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Human evolution was strongly related to environmental factors. Woodlands and their
products played a key role in the production of tools and weapons, and provided unique
resources for constructions and fuel. Therefore wooden finds are essential in gaining
insights into climatic and land use changes but also societal development during the
Holocene. Dendroarchaeological investigations, based on tree rings, wood anatomy and
techno-morphological characteristics are of great importance for a better understanding
of past chronological processes as well as human-environment-interactions. Here we
present an overview of the sources, methods, and concepts of this interdisciplinary field
of dendroarchaeology focusing on Europe, where several tree-ring chronologies span
most of the Holocene. We describe research examples from different periods of human
history and discuss the current state of field. The long settlement history in Europe
provides a myriad of wooden archeological samples not only for dating but also offer
exciting new findings at the interface of natural and social sciences and the humanities.

Keywords: tree rings, dendrochronology, land use, paleoecology, wood anatomy, wood technology

INTRODUCTION

Importance of Wood
Since the beginning of mankind people have extracted and processed plant resources. Human
cultural development has relied on wood, in particular, for producing tools, building constructions
but also as the primary source of energy. Archaeological research, however, has a strong focus
on non-biodegradable sources. This is reflected in the so-called three-age system for the rough
classification of humans’ pre-history into three main time-periods: the Stone Age, the Bronze
Age and the Iron Age, which was established by Thomsen (1836) and is still widely used in
modern archeology (Kipfer, 2000). This prevailing focus can be explained by the better preservation
conditions of inorganic material. Nevertheless, wood has played an equally, if not the most
important role as a raw material in all epochs up to our present time. The key role of wood as
an energy source only started to diminish in the latest phase of human history, when fossil fuels
became widely accessible as alternative sources of energy (Freese, 2003). The increasing use of coal,
petroleum and natural gas during the modern period created the preconditions for the industrial
development during the 19th century and accelerated considerably with modern chemistry at the
beginning of the 20th century. As a result, forest utilization lost much of its importance since
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modern societies of the 19th and 20th century allegedly have been
relieved from depending on renewable forest resources (Ritchie
and Roser, 2017). For a great part of human history, however, the
development of societies was dominated by their interaction with
woodlands, since they relied on forest products for most aspects
of their everyday life (Willerding, 1996).

Sophisticated supply strategies for woodland resources have
been developed over time and have substantially contributed to
the shaping and advance of societies and cultures. In particular,
trees had numerous functions as a valuable and diverse source
for construction material, fuelwood, raw material (e.g., for tools,
weapons, furniture, jewelry), food (fruits, seed, fodder), tanning
and coloring agent, fiber production (e.g., clothing, ropes, nets),
and for resin and pitch production (Andraschko, 1996).

Dendroarchaeology
Dendroarchaeology is the study of historical and archaeological
wood from various contexts and functions (Figure 1). These
investigations are based on tree rings, wood anatomy and
techno-morphological characteristics. With the application of
dendrochronology [from ancient Greek: dendron (tree), khronos
(time), -logia (the study of)], each tree ring can be precisely dated
to a calendar year since annual variations in ring widths are
strongly linked to annual variations in weather conditions, which
allows for the alignment of ring-width patterns of different trees
within a region (Douglass, 1909) (see section “Crossdating” for
details on the method).

Comprehensive dendroarchaeological studies combining
archeological and dendrochronological methods and data
allow valuable insights into the chronological development of
cultural processes, the history of ancient woodworking and
construction techniques as well as into former forest utilizations
and environmental conditions.

Dendroarchaeology, as a relatively young branch of research
in archaeology, found its first application in Europe during the
1940s in an interdisciplinary effort to systematically investigate
wooden finds from archaeologically excavated pre-historic
wetland settlements of the northern pre-Alpine lakes (Rump,
2011). The combination of methods from botany, forestry, timber
industry and archaeology helped to optimally process the delicate
organic wooden finds (Bräker et al., 1979; Broda and Hill, 2021).
For the first time, it was possible to record features and structures
as well as the settlement dynamics of prehistoric lakeside
settlements with chronological precision (Huber, 1941). As a
consequence of the ground-breaking results, wooden remains
gained greater attention in archaeological research.

History of Dendrochronological
Research
The first description that trees form tree rings was done by
Theophrastus (c. 371 – c. 287 BCE), a Greek philosopher and
naturalist. Leonardo da Vinci (1452 – 1519 CE), followed by
Montaigne (1533 – 1592 CE), were likely the first to recognize
that these patterns occur in an annual sequence. The fact that
tree rings are suitable for determining the life span of a tree
became more generally known in the course of the 17th and

18th centuries, but it was not until the end of the 19th century
that Arthur Freiherr von Seckendorff-Gudent began to "overlap"
tree-ring sequences of different trees (Wimmer, 2001). Other
applications of tree-ring analysis included the evaluation of how
tree growth is affected by pollution (Stoeckhardt, 1871). The
first attempt to examine the association between tree growth
and climate was made by the Dutch astronomer Jacobus C.
Kapteyn who matched tree-ring sequences from regions in
the Netherlands and Germany (Kapteyn, 1914; Stallings and
Schulman, 1937). However, Andrew E. Douglass, an American
astronomer defined the science of dendrochronology, as he aimed
at using tree rings to demonstrate a connection between the
earth’s climate and the 11-year cycle of sunspots (Douglass, 1920).
By using the method of crossdating (Figure 2 and see also section
“Crossdating”), Douglass was also able to determine the age of
dead and decayed tree samples and in 1929, he established a
continuous 1229-year long tree-ring chronology extending back
to 700 CE. For the first time in history it was possible to
date timber from archaeologically excavated cliff dwellings from
the 13th century at Tsegi Canyon, Mesa Verde, and Canyon
de Chelly with annual precision (Douglass, 1935). Inspired by
Douglass’ success, several researchers from Russia, Scandinavia
and Germany independently studied European tree species. The
further development of dendrochronology in Europe is strongly
connected with the pioneering work of the Austrian botanist
Bruno Huber, who initiated research on tree rings at the former
Royal Saxon Academy of Forestry in Tharandt, Germany, in
the 1930s (Eckstein and Wrobel, 1983; Rump, 2011). While
Douglass used extreme wide and narrow rings to cross date,
Huber adjusted Douglass’ method by measuring and plotting
each ring of the tree, owing to the fact that trees from temperate
zones show less pronounced year-to-year variability than trees
from semiarid zones (Eckstein and Pilcher, 1990). As early as
1941, Huber used this method to date several archaeological
sites in eastern, northwestern, and southern Germany (Huber,
1941; Rump, 2011). Huber’s successful dating of the Bronze
Age palisades at Wasserburg Buchau, southwestern Germany,
marked the beginning of modern dendroarchaeology in Europe
(Huber and Holdheide, 1942).

The increasing amount of dendrochronologically dated wood
samples enabled further studies including the establishment
of the radiocarbon calibration curve (Huber and Jazewitsch,
1958). By successfully dating three Neolithic settlements in
eastern Switzerland (Thayngen Weier, Burgäschisee Süd, and
Burgäschisee Südwest), Huber established their chronological
parallelism and proved for the first time that the so-called Pfyn
and Cortaillod cultures (ca. 3900–3500 BCE) had coexisted at
the same time (Huber et al., 1963). Furthermore, Huber and
his team worked on the development of reference tree-ring
width chronologies for central Europe, for example, the first
and well-replicated 1000-year long oak chronology for Hesse
(central Germany) (Huber, 1963; Huber and Giertz-Siebenlist,
1969). This pioneering work was accompanied by further initial
dendroarchaeological investigations mainly in northern parts
of Europe (e.g., Kolchin, 1962; Bauch, 1968). The German
dendrochronologist Ernst Hollstein played a pivotal role in
further implementing dendrochronology in Europe. Since 1960,
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FIGURE 1 | Wood sources for dendroarchaeological research: (A) Subfossil trees from a gravel pit in the Upper Rhine Valley (Leutenheim, France). (B) Neolithic pile
excavated underwater in Oehningen-Orkopf, Lake Constance, Switzerland. (C) Water well lining from the Late Bronze Age, excavated in Erstein, France. (D) Post
foundation of a Roman building in Vendresse, France. (E) Medieval silver mining gallery in the Black Forest (Schauinsland, Germany). (F) Half-timbered house in
Troyes, France. (G) Late medieval roof truss in Langenrickenbach, Switzerland. (H) Modern sawmill in Many, France. (I) Neolithic knife with flint blade and wooden
handle from Allensbach, Germany. (J) Late Bronze Age construction timber from Erstein, France. (K) Late Iron Age wooden hammer from Saverne, France. (L)
Roman comb and (M) box from Troyes, France. (N) Modern painting and (O) violin.

he sampled living and historical material in western Germany,
France and Switzerland and established a 2500-year long oak tree-
ring width chronology (Hollstein, 1967, 1980; Rzepecki et al.,
2019). Moreover, Hollstein not only introduced wood physical
and technological characteristics to determine the time of tree
felling, he also investigated the relationship of heartwood and
sapwood rings in oaks and thus, established the commonly
applied sapwood statistics, enabling more precise estimations of
oak felling dates (Hollstein, 1965).

After the death of Bruno Huber, his former research
associate Bernd Becker continued his work at the University
of Stuttgart-Hohenheim (Germany). He further extended the
existing chronologies with a strong focus on subfossil trees,
deposited in fluvial gravel, and developed millennia-long tree-
ring chronologies for southern Germany that covered most
of the Holocene (Becker, 1982). His tree-ring chronologies
still provide a crucial basis for dendroarchaeological and
paleo-environmental studies in central Europe (Friedrich et al.,
2004). Other millennia-long tree-ring width chronologies
have also been developed since the late 1970s and 1980s,
for example by Pilcher (1976), Baillie (1977), Pilcher et al.

(1984), Leuschner and Delorme (1988), and Kuniholm
(1994, 1996) which has led to a growing interest of
archaeologists in this novel and high-precision dating method
(Bannister and Robinson, 1975).

