCs
(pDCs) are another DC subset that reside in the spleen, bone
marrow, and liver and circulate in the blood. During viral infec-
tions, pDCs migrate to infected tissues and secrete up to 1,000-fold
higher amounts of interferon (IFN)-α/β than other cell types (8),
although their capacity for antigen presentation is still debated
(9). Nevertheless, the role of DCs in priming protective immune
responses against many human pathogens and their potential con-
tribution to pathogenesis and development of disease need further
investigation.

Monocytes circulate in steady-state blood, patrol lymphoid,
and non-lymphoid organs, and are recruited to inflamed tis-
sues, where they phagocytize pathogens as well as infected or
damaged cells (10). During inflammation, monocytes can dif-
ferentiate to monocyte-derived DCs (moDCs) (11, 12). In vitro-
generated human moDCs are used widely to study DC biology
(13). Monocytes are isolated from human peripheral blood, dif-
ferentiated in the presence of GM-CSF and IL-4 first to imma-
ture moDCs and after further stimulation with inflammatory
cytokines or pathogen-associated microbial patterns (PAMPs) to
mature moDCs (13, 14). The ability of moDCs to prime naïve
T-cell responses remains controversial, as this function initially
was attributed solely to cDCs (15). Nevertheless, recent studies
demonstrated that moDCs can migrate to LNs and prime naïve
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T-cells during Leishmania major, influenza virus, and bacterial
infections (12, 16, 17). In contrast to DCs, MΦs have limited abil-
ity to migrate and prime naïve T-cells. MΦs reside within tissues,
where they phagocytize, secrete cytokines, present antigen to effec-
tor and memory T-cells, and contribute to the healing of injured
tissue (18).

DENGUE EPIDEMIOLOGY AND PATHOGENESIS
Female Aedes aegypti and Aedes albopictus mosquitoes transmit the
four dengue virus serotypes (DENV1–4) while feeding on blood
vessels in the skin (19). The positive-sense RNA genome of the fla-
vivirus DENV encodes three structural (C, prM/M, E) and seven
non-structural (NS) proteins (20). DENV causes the most preva-
lent arthropod-borne viral disease of humans, with an estimated
390 million infections and 96 million apparent cases per year (21).

The acute febrile illness dengue fever (DF) can progress to
a potentially life-threatening vascular leakage syndrome, dengue
hemorrhagic fever/dengue shock syndrome (DHF/DSS), the lat-
ter characterized by hypotension and circulatory failure (22). At
present, no vaccine or therapeutic against dengue is approved for
use in humans. A major challenge in the development of vaccines
and therapies is that although infection with one DENV serotype
leads to long-lasting immunity against the same serotype, sub-
sequent infection with a different (heterotypic) serotype is the
major risk factor for severe disease (19). To date, the mecha-
nisms by which the host immune response to DENV provides
either protection or enhancement in secondary infection remain
poorly understood. Antibodies can neutralize infection or con-
versely trigger “antibody-dependent enhancement” (ADE) (23,
24), whereby cross-reactive anti-DENV antibodies facilitate entry
of DENV into Fcγ receptor (FcγR)-bearing cells and thus increase
viral load and ultimately disease severity. Some DHF/DSS cases
occur during primary (1°) infections, especially in infants 6–
9 months of age (25). In this case, it is thought that maternal
DENV-specific antibodies transferred via the placenta wane to
levels that can enhance a newly acquired DENV infection (26).
Thus, the quantity and quality of the antibody response influences
the severity of a secondary DENV infection. Similarly, T-cells can
provide protection (27–29), but cross-reactive T-cells have been
implicated in disease pathogenesis (30–32). Nevertheless, most
secondary DENV infections are asymptomatic or mild, suggesting
that the immune system can mount protective responses against
dengue.

