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Abstract

Although scRNA-seq is now ubiquitously adopted in studies of intratumor heterogeneity, detection of somatic

mutations and inference of clonal membership from scRNA-seq is currently unreliable. We propose DENDRO, an

analysis method for scRNA-seq data that clusters single cells into genetically distinct subclones and reconstructs the

phylogenetic tree relating the subclones. DENDRO utilizes transcribed point mutations and accounts for technical

noise and expression stochasticity. We benchmark DENDRO and demonstrate its application on simulation data and

real data from three cancer types. In particular, on a mouse melanoma model in response to immunotherapy,

DENDRO delineates the role of neoantigens in treatment response.

Keywords: Single-cell RNA sequencing, Intratumor heterogeneity, Cancer genomics, Phylogeny inference, Multi-

omics analysis

Background
DNA alterations, especially single nucleotide alteration

(SNA), and epigenetic modulation both contribute to intra-

tumor heterogeneity [1], which mediates tumor initiation,

progression, metastasis, and relapse [2, 3]. Intratumor gen-

etic and transcriptomic variation underlie patients’ re-

sponse to treatment, as natural selection can lead to the

emergence of subclones that are drug resistant [4]. Thus,

identifying subclonal DNA alterations and assessing their

impact on intratumor transcriptional dynamics can eluci-

date the mechanisms of tumor evolution and, further,

uncover potential targets for therapy. To characterize intra-

tumor genetic heterogeneity, most prior studies have used

bulk tumor DNA sequencing [5–12], but these approaches

have limited resolution and power [13].

Breakthroughs in single-cell genomics promise to re-

shape cancer research by allowing comprehensive cell type

classification and rare subclone identification. For ex-

ample, in breast cancer, single-cell DNA sequencing

(scDNA-seq) was used to distinguish normal cells from

malignant cells, the latter of which were further classified

into subclones [14–16]. For the profiling of intratumor

transcriptional heterogeneity, single-cell RNA sequencing

(scRNA-seq), such as Smart-seq2 [17], Drop-seq [18], and

10X Genomics Chromium™, is now ubiquitously adopted

in ongoing and planned cancer studies. ScRNA-seq

studies have already led to novel insights into cancer

progression and metastasis, as well as into tumor progno-

sis and treatment response, especially response variability

in immune checkpoint blockade (ICB) [19–26].

Characterization of intratumor genetic heterogeneity and

identification of subclones using scRNA-seq is challen-

ging, as SNAs derived from scRNA-seq reads are ex-

tremely noisy and most studies have relied on the

detection of chromosome-level copy number aberrations

through smoothed gene expression profiles. Yet, as intra-

tumor transcriptomic variation is partially driven by intra-

tumor genetic variation, the classification of cells into

subclones and the characterization of each subclone’s gen-

etic alterations should ideally be an integral step in any

scRNA-seq analysis.

The appeal of subclone identification in scRNA-seq data

is compounded by the shortage of technology for sequen-

cing the DNA and RNA molecules in the same cell with

acceptable accuracy, throughput, and cost [27–30].

Although one can apply both scDNA-seq and scRNA-seq
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to a given cell population, the mutation analysis and RNA

quantification cannot be conducted in the same set of

cells. Although there are now technologies for deep

targeted sequencing of select transcripts matched with

same-cell whole transcriptome sequencing [31, 32], these

methods are still, in effect, profiling DNA-level variation

by sequencing expressed transcripts, and are thus subject

to the technical issues, especially dropout due to transcrip-

tional stochasticity.

Subclone detection using scRNA-seq is difficult mainly

because only a small portion of the SNAs of each cell is

expected to be seen in the read output of scRNA-seq.

This is because to be sequenced, an SNA needs to fall in

a transcribed region of the genome, at a location within

the transcript that will eventually be read by the chosen

sequencing protocol. Even for SNAs that satisfy these re-

quirements, the mutated allele is often missing in the

read output due to dropout, especially in the heterozy-

gous case. This is due, in part, to the bursty nature of

gene transcription in single cells [33–35], where in any

given cell, a substantial fraction of the genes are only

expressed from one of the alleles. Thus, an SNA residing

in a gene that is expressed at the bulk tissue level may

not be observed in a particular cell, simply because the

mutated allele, by chance, is not expressed in the given

cell. We refer to alleles that are not captured due to ex-

pression stochasticity as biological dropouts. Even for a

mutated allele that is expressed, it has to be successfully

converted to cDNA and then sequenced to be repre-

sented in the final read output; we refer to alleles lost

due to technical reasons as technical dropouts. In

addition to dropout events, post-transcriptional modifi-

cation, such as RNA editing, and sequencing errors im-

pede both the sensitivity and the specificity of SNA

discovery. As a result, methods developed for single-cell

SNA detection using scDNA-seq, such as Monovar [36],

as well as methods designed for SNA detection in bulk

DNA or RNA sequencing data do not yield accurate re-

sults in the scRNA-seq setting [37–42].

Here we present a new statistical and computational

framework—DNA based EvolutionNary tree preDiction

by scRNA-seq technOlogy (DENDRO)—that recon-

structs the phylogenetic tree for cells sequenced by

scRNA-seq based on genetic divergence calculated from

DNA-level mutations. DENDRO assigns each cell to a

leaf in the tree representing a subclone and, for each

subclone, infers its mutation profile. DENDRO can de-

tect genetically divergent subclones by addressing chal-

lenges unique to scRNA-seq, including transcriptional

variation and technical noise. A DENDRO clustering of

scRNA-seq data allows joint genetic and transcriptomic

analysis on the same set of cells.

We evaluate DENDRO against existing approaches,

through simulation data sets and a metastasized renal

cell carcinoma dataset with known subpopulation labels,

and show that DENDRO improved the accuracy of sub-

clone detection. We then demonstrate the DENDRO to

biological discovery through two applications. The first

application profiles the treatment response in a melan-

oma model to immune checkpoint blockade therapy.