While Hollstein also worked with wood anatomical
features, it was the Swiss dendrochronologist Fritz H.
Schweingruber who provided the first wood anatomical
atlas in three languages, a standard reference for wood
identification of central European tree species (Schweingruber,
1978). Moreover, he published a first perspective on the
significance of prehistoric wood samples for both archaeological
and vegetation scientific studies (Schweingruber, 1976).
Fundamental conceptual works for the application of
dendrochronology in archaeological and (paleo)ecological
research were published in the early 1980s, e.g., by Baillie (1982)
and Schweingruber (1983), creating the basis for the practical
implementation of tree-ring studies on archaeological wooden
finds. Dendrochronology became a standard method applied in
archaeological studies during the 1980s, constituting the onset
of modern dendroarchaeology in various European countries
(Eckstein and Wrobel, 1983).
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FIGURE 2 | Schematic illustration of the crossdating process. The climatic-related sequences of wide and narrow rings of the wooden samples allow the dating of
wood from different sources and the development of millennia-long tree-ring width chronologies. Since the material is not evenly available through time, consequently
the number of samples (replication) varies too.

This development led to the establishment of more
dendroarchaeological laboratories across Europe. During this
time, first large-scale archaeological projects for different periods
implemented the newly established discipline. To mention only
a few examples for pre-historic times, on circum-alpine lakes
in France, Germany, Italy, Switzerland and Slovenia1, for Iron
Age Biskupin, Poland (Reynolds, 1985), and for medieval times
in Dorestadt, The Netherlands (van Es and Verwers, 1980),
Mikulčice, Czechia (Dvorská et al., 1999), Hedeby and Lübeck,
Germany (Eckstein, 1978). In the context of these projects,
numerous new laboratories have been founded, frequently by
archaeologists who started using dendrochronology (Bernard,
1998). As a consequence, the focus on archaeological research
questions intensified toward wood utilization, species selection,
resource management and the technical and architectural
development of settlements (e.g., Billamboz, 1988). The advances
of dendrochronology provoked further interest from the fields of
historical building research, however, with a stronger focus on
dating and provenancing, and mainly performed by numerous
newly founded laboratories all over Europe (e.g., Kuniholm and
Striker, 1990; Eißing, 2005; Épaud, 2007; Hoffsummer, 2009;

1https://whc.unesco.org/en/list/1363/

Kyncl, 2016; Domínguez-Delmás et al., 2018). Over the last
decades, vast amounts of dendroarchaeological data have been
collected from countless archaeological sites and historical
constructions as well as from natural depositions in paleo-
channels and from living trees all over Europe. The great
number of laboratories and their interaction accelerated the
development of well-replicated centennial to millennia-long
tree-ring chronologies for various European regions, placing
Europe in a unique position compared to the rest of the globe
(Becker et al., 1985).

However, the state of dendroarchaeological research varies
greatly among different countries and regions due to different
research foci, political settings and administrative structures.

MATERIAL

Conditions and Forms of Preservation
Wood is an organic matter, easily biodegradable by bacteria
and fungi and their enzymes (Blanchette et al., 1990; Pedersen
et al., 2020), but under special conditions wooden structures
and objects can be preserved for a long time (Figure 3). One
such case of wood preservation is the lack of moisture in
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FIGURE 3 | Different types of wood preservation. (A) Dry preserved wood from scaffolding timber from the cathedral Notre-Dame de Reims, France (1211 CE,
Tegel and Brun, 2008) and the “pagan wall” on Mont Sainte-Odile, Ottrott, France (7th century CE, Tegel and Muigg, 2015). (B) Wood preserved under wet
conditions from a late bronze age well made of oak in Erstein, France (1208 BCE) and from a preboreal pine from gravel quarry at Pont-sur-Seine, France (14C
11000 ± 60 BP). (C) Charcoal from oak (Cuperly, France, 133 BCE) and silver fir (Schauinsland, Germany, 1545). (D) Wood (alder (Alnus sp.; left) and ash (Fraxinus
excelsior; right) preserved through mineralization processes on early medieval weapons, found as grave goods in burials (Tegel et al., 2016a).

constantly dry environments. Such conditions prevail mostly
in arid regions, e.g., at the Syrian site of Dura Europos,
but are occasionally also found in central Europe (Tegel
and Muigg, 2015; Tegel and Croutsch, 2016; Baird, 2018).
Another form of wood preservation is achieved when constantly
low temperatures prevent biodegradation. These preservation
conditions are mainly found in permafrost soils, e.g., the
Kurgan graves of Pazyryk (Russia), but also in alpine glaciers
(Polosmak and Seifert, 1996; Parzinger, 2006; Nicolussi, 2009).
Other forms of preservation are associated with the deposition
in a biotoxic environment, for example, in the famous Hallstatt
saltmines, Austria (Herzig, 2009; Reschreiter and Kowarik, 2019;
Haneca and Deforce, 2020; Grabner et al., 2021), and the
chemical alterations of the wood tissue through carbonization
and mineralization (Chabal, 1997; Tegel et al., 2016a; Haneca
and Deforce, 2020). However, the most important form of wood
preservation is provided by waterlogged conditions, frequently
discovered at archaeological excavations, for example in water
wells and other features below the groundwater level (Kretschmer
et al., 2016; Croutsch et al., 2020), from pile dwellings in lakes
and bogs (e.g., Bleicher, 2009; Tarrús, 2018; Benguerel et al.,
2020; Hafner et al., 2021; Pranckënaitë et al., 2021), shipwrecks
at the bottom of seas, lakes and rivers (e.g., Domínguez-Delmás
et al., 2013; Nayling and Susperregi, 2014; Daly et al., 2021)
and paleo-channels (Pilcher et al., 1977; Becker et al., 1985;
Leuschner and Sass-Klaassen, 2003; Edvardsson et al., 2016b;
Figure 1). Waterlogged wooden objects can be preserved for
millennia (Thieme, 1997; Tegel et al., 2012; Rybníček et al.,

2020). As wood cells and inter-cellular spaces are filled with
water, freshly excavated waterlogged wooden objects display the
original shape and surface. However, despite the intact surface,
the cell walls are degraded, the percentage of cellulose and
hemicelluloses is decreased and the proportion of lignin is
increased. In this way the mechanical properties of the wood are
reduced (Schweingruber, 1976; Čufar et al., 2008c; Björdal, 2012).

Wood Sources
The wooden material for dendroarchaeological analysis
originates from different sources, including archaeological
excavations, historic buildings, museums and private collections,
natural deposits, and modern forests (Figure 1).

A great amount of samples is obtained from archaeological
excavations and historical buildings. Archaeological excavations
regularly unearth well-preserved wooden structures and everyday
objects of past societies. Ever since the 19th century, various
small to large-scale excavations have unearthed wooden objects.
The quality of archaeological documentation and the treatment
of these delicate finds varied greatly, depending on the timing
of the excavation and the experience of the excavating personal.
Improved technical standards for the treatment of archaeological
sites and historical buildings were set in the second half
of the 20th century, when most European countries passed
legislations for heritage protection (Martin and Krautzberger,
2010). By the turn of the millennium, most European countries
furthermore ratified international laws for the treatment of
archaeological sites, defined by the International Committee for
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the Management of Archaeological Heritage in the Charta of
Lausanne and the Charta of La Valetta (Malta) in 1989 and 1992,
respectively (Hönes, 2005).

Since the beginning of modern dendroarchaeology
in the 1980s, European laboratories have produced
dendroarchaeological data for various regions, different
species and with different chronological emphases. Within the
last decades, it has become evident that areas with active and
well organized departments for preventive archaeology generally
show larger quantities of wooden finds than others (Laurelut
et al., 2014). The same applies for other forms of physical heritage,
e.g., historical buildings. The number of historical constructions
and monuments studied, dated and therefore accessible for
further dendroarchaeological studies strongly depends on the
statutory framework and on how well-equipped and organized
regional departments of heritage conservation are. Aside from
historical timber, other sources of wood from historical buildings
are concealed within cavities in the construction, e.g., between
ceilings and floors, and occasionally studied by medieval and
post-medieval archaeologists (Lohwasser, 2011; Atzbach, 2012).
A special case of historical wood material is found in art objects,
e.g., panel paintings, and instruments which are in most cases
well-studied and safely stored in museums or private collections
(Fraiture and Dubois, 2011).

Modern reference material is available from living trees in
forests or recently harvested trees and is used for the development
of reference chronologies and calibration with instrumental
climate data to study past climate variations (e.g., Büntgen et al.,
2011c; Cook et al., 2015; Tegel et al., 2020).

METHODS AND CONCEPTS OF
DENDROARCHAEOLOGICAL
RESEARCH

Sampling and Documentation
Dendroarchaeology combines typological analyses of surface
treatments with internal features of tree growth. Size, cross-
sectional shape and tool marks provide information on
woodworking techniques and woodland use, whereas annual
growth rates allow, besides the chronological classification
of wooden objects, the study of the woodland’s history.
Knowledge of the utilized wood species further enables syntheses
on the development of construction techniques, building
history and settlement dynamics. Comprehensive and consistent
sampling is a necessary precondition for conclusive results of
dendroarchaeological studies. The individual sampling strategy
depends mostly on the different research questions that address
technological as well as ecological issues and are established
in close collaboration with the excavating archaeologists
or conservators. Note that any valid scientific statement
regarding past forest composition, resource management or
wood utilization requires extensive quantities of samples
(Büntgen et al., 2012). Ideally, every excavated wooden object
should be entirely removed from the soil or sampled and
investigated immediately after and before any conservation

treatment. Therefore, waterlogged wooden objects should be
generally kept in plastic wrap to prevent that cell walls break
and the wood collapses due to desiccation. In situ documentation
of archaeological artifacts is provided by field archaeologists.
Prior to the extraction of a sample, the wooden object is
cleaned, if necessary, and documented (e.g., photographed
and/or by creating drawings or scans) for the study of tool
marks, as distinct techno-morphological features are partially
only visible after the excavation (Figure 4). Following the
careful investigation of the artifact’s surface, a cross-sectional
sample is extracted for tree-ring analyses. Simple preparation
techniques are applied to improve the visibility of annual
ring boundaries. In most cases, surface treatment with razor
blades or cutters is sufficient. Powdered chalk can be used
to enhance the contrast of the different cell types and
therefore improve visibility of tree-ring boundaries, especially
for narrow rings.