Aedes mosquitoes that take a blood meal from a human with
acute dengue viremia become infected and, after DENV spreads
to the salivary glands, transmit the virus when feeding on a new
individual. Mosquito saliva contains components that counteract
the host hemostatic response and modulate immunity (33, 34).
The addition of saliva from Ae. aegypti mosquitoes was found to
decrease DENV infection of moDCs in vitro (35). In contrast, mos-
quito saliva or transmission via infected mosquitoes prolonged
DENV serum viremia and fever in “humanized” mice as com-
pared to inoculation with DENV alone (36). Furthermore, saliva
that was inoculated by non-infected mosquitoes prior to needle
inoculation of DENV blocked the upregulation of genes involved
in innate pathogen recognition and increased serum viremia in
mice deficient in IRF3 and IRF7 (37). Although certain in vivo

studies suggest that mosquito saliva can facilitate DENV infection
by generating an environment that favors early virus replication,
the impact of saliva on skin DCs requires further study.

TARGETS OF DENV REPLICATION
DENV INFECTION IN THE ABSENCE OF ENHANCING ANTIBODIES
Identifying the targets of DENV infection is crucial for under-
standing virus spread and disease pathogenesis. Human autopsies
revealed staining for DENV structural proteins and negative-sense
viral RNA, indicative of virus replication, in MΦs in LNs, spleen,
lung, and liver and monocytes in clotted blood from patients
with lethal dengue disease (38, 39). Staining of the non-structural
protein NS3 confirmed DENV replication in phagocytes (includ-
ing monocytes, MΦs, and DCs) in LNs and spleen, as well as
in MΦs in the lung in other autopsy studies (40, 41). In earlier
stages of the disease, most DENV-infected cells in the peripheral
blood of acute dengue patients were identified as CD14+ CD11c+

activated monocytes, with higher proportions of monocytes and
DENV-infected total cells in the blood in DHF compared to DF
patients (42).

Although in humans, DENV efficiently suppresses the IFN
response, replicates, and causes disease, DENV fails to antagonize
mouse IFN responses, and thus wild-type (WT) mice generally
do not sustain DENV replication or develop disease (43). In com-
parison, mice deficient in IFN-α/β receptor (Ifnar−/−) and also
-γ receptor (AG129) are susceptible to DENV infection and dis-
play a tropism similar to humans (40, 44–46). DENV replicated
in murine MΦs that were isolated from the peritoneum (47),
as well as in MΦs in LNs and spleens of AG129 mice (48, 49).
Treatment with clodronate liposomes that deplete monocytes and
MΦs decreased viral load in AG129 mice on day 2 but increased
viral load on day 4 post-inoculation with DENV2 (48). Monocytes
and MΦs thus play an important role as targets for early DENV
replication as well as in subsequent control of DENV infection.

Human moDCs generated in vitro support DENV infection
(50), with immature moDCs being more susceptible to DENV
infection than mature moDCs, monocytes (51), or MΦs (52).
Analogously, CD11chigh cells in the spleen of AG129 mice (47) that
likely comprised both moDCs and cDCs supported DENV replica-
tion in vivo. Recent studies in Ifnar−/−mice have shown that early
after infection, monocytes are recruited to the dermis and differ-
entiate to moDCs, where they become primary targets for DENV
replication (53). Although DENV can infect monocytes and MΦs
directly, these studies emphasize the greater permissiveness of DCs
to DENV infection in the absence of enhancing antibodies, such
as during 1° infection conditions.

Surface expression of viral attachment factors determines
the susceptibility to DENV infection. DC-SIGN (dendritic-cell-
specific ICAM3-grabbing non-integrin, CD209) is a C-type lectin
expressed on the surface of DCs and MΦs that recognizes
mannose-type sugars on the surface of bacterial, fungal, and
viral pathogens. Signals via DC-SIGN induce the phagocyto-
sis of pathogens and contribute to host defense (54). However,
DC-SIGN also interacts with carbohydrates on DENV glycopro-
teins and mediates the attachment of DENV to moDCs (55–57).
Human immature moDCs express high levels of DC-SIGN and
are highly susceptible to DENV infection (50, 58, 59). Of note,
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DC-SIGN mediates virus attachment to the cell surface, but not
endocytosis into moDCs (60). Activation of immature moDCs via
inflammatory cytokines results in downregulation of DC-SIGN,
explaining in part why mature moDCs are less susceptible to
DENV infection (51, 58). Further, human cDCs freshly isolated
from blood do not express DC-SIGN and, accordingly, become
highly susceptible to DENV infection only after culture with GM-
CSF and IL-4 that induces DC-SIGN expression (61). Similarly,
treatment of monocytes with IL-4 or IL-13 increased DC-SIGN
expression and DENV infection (62), but it remains unclear
whether these monocytes had differentiated to moDCs or MΦs.
Consistent with these findings, higher levels of DC-SIGN expres-
sion on cDCs of different blood donors correlated with higher
DENV infection (61). Furthermore, a polymorphic variant of the
DC-SIGN promoter with a decreased transcriptional activity cor-
related with protection against DF in humans (63). In summary,
changes in DC-SIGN expression on different myeloid cell subsets
through differentiation correlate with DENV infection (Figure 1).