DENDRO identified a subclone that contracted consist-

ently in response to ICB therapy, and revealed that the

contraction was driven by the high mutation burden and

increased availability of predicted neoantigens. Tran-

scriptional divergence between the subclones in this

model was very weak, and thus, the neoantigen-driven

subclonal dynamics would not have been detected with-

out extracting DNA-level information. In the second ap-

plication to a breast tumor dataset, DENDRO detected

subclones and allowed for the joint characterization of

transcriptomic and genetic divergence between cells in

lymph node metastasis and cells in primary resections.

The DENDRO package, implemented in R, is available

at https://github.com/zhouzilu/DENDRO, where we also

provide a power calculation toolkit, DENDROplan, to

aid in the design of scRNA-seq experiments for subclo-

nal mutation analysis using DENDRO.

Results
Method overview

Overview of the DENDRO model and pipeline

Figure 1a shows an overview of DENDRO’s analysis

pipeline. Per cell counts of total read coverage (N

matrix) and mutation allele read coverage (X matrix) at

SNA locations are extracted after read alignment and

SNA detection (details in the “Methods” section, Add-

itional file 1: Figure S1). Based on these matrices, DEN-

DRO then computes a cell-to-cell genetic divergence

matrix, where entry (c, c’) of the matrix is a measure of

the genetic divergence between cells c and c’. Details of

this genetic divergence evaluation will be given in the

next section. DENDRO then clusters the cells into gen-

etically distinct subclones based on this pairwise diver-

gence matrix and selects the number of subclones based

on inspection of the intra-cluster divergence curve.

Reads from the same subclone are then pooled together,

and the SNA profile for each subclone is re-estimated

based on the pooled reads, which improves upon the

previous SNA profiles computed at the single-cell level.

Finally, DENDRO generates a parsimony tree using the

subclone-level mutation profiles to more accurately

reflect the evolutionary relationship between the

subclones.

Genetic divergence evaluation

Due to the high rates of biological and technical drop-

out, SNA detection within each individual cell lacks sen-

sitivity. We also expect low specificity due to the high
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base error rate in scRNA-seq protocols. Thus, simple

distance measures such as the Hamming or Euclidean

distances evaluated on the raw SNA genotype matrix or

the raw allele frequency matrix do not accurately reflect

the genetic divergence between cells.

To more accurately estimate the cell-to-cell genetic

divergence, we have developed a statistical model that

accounts for technical dropout, sequencing error, and

expression stochasticity. Consider two cells, c and c’, and

let Ic and Ic′ index the clonal group to which the cells

belong. That is, Ic = Ic′ if cells c and c’ come from the

same subclone and thus share the same SNA profile. Let

Xc = (Xc1,…, Xcm) be the mutation allele read counts for

this cell at the m SNA sites profiled, and Nc = (Nc1,…,

Ncm) be the total read counts at these sites. We define

the genetic divergence between the two cells as

dcc0 ¼ − logP Xc;Xc
0 jN c;N c

0 ; Ic ¼ Ic0
� �

¼
X

m

g¼1

d
g
cc0

where d
g

cc
0 ¼ − logPðXcg ;Xc

0
g jN cg ;N c

0
g ; Ic ¼ Ic0 Þ.

In other words, dcc
0 is the negative log likelihood of the

mutation allele counts of cells c and c′, given the total

read counts and the event that the two cells belong to the

same subclone. If c and c′ have mutations in mismatched

positions, this likelihood for Xc, Xc′ conditioned on Ic
¼ Ic0 would be small, giving a large value for dcc

0 . By the

assumption of independence between sites, dcc
0 is the

sum of d
g

cc
0 , where d

g

cc
0 is the contribution of mutation site

g to the divergence measure. In characterizing the condi-

tional distribution for Xcg and Xc
0
g , we use a beta-binomial

distribution to model expression stochasticity and a

Fig. 1 DENDRO analysis pipeline and genetic divergence evaluation. a DENDRO analysis pipeline overview. b, c Statistical model for genetic

divergence evaluation function. b (top) Cell-level snapshots of the variant allele frequency (VAF) profiles for two genes with underlying

differences in expression dynamics are shown. Gene g is a bursty gene and g′ is a constitutive gene. (bottom) The stochasticity of gene

expression is captured by the VAF distribution across all cells. c Although the observed read counts from two potential cells (c1 and c2) in the

population are identical between the two loci, the genetic divergence computed from gene g is less than that computed from gene g′ due to

differences in transcriptional burstiness. DENDRO accounts for the full distribution of frequency profiles across cells when estimating the genetic

divergence relationship between the two loci of these two cells
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binomial model to capture sequencing errors and rare

RNA editing events. Referring to Fig. 1b, mutations

residing in bursty genes, such as gene g, would tend to

have U-shaped allele frequency distributions and are more

likely to be “dropped” due to low or zero expression. In

contrary, mutations residing in constitutive (non-bursty)

genes, such as gene g′ in Fig. 1b, would have bell-shaped

allele frequency distributions and can be genotyped more

reliably. Thus, even if the read counts for the mutation

loci residing in genes g and g′ are identical across two cells

(c1 and c2 in Fig. 1c), the locus in g′ would contribute a

higher value, compared to the locus in g, to the divergence

between cells c1 and c2. Please see the “Methods” section

for details.

Accuracy assessment

Accuracy assessment by simulation experiment

First, we designed a simulation procedure to assess the

accuracy of DENDRO versus existing approaches and to

make realistic power projections for subclone detection

(Fig. 2a). Since DENDRO is currently the only method

for SNA-based subclone detection using scRNA-seq data

alone, we benchmarked against more straightforward

approaches such as hierarchical clustering based on

mutation allele frequencies and genotypes respectively.

The simulation procedure starts with an assumed evolu-

tionary tree, where the leaves are subclones and muta-

tions can be placed on the branches. In the absence of

prior information, a simple tree structure is used, such

as the one shown in Fig. 2a. Parameters of simulation

are (1) total number of mutations, (2) total number of

cells, (3) the proportion of cells in each clade, (4) the

proportion of mutations along each branch, and (5)

mean read coverage across loci. Some of these parame-

ters can be determined using bulk DNA-seq and/or bulk

RNA-seq data if available (the “Methods” section). Pa-

rameters (1–4) determine the mutation profile matrix

(Fig. 2a). To get the matrix of alternative allele (Xcg) and

total read counts (Ncg) for each mutation loci in each

cell, we overlay a reference scRNA-seq data with allele-

specific read counts onto a designed mutation matrix,

which is generated from the simulated tree (see the

“Methods” section for details). This allows the simulated

datasets to retain the expression stochasticity and

sequencing error of real scRNA-seq data. DENDRO is

then applied to the read count matrices to obtain the

subclone clusters, which is then compared with the

known labels. Accuracy is evaluated by three metrics:

adjusted Rand index, capture rate, and purity (Add-

itional file 2: Supplementary Materials). Such simulation

procedure can also facilitate experiment design, as it

predicts the expected clustering accuracy by DENDRO

given sequencing parameters and available bulk data for

the tumor (see DENDROplan in the “Methods” section).