Documentation of the cross-sectional shape provides
important information about the size and diameter of the
trees used for timber and the woodworking process, e.g., the
longitudinal splitting of trunks (Figure 5). To secure this
information, standardized sketch drawings are prepared. The
scale used depends on the size of the wooden object, a scale
of 1–5 has been proven effective in most cases (Figure 5). It
must be emphasized that the point of sample extraction on
the object should be selected by the dendroarchaeologist to
prevent sampling in areas of disturbed tree-ring patterns such as
branches, cracks, wounds, reaction wood, etc. (Schweingruber,
1976). To maximize the obtained information, samples should
ideally include the full tree-ring sequence from the pith to the
bark (waney edge).

In historical buildings, documenting the location of the
sample on photos or architectural plans is necessary to
record the context within the construction and to combine
chronological and technological information (Figure 6). By
experience, a minimum of 6–10 samples per structural unit are
needed. With the exception of art objects (i.e., paintings and
sculptures), sample collection for dendroarchaeological research
is performed by sawing cross-sections or by coring samples
with increment borers (Figure 6). Dendroarchaeological analyses
on art objects, instruments and furniture is conducted using
either invasive non-destructive methods (i.e., cleaning with
a scalpel; Edvardsson et al., 2021) to non-invasive methods
(e.g., X-ray computed tomography; Daly and Streeton, 2017;
Domínguez-Delmás et al., 2021).

Wood Anatomy
The study of wood anatomical features is a crucial step
in dendroarchaeological studies for several reasons. Firstly,
the taxonomical identification based on these features, holds
information of intentional species selection of past societies
(Tegel and Croutsch, 2016; Tegel et al., 2016a). Secondly, it
is necessary to develop species-specific master chronologies for
dendrochronological dating. Thirdly, microscopic examinations
of wood anatomical anomalies (e.g., frost rings, light rings
or traumatic tissue) can provide important information for
paleo-ecological research (Wimmer, 2002; Schweingruber, 2007).
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FIGURE 4 | Examples of the documentation of archaeological waterlogged wood (Rybníček et al., 2018) by (A) photos of tool marks from slashing tools (axes,
adzes) and saws, (B) drawings (Tegel and Croutsch, 2016), and (C) laser scan (Tegel et al., 2012).

Wood anatomical features are studied on transverse, radial
and tangential thin-sections under microscopes for taxonomical
identification and to determine growth anomalies. Modern and
waterlogged wood is usually investigated under a transmitted
light microscope after producing thin-sections. Charcoals and
mineralized wood are treated in a different way since it is
usually not possible to produce thin-sections. Here, samples
are broken to provide “clean” surfaces that are studied under
a reflected-light microscope. Taxonomical identification can
be performed using standard identification keys based on
wood anatomical features (Wagenführ, 1966; Grosser, 1977;
Schweingruber, 1990; Schoch et al., 2004). Distinctive features
are, for example, presence of resin canals, type of rays, crossfield
pits for coniferous wood and distribution and size of vessels,

type of perforation plates, type of rays, type of axial parenchyma
for broad-leaf wood (Schoch et al., 2004; Schweingruber,
2011). Modern equipment like digital microscopes, confocal
laser scanning microscopes, improved techniques of scanning
electron microscopy, multi-resolution X-ray tomography etc.
(e.g., Haneca et al., 2012; Balzano et al., 2019) have significantly
facilitated the identification of all categories of wood. This
method enables the analyses of tiny and highly degraded
samples, which are often difficult to determine by conventional
microscope techniques and further provides the advantage
of simultaneous photographic documentation. Non-invasive
imaging techniques have been developed in recent years and
offer new perspectives for the visualization of wood anatomical
structures and their analysis.
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FIGURE 5 | Documentation of the used trees by (A) drawing the cross-sectional shape on a scale of 1:5 and (B) reconstruction of the origin and attribution to one
individual tree trunk by using cross-sectional shapes and highly synchronous tree-ring growth patterns of the individual tree-ring curves.

Crossdating
Growth rings reflect the seasonal to annual radial growth of
a tree. Such tree rings are clearly visible on the cross-section
of a tree sample. By counting the annual rings, the cambial
age of a tree is known. Ring widths vary due to environmental
conditions, especially weather conditions, that affect the tree
during wood formation but ring-width variations are also
influenced by the wood species, location and position of the tree
within a forest, stand dynamics, forest management practices
and individual factors such as forest pests. By measuring the
width of individual tree rings, a chronological sequence (tree-
ring series) is obtained that is potentially characteristic for all
conspecific trees within a site or even region. This is comparable
to a spatio-temporal fingerprint. The method of crossdating
enables the chronological placement of a tree-ring sequence,
allowing the precise identification of the year in which each tree
ring was formed (Douglass, 1941). Therefore, it provides the
basis for all further chronological analyses such as the precise
dendrochronological dating of wooden objects. Moreover,
tree rings provide a valuable archive for past environmental
conditions, readable from the variation in tree-ring width and

wood anatomical features, such as density fluctuations, vessel
sizes, and growth anomalies (Schweingruber, 1996).

Tree-ring widths are usually measured with a precision of
0.01 or 0.001 mm using semi-automatic measuring tables, e.g.,
LINTAB2 or VIAS3. Programs like for instance Coo Recorder4

which enable tree-ring measurement on images (manual or
by automatic recognition of tree rings) are frequently used
as well. The tree-ring width measurements are transformed
into curves of tree-ring series showing the variation of tree-
ring widths over time allowing for their visual and statistical
crossdating by using statistical parameters calculated by special
programs, e.g., TSAP (Rinn, 2003) or PAST (Knibbe, 2008).
Gleichläufigkeit expresses the year-to-year agreement between
tree-ring series, i.e., the percentage of synchronous growth
changes (Eckstein and Bauch, 1969; Buras and Wilmking, 2015).
The quality of a correlation is calculated with t-tests transformed
after Baillie and Pilcher (1973) (TBP) and Hollstein (1980)

2rinntech.de
3sciem.com
4cybis.se
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FIGURE 6 | Documentation of the location of historical timber on (A) photograph or (B) construction plans sampled with (C) increment borers and cordless drill.
(D) The retrieved cores with (E) sapwood and heartwood (drilled oak disk; left) and waney edge (center and right) with parts of the bark, earlywood vessels (oak;
center) and earlywood cells (pine; right) are distinguishable.

(THO) (Figure 7). The Pearson Product-Moment Correlation (r)
(Pearson, 1895), frequently used for linear correlation between
two sets of data, requires additional elimination of individual
growth trends (Speer, 2010). This so-called detrending method
is already implied in the t-test calculation (TBP, THO) to
highlight year-to-year variations. However, it is crucial to store
the raw tree-ring width data for further investigations. For
this purpose, a simple ASCII text code is the best solution, as
these are readable, regardless of operating systems, and data
can be easily exchanged. The most frequently used file formats
are Tucson (.rwl or.tuc) and Heidelberg (.fh). We recommend
the use of Heidelberg-format, as this allows to include a wide
range of metadata such as the information on pith, sapwood
rings, waney edge etc.

Crossdating must include all statistical approaches and the
visual comparison of the measured tree-ring width sequences.

The comparison of the tree-ring pattern, i.e., the sequence
of wide and narrow rings, between trees allows for the
assignment of each tree ring to a precise calendar year.
In this way, it is possible to build annual tree-ring width
chronologies consisting of numerous tree-ring series from
different sources with overlapping lifetimes of the trees
(Figures 2, 7). These chronologies cover several centuries to
millennia (e.g., Becker and Giertz-Siebenlist, 1970; Hollstein,
1980; Becker, 1993; Grudd et al., 2002; Friedrich et al., 2004;
Baillie, 2009; Nicolussi et al., 2009; Seim et al., 2012) and
serve as reference chronologies for dendrochronological dating.
The quality of a reference chronology strongly depends on
high sample replication, which should ideally be equally well-
distributed over time. This is necessary to generate robust
estimates of past growth rates and significantly improves the
dating success (Büntgen et al., 2012). The spatial extent of
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FIGURE 7 | Graphical presentation of dendrochronological results (Tegel et al., 2012). (A) Temporal distribution of the lengths of individual tree-ring sequences, and
the youngest felling dates per construction, based on the presence of waney edges (annually precise) or sapwood estimation. The inset shows a 3D reconstruction
of a wooden lining displaying each tree using a different color. (B) The common signal in the chronology [so-called Expressed Population Signal (dotted gray line)]
and the inter-series correlation (dotted black line) calculated over 50 years lagged by 25 years along all individual samples. (C) Single ring-width measurements
(green) and their mean (red). (D) Absolute dating of the new Saxon oak chronology (red) against the reference chronology from the Main River Valley (Becker, 1982)
after 10-year low-pass filtering [r, correlation coefficient; TBP, T-value (Baillie and Pilcher, 1973); GL, Gleichläufigkeit].

coherent growth patterns covered by a reference chronology
depends on the species and their discrete physiogeographical
area and thus, cannot be clearly delimited. For this reason,
it has been proven useful to produce local and regional
chronologies and further combine them to supra-regional
chronologies especially when working on dendroarchaeological
material. The use of various dendrochronological databases
assists the compilation of individual chronologies which can be
(re)assembled for specific research questions. Successful dating of
archaeological and historical wood is usually confirmed by several
independent reference chronologies. Constant improvement of
the replication allows periodic updates and improvement of
reference chronologies.

The Accuracy of Dendrochronological
Dating
After a successful synchronization with a reference chronology,
every tree ring can be attributed to a calendar year. For
information on the felling date of a tree and the construction

date of a wooden building, respectively, more aspects need to
be considered. (1) The state of preservation of the material, (2)
the tree species (e.g., for sapwood estimation), and (3) whether
the outermost ring (waney edge), i.e., the last ring formed before
felling, is present on the specimen.