Although Aedes mosquitoes transmit DENV when probing for
blood vessels in the skin, most studies have focused on DENV
infection in tissues after the virus has spread via the blood. Few
studies have examined DENV infection and the immune response
in the skin. DENV infects epidermal Langerhans cells (LCs) in
healthy human skin explants in vitro (58, 64). Infection of LCs
was confirmed in AG129 mice after intradermal inoculation of

DENV2 (48). However, the dermis of intradermally inoculated
Ifnar−/− mice contains 100-fold more DENV-infected cells than
the epidermis (53). Recent studies indicate that dermal cDCs, and
to a lesser extent MΦs, are the initial targets of DENV replication
after intradermal inoculation of Ifnar−/− mice (53) or infection
of skin explants from healthy human donors (65). Subsequently,
de novo-recruited monocytes differentiate into moDCs, which
become primary targets for DENV replication in the dermis (53).

Regarding the source of infectious virus, DENV produced
in mosquito cells interacts with DC-SIGN and infected human
immature moDCs in vitro (66). In contrast, DENV that was pro-
duced in human moDCs did not bind to DC-SIGN or infect
moDCs but instead was infectious for cells expressing the homolog
L-SIGN, such as monocytes and endothelial cells (66). The differ-
ence in binding to DC-SIGN or L-SIGN was likely due to different
N-linked glycosylation patterns present on DENV particles pro-
duced in mosquito or mammalian cells. This may explain how
DCs in the skin are the initial targets for DENV infection immedi-
ately after transmission. Characterization of the initial targets and
immune response to DENV in the skin may foster new strategies
to block DENV replication and abort pathogenesis.

ANTIBODY-ENHANCED DENV INFECTION
Dengue virus-specific adaptive immune responses, in particular
subneutralizing concentrations of antibodies, can enhance DENV

FIGURE 1 | DENV infection varies among macrophages, monocyte, and
dendritic cell (DC) subsets in the presence or absence of enhancing
antibodies. DC-SIGN expression correlates with high infection in the absence
of enhancing antibodies (i.e., 1° infection conditions), whereas FcγR
expression modulates antibody-enhanced infection during ADE. Macrophages
(MΦ) and monocytes express low levels of DC-SIGN, and show little DENV
infection in the absence of enhancing antibody, but are highly infected in the
presence of enhancing antibody. Under inflammatory conditions, monocytes
differentiate to immature monocyte-derived DCs (moDCs) and, further, to
mature moDCs after stimulation via PAMPs or inflammatory cytokines. While
immature moDCs express high levels of DC-SIGN and can be infected with

DENV in the absence of antibodies, mature moDCs express lower levels of
DC-SIGN and show moderate permissiveness under these conditions.
Accordingly, mature moDCs show a capacity for enhanced infection in the
presence of subneutralizing anti-DENV antibodies. Classical DCs (cDCs) that
are freshly isolated from human blood do not express DC-SIGN, but express
high levels of DC-SIGN after stimulation with GM-CSF and IL-4 in vitro (*),
which renders them highly susceptible to DENV infection without antibody,
similar to immature moDCs. Plasmacytoid DCs (pDCs) do not express
DC-SIGN or support DENV replication in the absence of antibody. cDCs and
pDCs express FcγRs, but DENV infection of cDCs and pDCs during ADE has
not been determined (n.d.).

www.frontiersin.org December 2014 | Volume 5 | Article 647 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Microbial_Immunology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schmid et al. Dendritic cells in dengue virus infection

entry and infection. In cell culture, subneutralizing amounts of
DENV-immune human serum or monoclonal antibodies enhance
infection of monocytes (67, 68) and mature moDCs, but not
immature moDCs (51). Human splenic MΦs showed low levels
of DENV infection at baseline in vitro, but at least 10-fold greater
infection in the presence of enhancing concentrations of diluted
DENV-immune human (69). In vivo, CD14+ monocytes in the
blood of acute dengue patients contained significantly higher lev-
els of DENV genomic RNA in severe DHF compared to DF cases,
and in secondary compared to 1° infections (70). Thus, ADE
mediates efficient DENV infection of monocytes, mature moDCs,
and MΦs.