Using the above framework, we conducted a systematic

evaluation of DENDRO’s subclone detection accuracy on

an example scRNA-seq dataset with allelic information

[43]. The results, compiled in Fig. 2b, show that DENDRO

has better performance than simply clustering on muta-

tion allele frequencies or the directly estimated mutation

profiles from scRNA-seq data. Due to high burstness of

the scRNA-seq dataset and limited sequencing depth, we

found that Z-matrix, on average, underperformed in all

scenario, indicating the necessity of the DENDRO frame-

work. We also quantified how accuracy depends on the

mutation burden, mutation read depth, mutation distribu-

tion, subclone cell proportion, and cell populations

(Additional file 1: Figure S3 and Additional file 2: Supple-

mentary Materials). Even when there are only 100 muta-

tions with relatively low average coverage (read depth

equals to 1), DENDRO can still extract meaningful clus-

tering results (average ARI≈ 0.8). More importantly, vari-

ation in total expression of genes does not influence

DENDRO’s divergence measure. DENDRO shows consist-

ent results in simulation analysis between populations of

single cell type and multiple cell types (Additional file 1:

Figure S3). This is due to DENDRO’s reliance only on the

distribution of the mutation allele frequency conditioned

on the total read coverage, as illustrated by the simulation

study (Additional file 1: Figure S2 and Additional file 2:

Supplementary Materials). The divergence evaluation

reflects solely genetic distance not transcriptomic differ-

ence, allowing for easy interpretation. A more extensive

simulation analysis can be found in the Additional file 2:

Supplementary Materials.

Accuracy assessment on a renal cell carcinoma and its

metastasis

We also benchmarked DENDRO against existing methods

on the renal cell carcinoma dataset from Kim et al. [21]

(Fig. 2c). This dataset contained 116 cells sequenced using

the Smart-seq technology [17], obtained from three

tumors derived from one patient: a patient-derived xeno-

graft (PDX) from the primary renal cell carcinoma (PDX_

pRCC), a biopsy of the metastasis to the lung 1 year after

treatment of primary site (Pt_mRCC), and a PDX of the

lung metastasis renal cell carcinoma (PDX_mRCC) (Add-

itional file 1: Figure S4a). The cells should share common

early driver mutations due to their shared origin from the

same patient, but the metastasis and the cultivation of

each tumor in separate medium (human or mouse) should

have allowed for the accumulation of new mutations.

Thus, we expect the three tumors to be clonally distinct.

This knowledge allows us to use this dataset to bench-

mark accuracy and to illustrate how DENDRO enables

joint analysis of the genetic and transcriptomic heterogen-

eity at single-cell resolution.
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Fig. 2 DENDRO accuracy assessment. a The overall simulation analysis pipeline. Mutation matrix (cell-by-loci) is generated according to a

simulated evolutionary tree, where the leaves are subclones and mutations can be placed on the branches. Matrices of alternative allele (Xcg) and

total read counts (Ncg) are sampled from a scRNA-seq dataset with known transcriptomic allele-specific read counts. DENDRO cluster is further

applied, and its performance is assessed by adjusted Rand index (global accuracy), capture rate (subclone-specific sensitivity), and purity

(subclone-specific precision). See Additional file 2: Supplementary Materials for detailed definition. Gray dashed line indicates optional input for

DENDROplan, where bulk DNA-seq and bulk RNA-seq can guide the tree simulation and read count sampling procedure. b Cluster accuracy via

simulation studies. Various parameters show effects on cluster accuracy (measured by adjusted Rand index) based on tree structure on the most

right. Left panel: effect of mutation burden on fixed read depth. Right panel: effect of read depth on fixed mutation burden. c Evaluation of

DENDRO on a renal cell carcinoma and its metastasis. (Left to right) (1) DENDRO clustering result from primary and metastatic renal cell

carcinoma dataset. Background colors represent DEDRO clustering result. (2) Clustering of the same dataset using Z matrix (indicator matrix, Zij = 1

when detected a mutation for cell i at locus j by GATK tool). (3) Clustering of the same dataset using X
N
matrix (mutation allele frequency matrix).

(4) Clustering of the same dataset using expression (log(TPM + 1))
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We compared four different clustering methods: (1)

DENDRO, (2) hierarchical clustering based on the pri-

mary genotype matrix Z generated by GATK (Zcg = 1

when a mutation g is detected for cell c, Zcg = 0 other-

wise), (3) hierarchical clustering based on the X
N

matrix

that preserve the variant allele frequency information,

and (4) hierarchical clustering based on gene expression

(logTPM). DENDRO gives the cleanest separation be-

tween the three populations with adjusted Rand Index of

0.932 (1.0 indicates perfect clustering, Fig. 2c panel 1), as

compared to 0.754 for Z matrix (Fig. 2c panel 2), 0.519

for X
N

matrix (Fig. 2c panel 3), and 0.489 for expression

(Fig. 2c panel 4). Inspection of the tree shows that, as ex-

pected, divergence between primary tumor and metasta-

sis exceeds divergence between patient sample and PDX

sample, as PDX_mRCC clusters with Pt_mRCC rather

than PDX_pRCC. All of the other three methods suc-

cessfully separated the primary sample from the meta-

static samples, but could not differentiate between the

two metastasis samples.