If the waney edge is present and the stage of its development
(e.g., early- or latewood formation) is observable, the exact year
and season of the felling of the tree can be determined with the
so-called “waney edge dating.”

If the waney edge is missing but sapwood rings are present, the
felling date can be estimated for species with distinct sapwood
such as oak (Quercus spp.) or larch (Larix decidua) by adding
an empirically obtained number of sapwood rings to the last
measured sapwood ring. In this “sapwood dating”, the felling date
of the tree can be estimated with a precision of approximately
10 years for oaks, for example.

In the case of absent sapwood rings and waney edge (i.e.,
only heartwood is present), only a terminus post quem (i.e., the
earliest possible felling date) can be provided. In the case of oak, a
certain number of sapwood rings are added to the last measured
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FIGURE 8 | Stem disks of two oak piles from a late Iron Age bridge (Pont-sur-Seine, France) with heart wood, sapwood and waney edge (Leroux et al., 2018).

heartwood ring, based on the empirically obtained minimum
number of sapwood rings.

Regarding the number of missing sapwood rings, different
statistically based estimates exist for various regions (Eißing,
2005). For example, British oaks show 10–55 sapwood rings
(Hillam and Tyers, 1995), in Western Germany oaks develop 9–
33 sapwood rings (Hollstein, 1980) and in Northern Germany
10–30 (Wrobel et al., 1993). The number of sapwood rings for
Poland ranges between 9 and 23 (Wazny and Eckstein, 1991), for
Southern Pannonia (SI, HR, RS) 5–32 (Jevšenak et al., 2019), for
Moravia (CZ) 5–21 (Rybníček et al., 2006), and for the Baltic and
Southern Finland 6–19 (Sohar et al., 2012). All of these values are
estimates, based on statistical averages. Hence, the exact number
of sapwood rings of an individual tree remains unknown and
might differ considerably (Figure 8). Apart from the geographical
region where a tree grew, its age and growing conditions can
also affect the total amount of developed sapwood rings. For
example, old and slow growing oak trees generally have more
sapwood rings compared to fast growing or younger oak trees
(Haneca et al., 2009).

Contributions to Past Climate
Estimation, Wood Utilization, Land Use,
Settlement and Building History
Dendrochronological dating of historical and archaeological
wood has developed into a standard method in modern
archaeology and other disciplines. Nevertheless, tree rings also
present a valuable proxy archive for past climate and for the
estimation of past wood utilization, land use changes, settlement,
and building history. In recent decades, cooperation between
dendroarchaeologists and paleoclimatologists have produced

various climate reconstructions (e.g., Büntgen et al., 2011c; Cook
et al., 2015; Tegel et al., 2020).

Trends in the growth pattern of trees can be caused by various
factors and are not attributable to a single reason. To detect
or enhance certain climate signals and exclude noise several
statistical methods have been introduced (Fritts, 1976; Cook
and Kairiukstis, 2013). They all aim for the preservation of
short-term (i.e., high frequency) and long-term (low frequency)
climate information. This is essential, as low to mid-frequency
trends in the tree-ring chronologies allow for the investigation
of decadal to multi-centennial climate variability (e.g., Medieval
Climate Anomaly, Little Ice Age), whereas high-frequency signals
enhance year-to-year variability and are used for extreme year
analyses (Büntgen et al., 2011b). However, it remains uncertain
to which extend the climate signal is superimposed by age, site-
ecological and anthropogenic factors. Since stand conditions of
archaeological wood remain unknown, a high annual replication
with trees from different sites eliminates non-climate-induced
noise from dendroarchaeological tree-ring series (Tegel et al.,
2010; Büntgen et al., 2012; Skiadaresis et al., 2021). Moreover,
to improve the climate signal of tree-ring chronologies from
archaeological wood, several approaches can be applied. First,
high spatio-temporal replication and equal age distribution
(Esper et al., 2009) of both archaeological and modern reference
material can be achieved by applying a “random sampling”
approach (Tegel et al., 2010). Secondly, each tree-ring series
can be examined for cyclic growth patterns in the high to mid
frequency domain that might be associated with insect calamities,
e.g., cockchafer outbreaks (Kolář et al., 2013), or past forest
management, e.g., coppice-with-standards (Muigg et al., 2020).

To statistically preserve and detect climatic information at
different frequencies in tree-ring chronologies, an array of
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standardization methods is available that can remove non-
climate-induced noise such as biological age trends from each
individual tree-ring series. Such standardization methods include
different statistical models, e.g., smoothing splines, negative
exponential curves or regional curve standardization (RCS)
(Briffa et al., 1996).

The resulting detrended (i.e., age-trend free) tree-ring
chronologies can be correlated with instrumental climate data
(in most cases starting from the 20th century), demonstrating
the direct relationship between climate conditions and tree
growth in a region. Several methods for tree-ring based climate
reconstructions have been applied within the last decades
including reverse modeling, scaling and regression models (Esper
et al., 2005; Büntgen et al., 2021a). Every climate reconstruction
is based on the assumption that the climate-growth relationship
is stable over time (Fritts, 1976).

Dendroarchaeological material with its species composition,
tree age and size as well as abrupt growth changes, vessel size
and formation also provides valuable insights into processes
of human-woodland-interaction. For example, models of fire
clearance, slash-and-burn farming, woodland degradation and
forest management concepts, e.g., coppice and coppice-with-
standards, have been established in spatio-temporal dimensions
(Tinner et al., 2005; Bernard et al., 2006; Conedera et al.,
2009; Billamboz, 2014b; Bleicher, 2014; Muigg et al., 2020). The
technical evolution of tools and woodworking practices can be
studied on artifacts and species selection for their development
over time (e.g., Épaud, 2007; Hoffsummer, 2009; Tegel et al.,
2016a). Detailed investigations of individual wooden structures
allow to develop chaînes opératoires for their construction (e.g.,
Tegel et al., 2012).

Chronological classification and the identification of felling
date clusters are crucial prerequisites for regional to supra-
regional studies of settlement dynamics, building activities and
demographic development that can be associated with general
economic developments and crises (e.g., Thun and Svarva,
2017; Ljungqvist et al., 2018; Seifert, 2018). The combination
of quantitative dendroarchaeological research and Geographic
Information Systems (GIS) enables spatio-temporal syntheses
from local settlement dynamics to large-scale demographic
developments (Nicolussi et al., 2013; van Lanen et al., 2016).

SOURCES AND CURRENT STATE OF
DENDROARCHAEOLOGY IN EUROPE

Chronologies
Annually resolved and absolutely dated millennia-long tree-
ring width chronologies from living and relict wood have been
developed in Europe for the Austrian Alps (9111 years; Nicolussi
et al., 2009), northern Germany (8000 years; Leuschner et al.,
2002), Ireland (6939 years; Baillie, 2009), northern Sweden
(7400 years; Grudd et al., 2002), and Finish Lapland (7519 years;
Eronen et al., 2002). The initial “Holocene Oak Chronology” by
Becker (1993), has been revised and extended by the “Preboreal
Pine Chronology” (Spurk et al., 1998; Friedrich et al., 1999, 2004).
This composite dataset covers 12.460 years and reaches back to

the Late Glacial Period with a continuous coverage, which is
unique globally.

Despite the continuous temporal coverage of European
chronologies, it has to be noted that there are significant
differences regarding regionality, tree species and sample
replication. For most regions, at least millennium-long
chronologies are available for economically relevant species, but
a large number of chronologies have not been comprehensively
published so far. In northern and central Europe long
chronologies are available for oak (Quercus spp.), silver fir
(Abies alba), beech (Fagus sylvatica), spruce (Picea abies), pine
(Pinus sylvestris), larch (Larix decidua), and stone pine (Pinus
cembra) (e.g., Hollstein, 1980; Jansma, 1995; Neyses-Eiden, 1998;
Grabner et al., 2001; Čufar et al., 2008b; Nicolussi et al., 2009;
Tegel et al., 2010; Büntgen et al., 2011c, 2013, 2014; Kolář et al.,
2012; Edvardsson et al., 2016a; Prokop et al., 2016; Sochová et al.,
2021).

For southern Europe, multi-centennial long chronologies exist
for oak (Quercus spp.), beech (Fagus sylvatica), fir (Abies spp.),
juniper (Juniperus spp.), larch (Larix decidua), black pine (Pinus
nigra), bosnian pine (Pinus heldreichii), and mountain pine
(Pinus uncinata) (e.g., Panayotov et al., 2010; Seim et al., 2012;
Szymczak et al., 2014; Tegel et al., 2014; Shindo et al., 2017;
Nechita et al., 2018; Sangüesa-Barreda et al., 2018; Belingard et al.,
2019; Esper et al., 2021; Roibu et al., 2021).

Many of these chronologies have been developed using living
trees from old-growth forests or in combination with samples
from historical timbers (Figure 2). Preserved buildings from
modern and medieval periods can provide data for the last
millennium. Preserved dry wood from older timber structures is
extremely rare. To go further back in time, waterlogged wooden
finds from archaeological excavations and subfossil trees from
gravel pits and paleo-channels are of fundamental importance
to extend tree-ring width chronologies. Several periods with
low sample replication exist during the Holocene. Some can
be linked to regional research gaps, while others are related to
supra-regional phenomena, caused by changes in demography,
changes in settlement systems during cultural transition periods
(e.g., 5th century BCE, i.e., the onset of the Late Iron Age, and
5th century CE, i.e., the transition from Late Antiquity to Early
Middle Ages). Such phases can often be linked to crises, whereas
times of socio-economic prosperity are associated with increasing
amounts of wooden finds (Ljungqvist et al., 2018). In phases
of low replication, subfossil trees from natural deposits provide
important additional specimens. In some regions, subfossil
material even provide the most important source of tree rings
(Brown et al., 1986; Eronen et al., 2002; Baillie, 2009).