FcγR expression determines the susceptibility of cells to ADE
during DENV infection via uptake of virus-antibody complexes
(Figure 1). Most myeloid cells express FcγRs, which bind the Fc
region of antibodies and thus are an important link between cel-
lular effector functions and antigen recognition via the antibody.
Different types of FcγRs recognize distinct isotypes of IgG with
varying affinity and can transmit activating or inhibitory signals
to the cells (71). Attachment of DENV-antibody complexes to
ectopically expressed FcγRI (CD64) (72) and FcγRIIA (CD32)
(73) in fibroblast cell lines mediated ADE, independently of FcγR-
signaling. DENV2 infection in primary human monocytes was
increased 50-fold in the presence of enhancing DENV-immune
human serum and depended on binding of antibody-virus com-
plexes to FcγRI or FcγRIIA (68). Consistent with these data,
blocking of FcγRIIA, but not of FcγRIIB, abrogated ADE of
mature moDCs (51). Although mature and immature moDCs
express similar levels of FcγRIIA, only mature moDCs sustain
antibody-enhanced DENV infection because immature moDCs
express high levels of DC-SIGN and thus do not require FcγR for
DENV attachment or entry (51). Inflammation may lead to acti-
vation and differentiation of monocytes and moDCs, as well as
altered expression of FcγRs and DC-SIGN, which modulates ADE
of DENV infection in a cell-type specific manner.

Different classes of FcγRs transmit activating or inhibitory sig-
nals and play different roles during ADE. Although activating
FcγRIIA and inhibitory FcγRIIB similarly bind DENV-antibody
complexes, only FcγRIIA mediates enhanced DENV infection
(74). In contrast to activating FcγRs, the inhibitory FcγRIIB may
help prevent ADE. DENV-antibody aggregates cross-linked the
inhibitory low-affinity FcγRIIB, which inhibited the phagocytosis
and infection that would have occurred through activating FcγRs
(75). This study showed evidence that the size of antibody-DENV
aggregates may contribute to the neutralizing versus enhancing
capacity of DENV-immune sera. More detailed studies on the
expression of activating and inhibitory FcγRs are needed to under-
stand the neutralization or enhancement of DENV infection of
diverse cell subsets in different tissues. Along with greater infec-
tion in vitro, ADE may contribute to severe dengue disease in
humans. Secondary DENV infection with a heterologous serotype
is associated with an increased risk of DHF/DSS (76–79). Consis-
tent with a possible role for ADE in vivo, polymorphisms in FcγR
genes affect binding affinities for IgG subclasses and may influence
the susceptibility to severe disease. Homozygotes for the arginine
variant at position 131 (R/R131) of the FcRIIA gene, who have
less capacity to opsonize IgG2 antibodies, showed reduced risk of

developing DHF (80, 81). In contrast, the histidine variant H/H131
of FcRIIA was associated with an increased risk of developing DHF
(81). Binding affinity of FcγRs to DENV-antibody complexes and
the ratio of activating and inhibitory receptors likely determine
DENV infection and disease outcome in the setting of pre-existing
anti-DENV antibody.

Animal models also have been used to study ADE in vivo. AG129
mice develop mild disease after intravenous or intradermal inocu-
lation with DENV2 in the absence of pre-existing antibody and
lethal disease after passive transfer of subneutralizing levels of
DENV-immune mouse or human serum prior to infection with
otherwise sublethal doses of DENV (53, 82–84). The vascular leak-
age syndrome that develops in DENV-infected AG129 mice during
ADE is similar to that observed after high-dose lethal DENV infec-
tion and recapitulates many features of severe dengue disease in
humans (40, 44). Monoclonal antibodies directed against DENV
protein E or prM can mediate ADE in vitro and in vivo (82,
83, 85). Addition of antibodies that block FcγR binding, F(ab)’2
fragments that lack the Fc domain, or recombinant monoclonal
antibodies that lack the ability to bind FcγR all prevented ADE
(82, 83). DENV-specific monoclonal antibodies with modified
Fc domains that do not mediate ADE show therapeutic potential
in vivo (85–87).