For DENDRO, the intra-cluster divergence curve flat-

tened at 3, and thus, we stopped splitting at 3 clusters

(Additional file 1: Figure S4e and the “Methods”

section). We annotated the clusters as PDX_mRCC,

PDX_pRCC and Pt_mRCC by their cell compositions

(Additional file 3: Table S3a). DENDRO found minimal

sharing of subclones among the tumors derived from

three sources and low genetic heterogeneity within each

tumor. This is unsurprising since relapsed metastasis

consists of cells that have already undergone selection,

and since the PDX tumors are each seeded by a small

subsample of cells from the original tumor, each tumor

consists of unique subclones not detected in other sites

[44–46]. Additional joint analysis of transcriptome and

DNA mutations can be found in Additional file 2: Sup-

plementary Materials and Addtional file 4: Table S4.

DENDRO analysis of the melanoma model in response to

immune checkpoint blockade highlights the role of

neoantigens

Immune checkpoint blockade (ICB) of the inhibitory re-

ceptors CTLA4 and PD1 can result in durable responses

in multiple cancer types [47]. Features intrinsic to cancer

cells that can impact ICB treatment outcome include

their repertoire of neoantigens [48], tumor mutational

burden (TMB) [49], and expression of PDL1 [50]. DEN-

DRO analysis of scRNA-seq data allows joint DNA-RNA

analysis of single cells, thus enabling the simultaneous

quantification of tumor mutational burden, the predic-

tion of neoantigen repertoire, and the characterization of

gene expression profile at subclonal resolution. Thus, to

demonstrate the power of DENDRO and to better

understand the relationship between ICB response and

intratumor heterogeneity, we profiled the single-cell

transcriptomes across three conditions derived from two

melanoma cell lines (Fig. 3a): B16 melanoma cell line,

which has shown modest initial response to ICB treat-

ment but eventually grows out, and Res 499 melanoma

cell line (R499), which was derived from a relapsed B16

tumor after combined treatment of radiation and anti-

CTLA4 and is fully resistant to ICB [51]. B16 was evalu-

ated with and without anti-PD1 treatment, as we wanted

a tumor model that captures a transient ICB response. A

total of 600 tumor cells were sequenced with Smart-seq

technology from six mice across three conditions: two

mice with B16 without treatment (B16), two mice with

B16 after anti-PD1 treatment (B16PD1), and two mice

with R499 without treatment (R499) (Fig. 3a and the

“Methods” section). The existence of multiple subclones

in B16 and R499 was suggested by bulk WES analysis

[51, 52]. Our goal here is to determine whether the sub-

clones differ in anti-PD1 response, and if so, what are

the subclonal differences.

A DENDRO analysis of 4059 putative mutation sites

across 460 cells retained after QC (see the “Methods” sec-

tion and Additional file 1: Figure S9a, b, c) yields the clus-

tering displayed in Fig. 3b, with four subclones suggested

by the intra-cluster divergence curve (Additional file 1:

Figure S9d). All subclones are shared among the three

conditions, which is not unexpected given that all tumor

cells were derived from the same parental cell line. How-

ever, the subclonal proportions vary significantly between

conditions (Fig. 3b). The subclonal proportions of

B16PD1 are approximately intermediate between that of

B16 and R499 (Fig. 3c). This is expected as R499 had gone

through immune editing whereas B16PD1, at the time of

harvest, was still undergoing immune editing and was at

the transient response state. Furthermore, the selective

pressure of radiation plus anti-CTLA4 is likely more than

that of anti-PD1 treatment, as the former but not the lat-

ter results in complete responses in our B16 model [51].

The frequency of Clone 2 is lower in B16PD1 and R499,

indicating sensitivity to anti-PD1 treatment, while the

frequencies of Clone 3 and Clone 4 increase after treat-

ment and are the highest in R499, indicating resistance to

therapy (Fig. 3c, S10a).

To explore why subclones vary in sensitivity to anti-

PD1 treatment, we compared the mutation profile of

Clone 2 to the other subclones. We pooled cells in each

of the four subclones and re-estimated their mutation

profiles, which were then used to construct a phylogen-

etic tree (Fig. 3d). The phylogeny suggests that Clone 3

and Clone 4 are genetically closer to each other than to

Clone 2, and thus, their similarity in treatment response

may be in part due to similarity in their mutation pro-

files. The re-estimated mutation profiles show that

Clone 2 has the highest tumor mutation burden, which
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has been associated with increased likelihood of ICB re-

sponse [53, 54]. We then predicted the quantity of high-

affinity (≤ 100 nm) neoantigens in each subclone given

its mutation profile [52]. As shown in Fig. 3e, Clone 2

has twice as many high-affinity neoantigens as the other

three subclones. The high level of neoantigens can lead

to better T cell recognition, resulting in increased effi-

cacy of anti-PD1 treatment [55].

Analysis of gene expression, on the other hand, did

not yield detectable known signatures associated with

anti-PD1 treatment sensitivity. Projections based on the

expression of highly variable genes, as shown in PCA

and t-SNE plots (Additional file 1: Figure S8), did not

yield meaningful clusters. Differential expression analysis

between each subclone and the other subclones found

few genes with adjusted P value < 0.05, indicating similar

expression across subclones that is concordant with the

lack of structure in the expression PCA and t-SNE plots.

Expressions of Pdl1 (aka. Cd274) showed no differences

between subclones (KS-test: P value > 0.42, Add-

itional file 1: Figure S10b). In addition, there were no de-

tectable chromosome-level differences in smoothed gene

expression, indicating that there are no large CNV

events that distinguish the subclones (Additional file 1:

Figure S11). DENDRO, detecting exonic mutations from

scRNA-seq data, enabled the finding of subclones in this

data, the prediction of neoantigen load of each subclone,

and the analysis of subclonal dynamics due to treatment.

Our analysis suggests that the genetic heterogeneity, ra-

ther than transcriptomic heterogeneity, contributes to

treatment efficacy in this tumor model.

Simultaneous analysis of genetic and transcriptomic

variation in single-cell breast cancer

We next applied DENDRO to the analysis of data from

a study of primary and metastasized breast cancer [20].