Subfossil Wood
Trees from past forests can be preserved in natural deposits
and can be found in gravel pits, peats and bogs as well
as in glacier forefields. The deposition occurs as a result of
natural processes, most importantly, erosion. Such trunks allow
the establishment of long tree-ring chronologies and provide
important information for the history of fluvial and glacial
dynamics, the evolution of treelines, peats and riparian forests
as well as possible anthropogenic impacts (e.g., Becker, 1982;

Frontiers in Ecology and Evolution | www.frontiersin.org 12 February 2022 | Volume 10 | Article 823622

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-823622 February 10, 2022 Time: 16:3 # 13

Tegel et al. Dendroarchaeology in Europe

Krąpiec, 2001; Leuschner et al., 2002; Leuschner and Sass-
Klaassen, 2003; Baillie, 2009; Edvardsson et al., 2016b). Due to
the generally better preservation of subfossil trees compared to
archaeological wood, they have been used for developing the
radiocarbon calibration curve and are frequently used for its
enhancement (Reimer et al., 2020).

Combined dendrochronological and radiocarbon evidence
provide on the one hand, high resolution proxy archives for the
investigation of climate variability during the Late Glacial Period
and on the other hand, high-precision dating of environmental
events such as earthquakes and volcanic eruptions (e.g., Nicolussi
et al., 2015; Büntgen et al., 2017), particularly during periods of
high climate variability but low data availability, for instance the
Younger Dryas cold spell (∼11700 and 12900 cal BP) (Reinig
et al., 2018, 2021).

Early to late Holocene glacial and tree line dynamics in high
alpine areas have been investigated on regional to global scales
(Nicolussi and Patzelt, 2000; Holzhauser et al., 2005; Nicolussi
et al., 2005; Le Roy et al., 2015; Solomina et al., 2016).

Subfossil tree trunks preserved in alluvial infills of European
rivers are of great interest to document the formation,
evolution and destruction of riparian forest vegetation (Pukiene,
2003; Carozza et al., 2014; Vitas, 2017). Significant temporal
accumulations of post-glacial trees deposited in river sediments
indicate repeated phases of substantial floods and changes of river
courses and provide insights into anthropogenic influences and
destructions (Becker, 1982).

Subfossil trees from peatlands are important proxies for
Holocene palaeohydrology and palaeoclimate, essential to our
understanding of long-term changes in hydroclimate and the
terrestrial carbon cycle (Edvardsson et al., 2016b). Even though
the anthropogenic impact on subfossil trees is limited in most
cases, they are substantial data sources that need to be considered
for dendroarchaeological studies.

Archaeological Wood
Wooden remains from past human societies are unearthed
during archaeological excavations. The oldest man-made artifacts
discovered in Europe are ca. 300.000 years old hunting spears
from Schöningen, Germany (Thieme, 1997; Conard et al., 2020).
Substantial amounts of wooden finds, however, only appear
in periods of sedentary cultures, starting from the mid-6th
millennium BCE, when first farming societies settled in the
fertile loess regions of Europe and systematically used large
amounts of timber. Their settlements consisted of longhouses,
sometimes over 40 m in length, for year-round habitation that
required large timber sizes and technical innovations in carpentry
(Tegel et al., 2012). First intensive anthropogenic influence
on the natural environment happened during this time when
forests were cleared to create agricultural areas. Within the
last decades, several water wells from settlements of the 6th
millennium BCE have been excavated in Europe. Technological
studies revealed the impressive woodworking skills of Europe’s
first farmers. Hundreds of timbers from these water wells enabled
the development of different tree-ring chronologies and are the
oldest dendrochronologically dated archaeological features in
Europe so far (Tegel et al., 2012; Rybníček et al., 2018, 2020).

Extraordinary preservation conditions in pile dwellings lead
to the excavation of vast amounts of archaeological wood.
Early examples from the 6th millennium BCE are restricted
to southern Europe (e.g., López-Bultó and Piqué Huerta,
2018; Naumov, 2020; Fermé et al., 2021). In central Europe,
pile dwellings appeared in the circumalpine lakes during the
5th millennium BCE and are listed as a UNESCO world
heritage “Prehistoric Pile Dwellings around the Alps” since 2011,
protecting a total of 111 archaeological sites in six countries5.
Here, absolutely dendrochronologically dated structures exist
from around 4200 BCE onward providing large amounts of
waterlogged woods for dendroarchaeological studies (Billamboz
and Schlichtherle, 1982; Lambert and Lavier, 1997; Billamboz
and Unz, 2006; Cichocki and Dworsky, 2006; Billamboz,
2014b; Martinelli, 2014; Čufar et al., 2015; Bleicher and Harb,
2017). The combination of archaeological, archaeobotanical
and dendroarchaeological data provide detailed insights into
pre-historic socio-economies including their social networks,
husbandry and forest management (e.g., Billamboz, 2014b;
Menotti, 2015; Bleicher and Harb, 2017; Hafner et al., 2020).
Pre-historic pile dwellings occurred in several waves, most
likely in periods of favorable climate conditions, from the
Late Neolithic until the Iron Age period at around 500 BCE
(Billamboz, 2003). The documentation and dendrochronological
dating of piles enables detailed investigations of settlement
structures and development with high temporal precision
(Bleicher and Harb, 2018). Many wetland sites are characterized
by multiphase occupations with thousands of piles. Therefore,
ground plans of single structures are often only recognizable after
dendrochronological dating, the identification of wood species
and typological studies of cross-sections (e.g., Benguerel et al.,
2020). Moreover, wetland sites yield various kinds of wooden
objects for every-day purposes, e.g., vessels, tools, weapons, and
provide detailed insights into the material culture and technology
(e.g., Müller-Beck and Boessneck, 1965; Capitani et al., 2002;
Fermé et al., 2021). Outside of wetland areas, such finds are only
preserved in single structures with waterlogged conditions like
water wells (Croutsch et al., 2019, 2020). In recent years, large-
scale excavations of preventive archaeology have also discovered
extensive settlement areas with waterlogged conditions in large
river valleys with high groundwater levels (Donnart et al.,
2019). In particular, for the Roman period the number and
quality of archaeological sites increased significantly. Political
and administrative efficiency led to high building activities and
consequently to large amounts of archaeological wood for the
1st to 3rd century CE for many central European laboratories
(Hollstein, 1980; Nicolussi, 1998a,b; Herzig and Berg-Hobohm,
2010; Benguerel et al., 2012; Herzig et al., 2013; Bernard et al.,
2014; Čufar et al., 2014; Jansma et al., 2014; Tegel et al., 2016b;
Jansma, 2020). The highly developed trade networks and the
rising urban development triggered new dimensions of forest
resource exploitation (Bernabei et al., 2019). Socio-economic
decline at the end of the Roman Empire is reflected by a
decrease in building activity and therefore, a limited number of

5https://whc.unesco.org/en/list/1363
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dendroarchaeological evidence in the late 4th and 5th centuries
CE (Rzepecki et al., 2019).

In the majority of archaeological sites in Europe, no
organic tissue is preserved. Here, dendroarchaeological studies
are limited to chemically modified wood, e.g., charcoal or
mineralized wood. These highly fragmented finds rarely show
traces of the original object surface and hardly provide a
sufficient number of tree rings. In most cases, they are not
suitable for technological or dendrochronological analyses.
However, taxonomical identification is still possible and often
the minimum diameter of the used trunk can be estimated. With
large charcoal datasets it is possible to answer research questions
of local vegetation cover, anthropogenic land use and forest
exploitation as well as dendrochronological dating (Cichocki,
2007; Nelle et al., 2010; Deforce, 2017; Blondel et al., 2018;
Dufraisse et al., 2018; Moser et al., 2018; Oberhänsli et al., 2019).
Mineralized wood provides distinct information regarding wood
utilization and selection due to mechanical properties for specific
purposes, e.g., weapon production (Tegel et al., 2016a; Haneca
and Deforce, 2020).

Wood From Historical Buildings
Large amounts of historical timber, e.g., roof trusses, ceilings
joists, buttresses and basement pillars, have survived under dry
conditions in buildings that are in many cases still intact, enabling
insights into the building history of the last millennium (e.g.,
Hollstein, 1980; Kuniholm and Striker, 1987; Crone and Fawcett,
1998; Büntgen et al., 2006b; Seiller et al., 2014; Bernabei et al.,
2016). In particular, sacral buildings (e.g., churches), but also
public and private secular architecture from medieval to modern
periods are valuable data sources for dendroarchaeological
studies (e.g., Hoffsummer, 2009; Seim et al., 2015; Domínguez-
Delmás et al., 2017; Haneca and van Daalen, 2017; Christopoulou
et al., 2020b).

The dating of historical constructions is primarily initiated by
departments of heritage conservation or heritage inventorization
for the protection of architectural monuments or for their
documentation in the context of renovation, restoration, re-use
or demolition (Gomolka, 1992; Marshall et al., 2004; Harzenetter
et al., 2016; Withalm, 2018). It is important for research on
building history as well as for studies on urban and rural
development (Schmidt et al., 2001; Eißing, 2015; Werlé, 2017;
Vitas, 2020).

The position of timbers within their larger constructive
context allows to investigate the evolution of new types of
constructions and innovative technical solutions. Vernacular
architecture shows distinct construction details (e.g., floor plans,
room division), often typical for certain periods and regions and
therefore, reveals local technological developments and regional
differences in building traditions (e.g., Schmidt et al., 1990;
Épaud, 2007; Houbrechts, 2007; Susperregi et al., 2017).