Mouse models have helped to define possible cellular targets
for antibody-enhanced DENV infection. While the same cell types
become DENV infected in the presence or absence of enhanc-
ing antibodies, DENV infection increases during ADE (82). In
addition, MHC II+ cells in the intestinal lamina propria and sinu-
soidal endothelial cells in the liver of AG129 mice were infected
by DENV mostly in the presence of enhancing concentrations of
antibody (83). More detailed studies using human cells in vitro,
clinical samples, and animal models are needed to clarify how cel-
lular activation and differentiation modulate FcγR expression and
impacts DENV infection and pathogenesis.

INNATE FUNCTION OF DENDRITIC CELLS AND EVASION BY
DENV
As first line of defense against virus infection, host cells recognize
PAMPs (e.g., viral nucleic acids) and induce cell-intrinsic and cell-
extrinsic innate immune responses. DENV infection stimulates
responses via TLR7, TLR3, MDA5, and RIG-I (88–90) and induces
the secretion of IFN-α/β that renders other host cells resistant to
subsequent DENV infection (91, 92).

Plasmacytoid DCs recognize DENV via TLR7 in endocytic vesi-
cles (61, 89), become activated, produce high amounts of IFN-α
(93, 94), and may thus limit DENV replication. Further, pDCs
sense DENV-infected cells by direct cell-to-cell contact, and imma-
ture DENV particles containing uncleaved prM were found to
trigger higher IFN responses in pDCs compared to mature par-
ticles (95). Nevertheless, DENV does not infect human pDCs
efficiently in vitro, and IFN-α production in pDCs appears inde-
pendent of active viral replication within pDCs (61). This suggests
that pDCs combat DENV without being susceptible to infection or
to immune evasion mediated via cytosolic viral proteins. Because
DENV cannot infect pDCs productively, its proteins cannot block
the production of pDC-derived IFN-α that promotes transcrip-
tion of IFN-stimulated genes (ISGs), which induce an antiviral
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state in neighboring cells. Patients with non-severe DF produced
high levels of IFN-α in the serum (93, 96) and had an increased
frequency of circulating pDCs compared to steady state (94). In
contrast, numbers of pDCs declined early (day 3 or 4 of illness)
in the blood of children who subsequently developed DHF (94)
and,correspondingly, accumulated less in severe compared to non-
severe adult cases (93). Furthermore, serum of patients with severe
dengue contained less IFN-α than patients with non-severe mani-
festations (96). Consistent with this observation, peripheral blood
mononuclear cells of patients that subsequently developed DSS
expressed fewer transcripts of a set of ISGs than patients with mild
disease (97, 98). Overall, pDCs protect against DENV pathogene-
sis by producing high amounts of IFN-α that prevent infection of
additional target cells.

Dengue virus actively blocks the production and action of IFN-
α/β in cell types that are susceptible to infection. The DENV
non-structural protein NS2B/3 cleaves the human protein STING
(also known as MITA) (99, 100), which is a key adaptor molecule
in the cellular response to virus infection and in establishing the
basal set-point of IRF3 signaling and IFN-α/β production (101).
DENV NS5 protein induces targeted degradation of STAT2 via the
proteasome (102–105) and NS4B blocks STAT1 activation (102,
106) and thus inhibits IFN-α/β and likely IFN-γ and IFN-λ recep-
tor signaling in DENV-infected cells. However, non-infected cells
remain capable of IFN production and IFNAR signaling, which
may induce resistance to subsequent DENV infection. Indeed, pre-
treatment of cells with IFN-α/β or IFN-γ prevents DENV infection
(107–109).