Fig. 3 Clonal composition alternations with anti-PD1 treatments and cell lines. a Experimental overview. For each condition at day 15, we have

two biological replicates. There are total 600 cells from 6 tumors sequenced. b DENDRO cluster result. No clone is exclusively associated with any

tumor condition. c Frequencies of the subclonal populations in B16, B16PD1, and R499. d Neighbor-joining phylogenetic tree given detected

subclones. e Number of high-affinity neoantigens predicted for each clone. Clone 2 has the highest number of neoantigens
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We focused on tumors from two patients (BC03 and

BC09) that had the most cells sequenced (Additional file 1:

Figure S12 and Additional file 5: Table S5). Patient BC03

had cells sequenced from the primary tumor (here after

BC03P) as well as cells from regional metastatic lymph

nodes (here after BC03LN), whereas patient BC09 had

cells sequenced only from the primary resection. One

hundred thirty-two single-cell transcriptomes were

profiled by Smart-seq protocol [17]. We first assess

whether DENDRO separated BC03 cells from BC09 cells,

since inter-individual genetic distances should far exceed

intra-individual genetic distances owning to the random-

ness of passenger mutations [19, 22, 56]. Then, we exam-

ine the transcriptomic and genetic heterogeneity within

each tumor.

GATK [57] detected a total of 2,364,823 mutation

sites across the 132 cells; 353,647 passed QC (the

“Methods” section) and were retained for downstream

analysis (Additional file 1: Figure S12a, b, c). Figure 4

shows the clustering determined by DENDRO. DEN-

DRO separates BC09 cells from BC03 cells with 100%

accuracy (Fig. 4a). The intra-cluster divergence curve

flattened at five subclones: three subclones for BC03

and two for BC09 (Fig. 4a, Additional file 1: Figure

S12d and Additional file 3: Table S3b). Within BC03,

Clone Mix_1 and Clone Mix_2 contained a mixture of

cells from the primary tumor and lymph nodes, and

Clone LN_1 contained mostly cells from the lymph

nodes. This suggests that tumor cells that have metas-

tasized to the lymph nodes belong to an intermediate

stage and are genetically heterogeneous, with some cells

remaining genetically similar to the primary population

and others acquiring new genetic mutations, coherent

with previous studies [58, 59]. In comparison, hierarch-

ical clustering based on expression (using log

transcripts-per-million values) did not separate BC03

from BC09 and gave a negative adjusted Rand index

within BC03, indicating effectively random assignment

of cells to the two patients (Fig. 4).

We then pooled cells within each of the 5 clusters and

re-estimated their mutation profiles with DENDRO. We

defined a variant as subclonal if it was not present in all

of the subclones within a tumor. Based on detection

marginal likelihood, we picked the top 10,000 most

confident variants to construct a phylogenetic tree

(Fig. 4c). As expected, the two BC09 clusters are far

from the three BC03 clusters. Within BC03, the length

of the branches shows that the subclone containing

mostly cells from lymph nodes (labeled BC03LN_1) is

genetically more similar to Clone Mix_2 compared to

Clone Mix_1 (Fig. 4c). In addition, window-smoothed

expression plot with cells grouped by DENDRO cluster-

ing shows broad chromosome-level shifts in expression

patterns between subclones, most likely due to copy

number aberrations that are consistent with SNAs

(Additional file 1: Figure S13) [22].

A comparison of the transcriptomes of the subclones

revealed substantial differences in the expression of

PAM50 genes, which are prognostic markers for breast

cancer (Fig. 4d) [60]. DENDRO detected one rare sub-

clone, BC09_2, with only six cells (< 5% of the total

number of cells) which had a strong basal-like signature.

Interestingly, in BC03, Clone LN_1 has the TNBC/basal-

like subtype with an invasive gene signature, while Clone

Mix_2 has the ESR1+ subtype. Thus, the genetic diver-

gence of Clone LN_1 from Clone Mix_2 is accompanied

by its acquisition of an invasive metastatic expression

signature. In a direct comparison between cells from the

primary site and cells from the lymph node without

distinguishing subclones, these expression differences

would be much weaker since the subclones do not

cleanly separate by site. Compared with the original ana-

lysis that assigned each tumor to one specific breast can-

cer subtype, this analysis identifies subclones with

different expression phenotypes, potentially allowing for

better therapy design that targets all subclone pheno-

types to reduce the risk of tumor relapse.

Existing scRNA-seq studies of cancer tissue cluster cells

based on total gene expression or copy number profiles

derived from smoothed total expression, making it diffi-

cult to separate the effects of subclonal copy number

aberrations from transcriptomic variation [19, 22, 24].

Differential expression analysis based on clusters derived

from total expression is prone to self-fulfilling prophecy,

as there would indeed be differentially expressed genes

because this is the clustering criteria. Because DENDRO’s

subclone identification is based solely on genetic diver-

gence, and not on expression profile, the downstream

differential gene expression analysis can be precisely at-

tributed to transcriptional divergence between subclones.

Hence, we conducted a transcriptome-wide search for

pathways that have differential expression between sub-

clones (the “Methods” section and Additional file 6:

Table S6), and assessed their overlap with pathways that

are differentially mutated between subclones. Focusing

on tumor BC03, pathways for G2M checkpoint and

KRAS signaling are upregulated in lymph node metasta-

sis Clone BC03LN_1, while pathways for estrogen

response and apoptosis are downregulated, indicating a

more invasive phenotype (Additional file 6: Table S6e).

In addition, GAPDH is upregulated in the metastatic

subclone (BC03LN_1) and downregulated in the two

mix-cell subclones, consistent with previous findings

[61, 62] (Additional file 1: Figure S14d). Differentially

expressed genes between other subclone pairs in BC03

are also enriched in estrogen response, apoptosis, and

DNA repair (Additional file 6: Table S6c, d). In parallel,

subclone-specific mutated genes are highly enriched in

Zhou et al. Genome Biology           (2020) 21:10 Page 8 of 15



cancer-related pathways, including MYC target, G2M

checkpoints, and mitotic spindle, and immune-related

pathways, such as interferon response, TNF-a signaling,

and inflammatory response (Additional file 6: Table S6).

Interestingly, few of the differentially mutated genes are

associated with estrogen and androgen responses, sug-

gesting that the differential expression of hormone-

related genes is not mediated directly by genetic muta-

tions in these pathways. This is consistent with the

recent studies that epigenetic alteration, such as histone

acetylation and methylation, regulates hormone receptor

signaling in breast cancer [63–66]. DNA-RNA joint

analysis between other subclones is included in the

Additional file 6: Table S6 and Additional file 1: Figure

S14. Overall, this example illustrates how DENDRO en-

ables the joint assessment of genetic and transcriptomic

contributions to clonal diversity at single-cell resolution.