The tree species used for historical timbers vary among
different regions and within each construction according to
their functional purpose. For structural elements with soil (i.e.,
moist) contact, oak (Quercus spp.) was used almost exclusively.
Other species regularly used for timber framework and roof
constructions are silver fir (Abies alba), spruce (Picea abies),

pine (Pinus sylvestris) and larch (Larix decidua). Sophisticated
knowledge of mechanical properties and other characteristics
of various tree species by historical craftsmen can be expected
(Blau, 1917). The regional preference of a species is strongly
affected by its natural distribution (Kolář et al., 2021; Shindo and
Giraud, 2021; Sochová et al., 2021; Solomina and Matskovsky,
2021). For example, in the lowlands of western Europe oak
was regularly used for all components of vernacular buildings
due to the rare occurrence of conifers (Haneca et al., 2009;
San-Miguel-Ayanz et al., 2016). Northern Europe’s vernacular
architecture was dominated by pine, whereas fir and spruce
are more frequently found in central European constructions
(Becker and Giertz-Siebenlist, 1970; Eißing and Dittmar, 2011;
Seim et al., 2015; Thun and Svarva, 2017; Kolář et al., 2021).
Larch is restricted to high elevation areas in the Alps and parts
of the Tatra Mountains, where it was also preferentially used
(Büntgen et al., 2006a, 2013). Larch (from the Alps) was massively
used also in the areas dominated by the Venetian Republic
Serenissima (e.g., Levanič et al., 2001). The most frequently
used species in the Mediterranean region are oak (Quercus
spp.), chestnut (Castanea sativa), pine (Pinus spp.), fir (Abies
spp.), juniper (Juniperus spp.), and cedar (Cedrus spp.) (Bernabei
et al., 2016; Christopoulou et al., 2020a). In the sparsely wooded
regions of the Mediterranean, timber import played a particularly
significant role (Domínguez-Delmás et al., 2018; Bernabei et al.,
2020; Christopoulou et al., 2020a).

There are chronological and regional differences regarding
the data basis of historical timber constructions in Europe.
Many modern towns and rural villages were just established
during the consolidation of high medieval political structures
in the 12th-13th century and those urban settlements that
had existed before ca. 1200 CE have been affected largely by
structural changes during the 13th century and later extensive
reorganizations (e.g., Bartlett, 1994; Westphal, 2002; Mitchell,
2013). Therefore, the early centuries of the last millennium
are generally underrepresented. The vast majority of all studied
timbers are from towns, typically small ones in rural settings
that in many cases have lost their importance in modern times.
Because of that, old buildings were more likely to survive the
destruction caused by later wars and urban renewal in the 19th
and 20th centuries than buildings in major cities. Rural farm
buildings pre-dating the 17th century are rarely preserved and
are therefore only represented to a limited extent. For large
parts of central Europe, the Thirty Years’ War (1618–1648)
might have greatly decimated older buildings in rural areas
(Ljungqvist et al., 2018).

Wood From Objects of Art History,
Instruments, and Furniture
Dendroarchaeological analyses can also be applied on wooden
art objects like panel paintings, sculptures, furnishing items and
musical instruments. The most important research questions for
these high-quality objects are precise dating and provenance of
the wood and is mainly initiated by art historians in museums
or art dealers. As the actual origin of the wood for the highly
specialized art sector is unclear in many cases, these sources are
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not included in paleoclimatological studies. However, wooden art
objects provide information on historical species selection and
woodworking techniques.

The first dendrochronological analyses of panel paintings in
Europe were conducted on works by German medieval painters
in the 1960s and ‘1970s by the German biologist Josef Bauch
(1968). In the mid-1970s, J. M. Fletcher followed and dated panel
paintings done by 15th- to 17th-century English and Flemish
artists (Fletcher, 1975). From this point on, dendrochronology
has been commonly applied to art objects (Bauch and Eckstein,
1970, 1981; Bauch, 1978; Bauch et al., 1978; Klein, 1986, 1998;
Klein and Wazny, 1991; Hillam and Tyers, 1995) and musical
instruments (Klein, 1985, 1996; Topham and McCormick, 1998;
Beuting and Klein, 2003; Topham, 2003; Beuting, 2009; Bernabei
et al., 2010, 2017; Čufar et al., 2017). For musical string
instruments, the material is carefully selected, such as spruce trees
with hazel growth, an uniformly finely striped texture, which
were found to produce the best sounds (Buksnowitz et al., 2007;
Brandstätter, 2016; Bucur, 2016).

Non-invasive methods are applied and the tree-ring widths
of the planks are measured either directly on the planks of the
panel or instrument or on macro-photos (of ca. 5 cm segments)
which are taken from the cross section of the panels (Myhr et al.,
2007). Even more modern technologies using an industrial CT
scanner or X-ray technology allow the analysis of tree rings non-
invasively (van den Bulcke et al., 2014; Stelzner and Million,
2015; Daly and Streeton, 2017; Domínguez-Delmás et al., 2021a).
Dendrochronological analyses on furniture are less common but
similarly important as they highlight woodworking and stylistic
changes in the society (Pickvance, 2012, 2015; Klein et al., 2014;
Allen, 2015; Domínguez-Delmás et al., 2021b).

APPLICATION AND MULTIDISCIPLINARY
FIELDS IN DENDROARCHAEOLOGY

Evolution of Woodworking Technology
Since the Paleolithic, wood has been an important raw material
for various purposes, e.g. hunting weapons (Thieme, 1997;
Lozovski et al., 2016; Conard et al., 2020). Mobile hunter-
gatherer communities of the Upper Paleolithic (50–12 ka
BP) and Mesolithic (ca. 15–5 ka BP) periods used wood for
the production of tools, weapons and short-lived housing.
First important innovations in woodworking technology are
recognizable during the Neolithic period (ca. 6000–2200 BCE)
when the establishment of a sedentary lifestyle required the
processing of larger timber for permanent buildings, which are
suitable for year-round habitation. Water wells from this period
provide evidence for the utilization of large oak trees, frequently
split for the use in block constructions, and sophisticated
carpentry techniques for surface treatment and corner joints
(Tegel et al., 2012; Rybníček et al., 2018, 2020). Analyses
of toolmarks on the preserved timber provide evidence for
the use of different tools for specific working steps (Elburg
et al., 2015). Different types of construction produced by
Neolithic carpenters illustrate the impressive woodworking
skills of Europe’s first farmers (Rybníček et al., 2020). In the

further course of the Neolithic period, large-scale constructions
consisting of hundreds of mature oaks suggest the collaboration
of larger communities and provide evidence for socio-economic
developments (Donnart et al., 2019). Oak remained the preferred
species for construction timber throughout the pre-historic and
proto-historic periods in Europe.

New impulses for carpentry techniques were provided with
the occurrence of new materials for the production of tools.
Bronze first occurred in large parts of Europe during the late
3rd millennium BCE and the technology of iron production
spread in the early 1st millennium BCE. The use of metal
tools enabled the development of new woodworking techniques
and novel types of constructions. Important innovations are
the development of new tools, e.g., wood borers and saws that
together with other inventions further accelerated the civilization
of Europe. Improvements in iron technology in late Iron Age and
Roman Europe allowed the development of large saws suitable for
longitudinal cutting of trunks, which facilitated the production of
planks and boards (Figure 9). This, together with the invention
of the carpenter’s plane in Roman times, revolutionized furniture
making (Goodman, 1963; Schadwinkel et al., 1986). The use of
hydro-power as a mechanical labor force for grain mills was
first applied in European Antiquity and further developed in
different regions of early medieval Europe (Wikander, 1984;
Spain, 2008; Rynne, 2015; Muigg et al., 2018). The mechanics
of watermills are entirely made of wood and require extensive
mechanical knowledge and high-precision carpentry. These first
complex mechanical machines were also adapted for cutting
wood, with first sawmills appearing in central Europe around
1200 CE (Finsterbusch and Thiele, 1987; Berthold, 2009). The
milling technology spread throughout medieval Europe in the
12th and 13th century and was a main driver for changing
economic structures (Jeute, 2015). During the late medieval and
early modern periods, the development of craft guilds and the
diversification of woodworking professions lead to a great variety
of specialized tools (Goodman, 1963; Schadwinkel et al., 1986;
Finsterbusch and Thiele, 1987; Greber, 1987).

Trade of Woods and Goods
As a consequence of the sedentary lifestyle, developed in large
parts of Europe during the Neolithic period, forest areas in
the vicinity of settlements were intensively exploited, which
successively led to a shortage of timber. Therefore, wood had
to be harvested from further away and transported to the
settlements. Prehistoric settlement patterns are frequently found
on lakeshores and riversides, which enabled effortless transport
on water by towing or rafting of construction material. Timber
from the same forest stand that was found in different dwellings
on the northern and southern shore of Lake Constance provides
indirect evidence for timber transport (Benguerel et al., 2020).

First proof for local timber transport on water is provided
by a Neolithic palisade from La Villeneuve-au-Châtelot (Aube),
dated to 3232 BCE, where characteristic recesses in various
timbers suggest the assemblage of rafts (Donnart et al., 2019;
Figure 10). In contrast to transportation on water, overland
transport was a much more tedious process. Since the Neolithic,
large amounts of wood were used for road building to enable
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FIGURE 9 | Longitudinal sawing of planks and boards. (A) Oak board with a characteristic “V” saw mark from the Roman harbor in Reims, France (1st century CE)
and (B) sawing marks with a characteristic “V” mark on a beam from a historical building in Le Val-d’Ajol, France (18th century CE). (C) Historical postcard from La
Baconničre, France, depicting the sawing process.

land transportation in marshy areas (Hayen, 1990; Fansa, 1992;
Endlich and Lässig, 2007). First evidence for chariot wheels from
Europe date to the late 4th and early 3rd millennium BCE
(Höneisen et al., 1989; Velušček and Čufar, 2009; Schlichtherle,
2010). Around 2000 BCE the domesticated horse spread
throughout Europe, providing a new type of working animals
suitable for faster transportation (Anthony, 1995), which led
to the development of new chariot and wheel types during
the early Bronze Age (Heussner, 1985; Tegel and Croutsch,
2016). The bronze-age invention of steerable front axles had
an impact on the size of wooden roads, which were built
narrower than in Neolithic times (Fansa, 1992). During the
Bronze Age, chariots were not exclusively used for transportation
but also became objects of prestige. The prestigious image
of wheel chariots continues through the Iron Age and is
visible in elite graves furnished with chariots (Biel, 1995;
Laurent et al., 2002).