Antibody-enhanced DENV infection also is believed to con-
tribute to the evasion of the innate immune response through a
mechanism termed “intrinsic ADE” (110). A monocytic cell line,
THP-1, showed decreased production of inflammatory cytokines
and mediators, such as IL-12, IFN-γ, TNFα, and nitric oxide radi-
cals when they were infected with DENV in the presence but not in
the absence of enhancing antibodies (111). Similarly, ADE infec-
tion suppressed TLR-mediated signals and the secretion of IFN-β,
but increased the production of anti-inflammatory cytokines, such
as IL-10, compared to DENV infection without antibodies (112).
These effects depended on FcγR binding because antibodies block-
ing FcγRI or FcγRIIA restored IFN-β production (112). These
findings were unexpected because activating FcγR signals should
induce expression of ISGs and thus block DENV replication.
Recent studies showed that the leukocyte immunoglobulin-like
receptor-B1 binds DENV-antibody aggregates and blocks acti-
vating FcγR signals, which enabled DENV to evade the early
antiviral response during ADE (113). These results suggest that
antibody-mediated DENV entry also triggers intracellular signals
that suppress innate responses in infected cells to increase viral
production. This “intrinsic ADE” is complemented by “extrinsic
ADE,” which refers to the enhanced FcγR-mediated binding and
uptake of DENV described above.

PRIMING AND EVASION OF ADAPTIVE IMMUNE RESPONSES
Dendritic cells link innate and adaptive immune responses by
integrating innate signals from PAMPs with pathogen-derived
antigens to induce antigen-specific T-cell and B-cell responses.
DCs achieve this by (a) taking up and processing antigen and

presenting antigen-derived peptides on MHC I to CD8+ T-cells
or on MHC II to CD4+ T-cells; (b) expressing co-stimulatory
molecules that activate T-cells; and (c) secreting chemokines and
cytokines that attract T-cells and modulate the priming T-cell
effector functions.

Because DC survival is required for optimal T-cell activation,
DENV-induced apoptosis of DCs could antagonize the priming of
immune responses. Bulk culture studies observed increased sur-
vival of moDCs (50, 114) and monocytes (115) after exposure to
DENV. However, intracellular staining studies revealed a higher
fraction of Annexin V+ apoptotic cells in those co-staining for
DENV E protein (116). These results suggest that DENV induces
apoptosis in infected cells, but increases survival in non-infected
bystander cells. The impact of cell survival on the number of
antigen-presenting cells and priming of DENV-specific adaptive
immune responses warrants further study.

Pathogen recognition leads to DC maturation, which is char-
acterized by increased expression of MHC II and co-stimulatory
markers required for efficient priming of T-cell responses (117).
After exposure to DENV, non-infected bystander moDCs upreg-
ulate MHC I and II molecules, as well as co-stimulatory mol-
ecules CD80 (B7-1), CD83, and CD86 (B7-2), although DENV
blocks activation and maturation of infected moDCs within the
same cultures (59, 116) (Figure 2A). Intracellular staining for
DENV proteins revealed a block in activation of DENV-infected
moDCs that was not observed in bulk culture (50, 59). Similarly,
non-infected bystander monocytes, moDCs and cDCs, expressed
higher levels of CD80 and CD86 than DENV-infected cells in
the dermis of intradermally infected Ifnar−/− mice (53). In addi-
tion, DCs produce cytokines and chemokines to modulate T-cell
responses. DENV-exposed moDCs (50, 59, 116) or cDCs (61), pro-
duce IL-6, IL-10, TNFα, and IFN-α. Furthermore, DENV-exposed
moDCs secrete CXCL9, CXCL10, and CXCL11 (118) that bind
the chemokine receptor CXCR3 and could attract effector and
memory T-cells. However, it remains unclear whether it is the
DENV-infected or non-infected DCs that produce these inflam-
matory mediators. Together, these data suggest that DENV blocks
activation in infected DCs, which may decrease the priming of
CD4+ or CD8+ T-cells, whereas non-infected bystander cells still
can become activated.