Discussion
We have described DENDRO, a statistical framework to

reconstruct intratumor DNA-level heterogeneity using

scRNA-seq data. DENDRO starts with mutations de-

tected directly from the scRNA-seq reads, which are very

noisy due to a combination of factors: (1) errors are

Fig. 4 Analysis of scRNA-seq dataset of primary breast cancer. a DENDRO cluster result for primary breast cancer dataset (Chung et al. [20]). b

Hierarchical clustering result for the same dataset based on expression (logTPM) (dash lines indicate cluster boundaries). c Neighbor-joining

phylogenetic tree given detected subclones for breast cancer dataset. d PAM50 gene panel expression shows breast cancer subtypes of

each subclone
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introduced in reverse-transcription, sequencing, and

mapping; (2) low sequencing depth and low molecule

conversion efficiency leading to technical dropouts; and

(3) expression burstiness at the single-cell level leading

to biological dropouts. DENDRO overcomes these

obstacles through the statistical modeling of each com-

ponent. Given noisy mutation profiles and allele-specific

read counts, DENDRO computes a distance between

each pair of cells that quantifies their genetic divergence

after accounting for transcriptional bursting, dropout,

and sequencing error. Then, DENDRO clusters the cells

based on this distance as subclone and re-estimates a

more robust subclone-specific mutation profile by

pooling reads across cells within the same cluster. These

re-estimated mutations profiles are then passed to

downstream mutation analysis and phylogenetic tree

reconstruction.

Importantly, the genetic divergence used by DENDRO

for cell clustering is based solely on allelic expression ra-

tios and do not reflect the difference in total expression

between cells at mutation sites. Thus, DENDRO differs

from, and complements, existing tools that cluster cells

based on total expression. In fact, as shown by simula-

tion analysis, DENDRO clusters the cells based on true

underlining mutation profiles and is robust to changes

in total gene expression. As expected, the numbers of

cells, the depth of sequencing, the actual number of

subclonal mutations, and the phylogenetic tree structure

all influence the power of DENDRO. To aid researchers

in experiment design, we developed DENDROplan,

which predicts DENDRO’s clustering accuracy given

basic experimental parameters and the expected inform-

ative mutation count, which can be obtained from bulk

DNA sequencing.

Ideally, joint sequencing of the DNA and RNA on the

same cells would allow us to relate genomic profiles to

transcriptomic variations. Currently, there is yet no scal-

able technology for doing this. Separately performing

scDNA-seq and scRNA-seq on different batches of cells

within the same tumor would meet the nontrivial chal-

lenge of matching the subclones between the two data

sets. DENDRO takes advantage of the central dogma

and utilizes computational methods to extract genetic

divergence information from noisy mutation calls in

coding regions. Through two case studies, we illustrate

the insights gained from the subclonal mutation and ex-

pression joint analysis that DENDRO enables.

We have demonstrated that proper computational

modeling can excavate the DNA-level heterogeneity in

scRNA-seq data. Yet, there are always limitations in

working with RNA. While rare RNA editing events are

absorbed by the parameter ϵ, DENDRO cannot distin-

guish subclone-specific constituent RNA editing events

from subclone-specific DNA mutations. In the extreme

and unlikely scenario where RNA editing events are

common and pervasive, DENDRO’s cluster would reflect

RNA editing. In such cases, we recommend using

matched bulk DNA-seq of the same tumor to filter the

loci detected in the first step of DENDRO, keeping only

those that are supported by at least one read in the bulk

DNA-seq data. In addition, DENDRO’s analysis is re-

stricted to transcribed regions, as variants are detected

using transcriptomic data, and thus ignores non-coding

mutations which can sometimes be informative for

tumor evolution [67–70].

Tag-based scRNA-seq (10X, Drop-seq, etc.) is now

commonly adopted for cancer sequencing, but we do

not recommend applying DENDRO to this sequencing

design because of two reasons: (1) limited number of

variants can be detected with tag-based methods as they

only profile a small fraction of the transcript (3-prime or

5-prime end); and (2) the sequencing depth of tag-based

methods are critically low (< 0.1X), resulting in unreli-

able variant calling. However, we do anticipate that

emerging technologies, such as long-read full-transcript

scRNA-seq technologies [71] and transcriptome-based

deep targeted sequencing [31, 32] will overcome these

limitations of tag-based scRNA-seq. Given proper ex-

perimental design, we expect that these emerging tech-

nologies will be ideally suited for the joint analysis of

exonic somatic mutations and gene expression.

Conclusions
We have developed DENDRO, a statistical method for

tumor phylogeny inference and clonal classification

using scRNA-seq data. DENDRO accurately infers the

phylogeny relating the cells and assigns each single cell

from the scRNA-seq data set to subclone. DENDRO

allows us to (1) cluster cells based on genetic divergence

while accounting for transcriptional bursting, technical

dropout, and sequencing error, as benchmarked by in

silico mixture and a simulation analysis; (2) characterize

the transcribed mutations for each subclone; and (3)

perform single-cell multi-omics analysis by examining

the relationship between transcriptomic variation and

mutation profile with the same set of cells. We evaluate

the performance of DENDRO through a simulation ana-

lysis and a data set with known subclonal structure. We

further illustrate DENDRO through two case studies. In

the first case study of relationship between intratumor

heterogeneity and ICB treatment response, DENDRO

estimates tumor mutation burden and predicts reper-

toire of high-affinity neoantigens in each subclone from

scRNA-seq. In the second case study on a primary breast

tumor dataset, DENDRO brought forth new insights on

the interplay between intratumor transcriptomic vari-

ation and subclonal divergence.
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Methods
scRNA-seq alignment and SNA calling pipeline