Besides chariots, ships were the most important means of
transport for timber. These vehicles themselves were entirely or
predominantly made from wood and played a pivotal role for the
transportation of various other goods.

Simple monoxyle log boats are known in Europe as early
as the Mesolithic period and were in use until post-medieval
times for fishing and short distance transport in certain regions

(Arnold et al., 1995; Lanting, 1997; Kröger, 2014). The oldest
archaeological evidence of a raft of combined logs was found
in 1922 at the “Wilden Ried” in Upper-Swabia, Germany,
dating to the Bronze Age (Ellmers, 1972). However, it can be
assumed that such rafts were already used in earlier periods
(cf. Donnart et al., 2019). Larger vessels both for inland
and maritime navigation required more complex constructions.
The oldest examples for such ships found in Europe date
to the Iron Age, e.g., from Hjortspring, Denmark (Crumlin-
Pedersen and Trakadas, 2003). Archaeological evidence of ships
with laced planking for the 6th century BCE in Massalia
(Marseille), France, and for the 3rd century BCE in Ljubljana,
Slovenia, illustrate the influence of the Mediterranean maritime
ship building traditions on European inland navigation vessels
(Pomey, 1996; Teigelake, 1998). Different types of ships have
developed since the Roman era (Arnold, 1992; Bockius, 2002,
2006) and further technological innovations can be recognized
for medieval and post-medieval times (Bridge and Dobbs,
1996; Hakelberg, 1996; Crumlin-Pedersen et al., 1997; Hoffmann
and Schnall, 2005; Lemée, 2006; Jansma et al., 2014; Englert
and Crumlin-Pedersen, 2015). For all these mobile wooden
vessels, their excavation site might differ considerably from
their site of construction (Bonde, 1998; Domínguez-Delmás
et al., 2019), making them important objects of research
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FIGURE 10 | (A) Oak posts from a Neolithic palisade (3231 BCE) with recesses on the basis used for timber floating or over land transport (Donnart et al., 2019).
(B) Recesses on construction wood frequently found in roof trusses (Colmar, Alsace, France, 18th century CE) typical for timber rafting. (C) Detail view on the raft
assemblage of a modern reconstructed raft.

for dendroprovenancing (Daly, 2007; Daly and Nymoen, 2008;
Bridge, 2012; Domínguez-Delmás et al., 2013).

The same applies for wooden barrels, used as containers for
various trading goods and frequently re-used in well linings
or latrines at their final destinations in Roman and post-
Roman settlements (Ulbert, 1959; van Es, 1972; Greig, 1981;
Clerici, 1983; Marličre, 2002; Falk, 2003; Hagendorn and Bouchet,
2003; Bauer, 2009; Robben, 2009; Čufar et al., 2019; Mille
and Rollet, 2020). Barrels are elaborately crafted objects that
reveal detailed information about the precise wood technology
and manufacturing as well as trade systems (Marličre, 2002;
Tamerl, 2010). Moreover, brand marks and graffiti found on
barrels provide information for epigraphic and other studies
(Frei-Stolba, 2017).

Wood itself was an important trading good. First indication
for long-distance timber transport was found during the
Antiquity for silver fir (Abies alba) for the construction of Roman
harbors and bridges in regions outside the natural habitat of
the species, e.g., in Mainz and Cologne (Bauer, 2001; Tegtmeier,
2016). Further evidence for Roman long-distance timber
transport was found in Voorburg-Arentsburg, Netherlands
(Domínguez-Delmás et al., 2014). New dendroarchaeological

research shows a combined river and sea transportation of oak
planks from regions north of the Alps for a construction in the
city of Rome, further illustrating the necessary advanced logistic
infrastructure (Bernabei et al., 2019). In post-roman Europe
(after the first Millennium CE), growing population and fast
urban development accelerated the decline of regional forests
(Kaplan et al., 2009; Deforce, 2017) and led to the development
of intense timber trade on the continental waterways through
sea trade and river systems (Ellmers, 1985; Eißing and Dittmar,
2011). First historical evidence for medieval timber rafting
on various large and smaller rivers date from the 12th and
13th centuries (Neweklowsky, 1952; Irsigler, 1992; Henne, 2005;
Eißing and Dittmar, 2011), demonstrating the rising importance
of timber transport on rivers (Delfs, 1985; Heussner, 2015). The
development of extensive rafting infrastructures in mountain
regions led to progressive exploitation of new forest areas
for both, fuelwood and timber (Neweklowsky, 1959). Proto-
industrial glass and salt production emerged to major consumers
for fuelwood (Lamschus, 1993; Goldammer, 1998; Grabner
et al., 2018). The prevalence of coniferous species in the timber
material from historical buildings in large parts of central
Europe, noticeable from the 14th century onward, provides
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strong evidence for extensive timber transport on a continental
scale. Occasionally, traces of rafting can be found on timber
elements in historical buildings (e.g., Eißing and Dittmar, 2011;
Zunde, 2011; Shindo and Claude, 2019; Figure 10B). Regional
differences of technical solutions for combining logs, varying for
different river systems, hold information on the origin of timber
(Eißing et al., 2012).

Selected, high quality timber, especially from oak, for art
objects was in high demand also after local old forests were
depleted in some regions in western and central Europe already
by the 10th century (Deforce, 2017). Consequently, from the mid-
14th century, increasing amounts of long-lived, straight-grained
oak trees were imported from Poland and the other states around
the Baltic Sea (Wazny, 1992, 2002; Bonde et al., 1997; Haneca
et al., 2005; Fraiture, 2009). The Baltic timber trade was actively
practiced by the Kingdom of Sweden and the Polish–Lithuanian
Commonwealth with England and the Low Countries in the 14th
to 18th century (Kirby, 2014). The transport was done on ships
and mainly with prepared planks, boards, deals etc. (Johansen,
1983; Belasus, 2017).

Forest History
Comprehensive dendroarchaeological datasets established by
European laboratories provide information on the anthropogenic
impact on forest environments. The natural composition of
species in European forests depends on various factors, including
soil properties, environmental and climate conditions, the
ecological amplitude of different tree species, the timing of
species occurrence as well as the inter-species competition
within a forest ecosystem (Ellenberg, 1996). However, human
societies have influenced the natural forest composition in large
parts of Europe throughout the Holocene. First indirect human
impact on post-glacial forests might have already happened
in the Mesolithic period through hunting pressure on large
herbivores as well as facilitating the distribution of species
through gathering, e.g., hazelnuts (Küster, 1996). Distinct human
impact on forest compositions started at least with the emerge
of sedentary societies during the Neolithic period that extracted
construction timber and cleared forest areas for agriculture and
settlements. Growing populations and successive colonization of
suitable areas throughout the pre-historic and historical periods
were accompanied by increasing forest exploitation. Hence, there
are hardly any natural forests left in the western parts of Eurasia
(Malzahn, 2011).

For millennia, people have been using forest resources for
various purposes of their everyday life. To cover a constant
demand of wood, e.g., for fuel and timber from the same forest
areas, local communities had to develop strategies for sustainable
resource availability. Large amounts of dendroarchaeological
data from pile dwellings at Lake Constance suggest cyclic
utilization of local forest stands as early as the late Neolithic
period (Billamboz, 2014b). After a first phase of clearing
primary forests, several different forms of forest treatment can
be postulated from dendrotypological studies on timber size,
individual tree age and growth patterns during the Neolithic
occupation (Billamboz and Köninger, 2008; Billamboz, 2014a).
Coppice-like forest structures are documented for the 36th

century BCE in phase IB at the Neolithic pile dwellings at
Hornstaad-Hörnle (D), yet without evidence for systematic
management (Billamboz and Unz, 2006). Alternating phases of
over-exploitation of local forests through harvesting and grazing,
subsequent degradation, change of utilized forest area, natural
reforestation and clearing display the complex interaction of
natural and anthropogenic factors. First evidence for successive
use of the same forest stands by local communities is provided
by the dendroarchaeological data from Sipplingen-Osthafen
(D), where continuous building activities between 2915 and
2864 BCE confirm coppice-like forest management (Billamboz
and Köninger, 2008). Similar forest management systems have
been studied for Bronze Age and Iron age settlements (e.g.,
Reynolds, 1985; Andraschko, 1996; Billamboz and Schöbel,
1996). Other possible silvicultural systems, for example coppice-
with-standards-like forest structures cannot be ruled out for
pre-historic communities. However, such management practices,
presupposing intensive large-scale forest clearing and the
absence of alternative regional wood sources, require certain
demographic conditions, which probably did not occur in most
regions of Europe before the Roman period (Lo Cascio, 1994).

The first historical evidence for coppice-with-standard forest
management in Europe appear at the beginning of the 13th
century CE (Hausrath, 1982). As a result of population growth
and urbanization, this silvicultural system was necessary to secure
the constant supply of timber and fuelwood for medieval central
Europe. Improved administrative structures, crucial for such
long-term regulations that required planning by local authorities,
led to a surplus of historical evidence, i.e., written sources, during
late medieval and early modern periods (Hausrath, 1982). New
dendroarchaeological studies, however, provide strong evidence
for the existence of this more sophisticated silvicultural practice
as early as the 6th century CE and therefore throughout a
ca. 1400-year long period from early medieval to modern
times (Muigg et al., 2020). Coppice and coppice-with-standards
management has played an important role during medieval
and early modern times until the use of fossil fuels provided
alternatives to fuelwood and allowed the transformation of
economic forests to modern high forests (Schmidt, 2002). Before
that, countless historically recorded disputes and conflicts of
interests illustrate an intensification of resource scarcity in many
parts of Europe (Epperlein, 1993; Warde, 2006, 2018). Similar
conflicts have to be assumed also for densely populated areas in
earlier periods/pre-historic times but cannot be verified due to
the lack of historical records. Nevertheless, dendroarchaeological
parameters, i.e., changing annual growths, tree age classes
and species might display long-term spatio-temporal changes
in European forest management regimes (e.g., Haneca and
Beeckman, 2005; Deforce and Haneca, 2015; Deforce et al., 2020).