Mixed lymphocyte reactions (MLR) are a functional read-out
for DC–T-cell interactions, in which DCs from MHC mismatched
donors activate allogeneic T-cells. DENV infection decreased the
capacity of moDCs (116, 119) as well as DCs isolated from human
skin explants (65) to stimulate proliferation of DENV-naïve CD4+

T-cells in MLRs in vitro, suggesting that DENV-infected DCs
are less capable of activating CD4+ T-cells (Figure 2B). Others
have reported that DENV-infected cultures of moDCs can prime
CD4+ T-cells, but with decreased T-cell effector functions, such as
secretion of IFN-γ or TNFα (109). The impaired ability of DENV-
infected moDCs to produce IFN-α and IFN-β may explain the
decreased ability to prime T-cell responses (120). Although these
surrogate MLR assays are interesting, little information exists as
to how DCs prime DENV-specific T-cells. Non-infected moDCs
that were pulsed with DENV E protein efficiently activated CD4+

or CD8+ CD45RO+ memory T-cells from DENV-immune but
not from naïve individuals to produce IFN-γ (121). More study
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FIGURE 2 | DENV infection impairs DC activation and priming of
adaptiveT-cell responses. (A) Maturation of human moDCs is inhibited by
DENV infection, due to DENV non-structural proteins blocking induction and
intracellular signaling of IFN-α/β. However, non-infected bystander DCs
respond to PAMPs and/or cytokines associated with DENV infection and
upregulate MHC class I and II molecules, co-stimulatory molecules, and the
expression of inflammatory cytokines and chemokines. (B) Mature,
bystander DCs efficiently prime adaptive T-cell responses, whereas
DENV-infected DCs prime naïve T-cells less efficiently. (C) Activated T-cells
display CD40L on their surface or secrete CD40L that acts on
DENV-infected DCs and can restore DC maturation and function. Purple
denotes DENV infection, while orange denotes inflammation/cell activation.

is needed to determine the capacity of DCs to prime DENV-
specific naïve T-cells or to reactivate memory T-cells during re-
exposure. Rapid progress should be possible given the publication
of large numbers of HLA-restricted immunodominant DENV
antigens (29, 31).

Also, activated T-cells can support the maturation of DCs. An
initial study showed that co-culture of moDCs with a CD40L-
transfected cell line restored the ability of DENV-infected moDCs
to induce MLR responses (114) (Figure 2C). Subsequent work

demonstrated that co-culture of activated T-cells with DENV-
infected moDCs rescued the otherwise suppressed MLR response,
and the activation of non-infected bystander moDCs depended
on TNFα and IFN-α/β (118). Consequently, stimulation of the
adaptive response to DENV infection requires signals from both
cells in DC–T-cell interactions, likely via cell-to-cell contact. In
clinical studies, gene expression analysis of acute dengue patients
revealed that DHF cases expressed lower levels of genes linked to
antigen processing, presentation, and T-cell activation compared
to DF patients (122). Thus, impaired antigen presentation and
functionality of DENV-infected DCs may reflect a viral immune
escape strategy to dampen T-cell responses and impact disease
severity.

To date, mostly in vitro-generated human moDCs have been
used to study the role of DCs in inducing innate or adaptive
immune responses during DENV infection. Nevertheless, diverse
subsets of cDCs in lymphoid or non-lymphoid tissues execute
specialized functions in presenting antigen and inducing CD4+ or
CD8+ T-cell responses (123, 124). Expanding previous findings
using human cDC subsets directly isolated from blood or tissues
will be important to characterize the full spectrum of immune
responses to DENV infection.

CONCLUDING REMARKS
Dengue virus infects the same cells (DCs, monocytes, and MΦs)
that are essential for inducing and maintaining optimal innate
and adaptive immune responses. This tropism of DENV appears
to impair DC function, which may undermine the priming of
DENV-specific memory responses. Is it possible to block DENV
replication in DCs to reduce viral load and restore DC function,
which could impact the generation of neutralizing or potentially
harmful memory B- and T-cell responses? Can we as a field harness
the knowledge gained about DC biology during DENV infection
to prevent human disease? Can DC function be optimized in the
context of live-attenuated DENV vaccines to stimulate protective
immunity?

Significant progress has been made on characterizing DENV
infection and activation of DCs, as well as protective or enhancing
T-cell and B-cell responses. Nevertheless, early events after DENV
transmission in the skin require further study, including a greater
understanding of early virus replication, local immune responses
at the site of transmission (i.e., the skin), and immunomodula-
tory effects of mosquito saliva. Further effort should focus on how
responses of DCs impact disease outcome in an acute infection and
prime immunological memory responses that will affect dengue
pathogenesis and disease severity in secondary DENV infec-
tions. A collaborative effort using a multi-disciplinary approach
among experts in dengue virology, medicine, vector biology, and
immunology is called for to reach these goals.
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