Additional file 1: Figure S1 illustrates the SNA calling

pipeline. Raw scRNA-seq data is aligned by STAR 2-pass

method (default parameters), which accounts for splicing

junctions and achieve higher mapping quality [72]. Tran-

scripts per million (TPM) was quantified using RSEM

(default parameters) [73]. In the next step, raw variant

calling is made using the Haplotype Caller (GATK tool)

on the BAM files after sorting, joining read groups,

removing duplicated reads, removing overhangs into

intronic regions, realigning, and recalibration [74]. Con-

ventionally, there are two methods from GATK tools for

mutation detection: haplotype caller and mutect2. Haplo-

type caller has a RNA-seq setting which handles splice

junctions correctly, but assumes VAF around 50%, while

mutect2 can detect mutations with low VAF but does not

account for splice junction. The reason we select haplo-

type caller instead of mutect2 is that we extract allele read

counts for all cells as long as one of the cells is listed as

carrying the mutation. Thus, as long as one cell has VAF

reaching 50%, this mutation would be detected. Calls with

stand_call_conf greater than 20 and population frequency

greater than 5% but less than 95% were preserved for fur-

ther analysis. Admittedly, such lenient filtering typically

introduces false-positive sites. However, our priority at

this step is to minimize false-negative rate, while the

genetic divergence matrix in the following step robustly

estimates cell population substructure. Both the coverage

of the alternative allele and the total read coverage are

extracted for each site for further analysis.

Data preprocessing and quality control

To ensure robustness of downstream analysis, we filtered

out low-quality cells, variants, and genes. We retained cells

with (1) > 10,000 reads mapped, (2) < 10% mitochondria

gene expression, and (3) > 1000 gene detected; genes with >

5 cells detected (TPM> 0 as detected); and variants with > 2

cells detected by GATK. Original TPM values as defined by

RSEM were added a value of 1 (to avoid zeros) and then

log-transformed for downstream transcriptomic analysis.

Genetic divergence and beta-binomial framework

Consider two cells: c and c’. Let Ic and Ic denote the

clonal group to which the cells belong, i.e., Ic = Ic′ if and

only if cells c and c’ come from the same subclone. We

define the genetic divergence at loci g; by d
g
cc0 :

d
g

cc′
¼ log

PðXcg ;Xc′g jN cg ;N c′gÞ

PðXcg ;Xc′g jN cg ;N c′g ; Ic ¼ Ic′Þ
:

¼ log
PðXcg ;Xc′g jN cg ;N c′g ; Ic ¼ Ic′Þ þ PðXcg ;Xc′g jN cg ;N c′g ; Ic≠Ic′Þ

PðXcg ;Xc′g jN cg ;N c′g ; Ic ¼ Ic′Þ

where Xc = (Xc1,Xc2,…Xcg,…Xcm) are the mutation allele

read counts for cell c and Nc = (Nc1,Nc2,…Ncg,…Ncm) are

the total read counts at these sites. More intuitively, if cells

c and c′ are not from the same clonal group, the probabil-

ity of cells c and c′ from the same cells given data (i.e.,

denominator) has smaller value. Thus, d
g
cc0 is large, indi-

cating bigger divergence between the two cells. With

further derivation (Additional file 2: Supplementary Mate-

rials), d
g
cc0 is a function of the five following probabilities:

d
g
cc0 ¼ f

�

Pg ;P Xcg jN cg ;Zcg ¼ 0
� �

;P Xcg jN cg ;Zcg ¼ 1
� �

;

P Xc
0
g jN c

0
g ;Zc

0
g ¼ 0

� �

;P Xc
0
g jN c

0
g ;Zc

0
g ¼ 1

� �

�

where Zcg ∈ {0, 1} is SNA indicator for cell c at site g and

Pg = P(Zg = 1) is mutation frequency across the cells esti-

mated by GATK calls.

In the above formula for d
g

cc
0 , P(Xcg|Ncg, Zcg = 0) and Pð

Xc
0
g jN c

0
g ;Zc

0
g ¼ 0Þ reflect reverse-transcription/sequen-

cing/mapping errors and rare RNA editing events, because

when there is no mutation (i.e., Zcg ¼ 0;Zc
0
g ¼ 0 ), all

mutation reads reflect such technical errors or RNA

editing. Let ϵ denote the combined rate of technical error

and RNA editing, we have

P Xcg jN cg ;Zcg ¼ 0
� �

� Binomial Xcg jN cg ; ϵ
� �

where ϵ is set to 0.001 based on prior knowledge [75].

For cases where there are mutations (i.e., Zcg = 1), the

distribution of mutated read counts given total read

counts is modeled with a beta-binomial distribution,

which is capable of modeling technical dropout and

transcriptional bursting, and is supported by previous

allele-specific expression studies [34, 76].

P Xcg jN cg ;Zcg ¼ 1
� �

�

Z 1

0

Binomial Xcg jN cg ;Qcg ¼ q
� �

dF qð Þ;

q∼Beta αg ; βg

� �

where Qcg indicates proportion of mutated alleles

expressed in cell c at site g, with beta distribution as

prior. Respectively, αg and βg represent gene activation

and deactivation rate, which are estimated empirically

across cells based on the first and second moment

estimators.

Through optimized vectorization, given a data set of

500 cells with 2500 variants, genetic divergence matrix

can be computed under 2 min in a normal desktop with

16 GB of RAM (single thread). Analytically, the algo-

rithm is of complexity O(N2
∗G), where N is the number

of cells and G is the number of variants.

Kernel-based clustering and optimal cluster assignment

We cluster the cells using a kernel-based algorithm,

such as hierarchical clustering. Given that there are
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multiple sorting schemes, we leave the user to choose

it. For the default-sorting scheme, we recommend

“ward. D” [77]. This is because dcc′ behaves like a log

likelihood ratio, which should follow a χ2 distribution

when the two cells share the same subclone. The “ward.

D” method has been shown to work well in Euclidian

space. Empirically, among different hierarchical cluster-

ing algorithms on the renal cell carcinoma dataset

(Additional file 1: Figure S5), “ward. D”-based hierarch-

ical clustering performs the best.

To determine the number of clusters, we use an intra-

cluster divergence curve computed from the divergence

matrix. Existing software rely on AIC, BIC, or another

model selection metric [78, 79]. However, since we only

have the “distance” matrix, these traditional methods

cannot be applied. Let Nk be the number of cell pairs in

cluster Ck and N be the total number of pairs between

cells for all clusters. Let K be the number of clusters.