Environmental History (Climate,
Anthropogenic Land Use, Deforestation)
Interannual variability in growth increment is one of the
fundamental features of dendroarchaeology. Inter- and
intra-annual tree ring parameters such as variability in
wood density, stable (δ13C and δ18O), and unstable (δ14C)
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isotopes are also highly suitable natural proxy data for
environmental reconstructions, in particular climate, as they
provide information with high temporal and spatial resolution.
Today, they form the primary basis for palaeoclimatology of
the last centuries to millennia (Stocker, 2014). In Europe,
dendroclimatological studies have mainly focused on
temperature reconstructions based on coniferous species of
the high altitudes in the Alps (Büntgen et al., 2006b; Corona
et al., 2010), the Pyrenees (Büntgen et al., 2008), the Carpathians
(Popa and Kern, 2009; Kaczka et al., 2016), and the boreal forests
in Scandinavia (Grudd, 2008; Helama et al., 2009; Esper et al.,
2014). Annual tree growth at such treeline sites is primarily
controlled by temperature during the short growing season
(June–August) and thereby a distinct temperature signal in
series of both tree-ring width and maximum latewood density is
present (e.g., Esper et al., 2016). Aside from hydroclimatic
reconstructions from extreme sites such as the eastern
Mediterranean (Akkemik et al., 2008; Klippel et al., 2018)
and North Africa (Esper et al., 2007), coniferous species from
southern Scandinavia (Helama et al., 2005; Seftigen et al., 2013),
Slovenia (Čufar et al., 2008a), Moravia (Brázdil et al., 2002;
Büntgen et al., 2011a), and southern Germany (Wilson et al.,
2005) provide precipitation reconstructions for central and
northern Europe. For hydroclimate-sensitive broadleaf tree
species at low elevations in Central Europe, however, only a few
studies are available so far (Kelly et al., 2002; Čufar et al., 2008a;
Büntgen et al., 2010, 2011c, 2021b; Scharnweber et al., 2019;
Tegel et al., 2020).

Information relevant for forest ecology can be obtained from
the distribution of species in archaeological material. Local
to regional differences over time indicate changes in natural
woodland societies. Long-term changes of forest ecosystems
can be studied in conjunction with palynological records and
yield important information on the migration history of species
and establishment and consolidation of forest communities
(Tinner and Lotter, 2006).

Other wood anatomical characteristics of archaeological wood
provide further information to study past ecological conditions.
Defoliation leads to growth reactions visible in the anatomical
structure of trees, for example abnormal earlywood zones,
irregularly shaped, small vessels or slightly thickened latewood
tissue cells (Schweingruber, 1996). There are various possible
reasons for defoliation events, for example anthropogenic
(pollarding, management) or natural (floods, storms, insects)
(Figure 11). Even though it is not always possible to attribute an
anatomical feature to a specific event, the combination of wood
anatomical observations and tree-ring patterns allow further
interpretation. For example, a larger earlywood section combined
with characteristic tree-ring patterns observable in archaeological
wood samples has been attributed to insect calamities (Büntgen
et al., 2009; Kolář et al., 2013; Figure 11A). Massive cockchafer
outbreaks follow a 3–5-year cycle depending on the region. They
occur during the early vegetation period and result in significant
defoliation, which is accompanied by a reduced radial growth in
combination with a higher amount of earlywood vessels (Kolář
et al., 2013; Figure 11A). This leads to a distinct cyclic tree-ring
pattern, occasionally found in subfossil trees and archaeological

timber (Rohmer and Tegel, 1999; Herzig and Seim, 2011).
Distinct growth reduction and vessel anomalies can also be
associated with pollarding and flood events, causing partial
defoliation (Figure 11B). However, a differentiation is only
possible in combination with dendrochronological studies and
strongly depends on an attributable tree-ring pattern. Several
other wood anatomical features (e.g., frost rings, physical injuries
and overgrowth, reaction wood, traumatic resin duct) can be
found in archaeological and subfossil material, albeit their
specific interpretation relies on the amount of data and the
overall context.

Dendroarchaeology and Radiocarbon
Dating
Another fundamental method for dating in archaeology is
based on the partial decay of radioactive isotopes (radiocarbon,
δ14C) contained in organic finds. The atmospheric radiocarbon
content varies because of changes in upper atmosphere
production and global carbon cycling. Therefore, radiocarbon
dating and dendrochronology are strongly interconnected, as
tree rings provide an important source for calibrating the
radiocarbon variability over time. The calibration curve, used
as a worldwide standard for radiocarbon (14C) dating over
the past ca. 50.000 years, is continuously improving toward a
higher resolution and replication (Reimer et al., 2020). Tree
rings from dendroarchaeological sources contain high-precision
data throughout the Holocene. Recent studies have shown the
significance of tree-ring-based calibration also for the Late Glacial
Period (e.g., Reinig et al., 2020, 2021).

The interconnection of the two methods of dendrochronology
and radiocarbon dating also allows the calibration of millennia-
long dendrochronological records. Improved inter-annual
radiocarbon measurements enable to observe sudden and
anomalous activity shifts, such as significantly increased
atmospheric production rates of cosmogenic radionuclides on
a global scale (Miyake et al., 2012; Usoskin et al., 2013; Jull
et al., 2014; Büntgen et al., 2018). The detection of such events
enables to independently validate tree-ring chronologies on
both hemispheres and can furthermore contribute to connecting
synchronous events with other long-term proxy records, for
example isotopes from corals and ice cores (e.g., Liu et al., 2014;
Mekhaldi et al., 2015).

Annually resolved chronologies are paramount to precisely
date past volcanic eruptions not recorded in historical documents
(Büntgen et al., 2017; Hakozaki et al., 2018). Starting from a
distinct and well-known event, e.g., the 774/775 CE 14C spike
(Miyake et al., 2012), the dating of an unknown event can be
established by counting the number of rings to the waney edge.
An other prominent example is the precise dating of Viking
activity in Newfoundland in 1021 CE by making use of the rapid
14C excursion at 993 CE (Kuitems et al., 2021). In this way, all
wooden finds worldwide, which show such rapid 14C excursions,
can be accurately dated. This is all the more important for regions
lacking dendrochronological reference chronologies.

However, it is paramount for multi-proxy synchronization
that the independent dating results from tree rings and
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FIGURE 11 | Tree-ring anomalies. (A) Cockchafer outbreak pattern on a recent oak from Diesenhofen, Switzerland, with cyclic growth reductions every three years
combined with higher early wood production. (B) Two years reduction in tree-ring width (red arrows) by pollarding of oak (Quercus cerris, Albania). (C) Stem disk
from an oak standard (Welbhausen, Germany) with periodical growth release pattern induced by coppice-with-standard forest management practice.

FIGURE 12 | Overview of the research discipline dendroarchaeology including research questions, wood sources, analyses and results that are relevant for different
research fields and applications.

radiocarbon are compared on the annual scale, as the common
decadal or semi-decadal resolution of radiocarbon dates can lead
to misinterpretations (Jull et al., 2021). So far, verified spikes in
14C activity could be observed for 993/994 CE, 774/775 CE, 660
BCE, 813 BCE and 5480 BCE (Mekhaldi et al., 2015; Miyake
et al., 2017; Park et al., 2017; Jull et al., 2018; O’hare et al., 2019).
Given the great success of recent investigations in identifying
and precisely addressing such events, it is to be expected that
further intensified research might reveal additional atmospheric
14C spike excursions.

CONCLUSION

Dendroarchaeology is a remarkably wide research field,
which can offer essential contributions to a variety of

disciplines and should not be restricted to delivering
absolute dating (Figure 12). Wooden remains can be found
from almost all epochs. Therefore, dendroarchaeologists
should generally be open to interdisciplinary approaches
and need to stay open-minded toward all areas of palaeo-
sciences. A major prerequisite for dendroarchaeological
studies is a comprehensive data base, well-replicated over
time. The amount of high-quality tree-ring data varies
greatly for different regions of Europe, especially south and
south-east of the Alps. The development of millennia-long
tree-ring chronologies for the main European tree species
is an ongoing process and needs to be further developed
constantly for more regions within the Old World (Nechita
et al., 2018; Christopoulou et al., 2020a; Roibu et al., 2021).
Therefore, all available sources of wood should be used:
subfossil trees, archaeological finds, historical buildings,
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art objects and modern trees are essential to build and improve
dendroarchaeological records.

The diversity of sources requires active cooperation
between experts of dendroarchaeology as well as beyond
disciplinary boundaries. So far, the most fruitful and close
interdisciplinary cooperation have been implemented with
archaeologists, historians, physicists, climatologists, geologists
and palynologists, providing important contributions to dating,
history of technology, radiocarbon calibration, palaeoclimate
reconstructions, volcanic activities and vegetation history,
just to name a few.

Considering the recent advances in studies of ancient
plant DNA, the field of aDNA holds a great potential for
combined studies on postglacial migration and climatic
adoption of tree species as well as provenancing wooden
objects (Wagner et al., 2018; Saleh et al., 2021). Different
fields of dendro-sciences have developed various novel
approaches, for example by studying density fluctuations,
earlywood/latewood ratios and variances of vessel size, allowing
to extract further information on the inter- to intra-annual
regimes and to combine these different parameters (e.g., Wilson
et al., 2017; Mann et al., 2018; Akhmetzyanov et al., 2019;
Björklund et al., 2019).

However, these innovative approaches are only partially
transferable to archaeological wood. Large differences in quality
and type of wood preservation, combined with the inherent lack
of stand and tree level information, pose limits to a generalized
inclusion in dendroarchaeology. Therefore, total tree-ring width
provides the most accurate, most widely used and consequently
the most valuable parameter for dendroarchaeological tree-
ring studies.
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Kolář, T., Kyncl, T., and Rybníček, M. (2012). Oak chronology development in the
Czech Republic and its teleconnection on a European scale. Dendrochronologia
30, 243–248. doi: 10.1016/j.dendro.2012.02.002
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