The weighted sum of intra-cluster distance WK is

WK ¼
X

K

k¼1

N k

X

i; jð Þ∈Ck

dij

N

Note that small clusters are naturally down-weighted

in the above metric. DENDRO relies on visual examin-

ation of the intra-cluster divergence curve (WK plotted

against K) to find the “elbow point,” which can be taken

as a reasonable clustering resolution.

Simulation analysis

In our simulation analysis, we adopt a scRNA-seq data-

set from Deng et al. as the reference, which, by crossing

two mouse strains, obtained transcriptomic allele-

specific read counts for every SNPs in exonic regions in

each cell [43]. In this case, the Deng et al. data main-

tained the expression stochasticity in scRNA-seq data.

To overlay the read counts on simulated mutation pro-

file, for every simulated locus, we sampled a SNP from

this reference. For cells with mutation at this locus, we

randomly assigned one allele of the sampled SNP as

mutated allele. For cells without mutation, we set the

mutated allele counts as 0 and the total read counts as

sum of the two alleles from the reference. We further

added binomial noise (pϵ = 0.001, suggested by [75]) to

mimic sequencing error. When analyzing DENDRO

performance in terms of various number of mutation

sites, number of cells, proportion of cells in each clade,

and proportion of mutations along each branch, we only

take a subset of cells (cells in early blastocyst, mid

blastocyst, and late blastocyst stages) to ensure the ex-

pression homogeneity. On the other hand, we utilize a

mixture cell population (cells in 16-cell stages and

blastocyst stages) to test the robustness of DENDRO

performance with regard to various expression profiles.

Power analysis toolkit and experimental design

Before conducting a single-cell RNA-seq experiment on

a tumor sample, it is important to project how subclone

detection power depends on the number of cells se-

quenced and the coverage per cell. To facilitate experi-

ment design, we have developed a tool, DENDROplan

(Fig. 2a), that predicts the expected clustering accuracy

by DENDRO given sequencing parameters and available

bulk data for the tumor. Given an assumed tree struc-

ture and a target accuracy, DENDROplan computes the

necessary read depth and number of cells needed.

As shown in Fig. 2a, if bulk DNA sequencing and/or

RNA sequencing data are available for the tumor being

studied, these data can be harnessed to make more real-

istic power calculations. For example, if SNAs have been

profiled using bulk DNA sequencing data, the set of mu-

tations that lie in the exons of annotated genes can be

retrieved and used directly in constructing the simula-

tion data. Furthermore, phylogeny construction algo-

rithms for bulk DNA-seq data can be used to infer a

putative tree structure that can be used as input to

DENDROplan [5, 79]. If bulk RNA-seq data is available,

the bulk expression level of the mutation-carrying genes

can be used to predict the expression level of the muta-

tion in the single-cell data. In another word, variants in

high-expressed genes in bulk will be sampled from high-

expressed variant loci in scRNA reference and vice versa.

The power analysis tool is also available at https://

github.com/zhouzilu/DENDRO.

SNA inference in “bulk” and phylogenetic tree construction

As stated previously, DENDRO further inferred SNA

after pooling the reads from all cells within each cluster.

Because, with our choice of thresholds, we identify SNAs

in single cells with high sensitivity, the “bulk” level SNAs

should be a subset of the SNAs in single cells, and muta-

tion allele counts and total allele counts should provide

us with enough information for SNA detection using a

maximum likelihood framework [80], which accounts

for both sequencing error and rare RNA editing events.

Suppose s is the genotype (number of reference allele) at

a site and assume m, the ploidy, equals to 2. Then, the

likelihood is:

L sð Þ ¼
1

mk

Y

l

j¼1

m−sð Þϵþ s 1−ϵð Þ½ �
Y

k

j¼lþ1

m−sð Þ 1−ϵð Þ þ sϵ½ �

where k is the number of reads at a site and the first l

bases (l ≤ k) be the same to reference and the rests are

same to alternative allele. ϵ is the sequencing error and

rare RNA editing combined rate. s∗ is the maximum

likelihood estimator of the genotype:
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s� ¼ argmax
s

−L sð Þ

Given mutation profiles, DENDRO then constructs a

phylogenetic tree with the neighbor-joining method,

which can more accurately capture the evolutionary rela-

tionship between different subclones [81] than the initial

tree given by hierarchical clustering.

Differential gene expression, mutation annotation, and

gene ontology analysis

We use Seurat and scDD to identify differentially

expressed genes between tumors and between tumor sub-

clones [82–84]. For each comparison, we apply two differ-

ent methods: MAST implemented by Seurat and scDD.

Genes with adjusted p value < 0.05 count as significant

differentially expressed gene for each method. We further

intersect these two sets of differentially expressed genes to

increase robustness. Subclonal mutations are annotated by

ANNOVAR with default parameters, and variants associ-

ated with intergenic regions were discarded for down-

stream analysis [85]. For GO analysis, we apply Gene Set

Enrichment Analysis tool [57]. Hallmark gene sets serve

as the fundamental database with FDR q value < 0.05 as

significant.

Single-cell RNA-seq of tumor model derived from B16

Six C57bl/6 mice were injected on both flanks with ei-

ther B16 or R499: four with B16 and two with R499.

Two of the mice implanted with B16 were treated with

200 μg of anti-PD1 per mouse on days 5, 8, and 11. On

day 15, all tumors were harvested and made into single-

cell suspension. One hundred thousand CD45-negative

tumor cells were sorted on Aria to enrich for live tumor

cells and loaded on SMARTer ICELL8 cx Single-Cell

System prior to full-length single-cell RNA sequencing

library preparation using Smart-seq following the manu-

facturer’s recommendations. Four hundred sixty cells

and 11,531 genes passed standard QC and were retained

for downstream analysis.

Neoantigen prediction

Based on gene expression from RNA-seq data, variants

from unexpressed transcripts are removed. The MHC-I

binding affinities of variants are then predicted using

NetMHC version 4.0 for H-2-Kb and H-2-Db using pep-

tide lengths from 8 to 11 [86]. Given subclonal mutation

profile, we further assign the neoantigens to each subclone.
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