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Abstract
Dengue is one of the most prevalent mosquito-borne diseases in the world, affecting an estimated 390 million people each 
year, according to models. For the last two decades, efforts to develop safe and effective vaccines to prevent dengue virus 
(DENV) infections have faced several challenges, mostly related to the complexity of conducting long-term studies to evaluate 
vaccine efficacy and safety to rule out the risk of vaccine-induced DHS/DSS, particularly in children. At least seven DENV 
vaccines have undergone different phases of clinical trials; however, only three of them  (Dengvaxia®, TV003, and TAK-003) 
have showed promising results, and are addressed in detail in this review in terms of their molecular design, efficacy, and 
immunogenicity. Safety-related challenges during DENV vaccine development are also discussed.

Key Points 

Dengue vaccine development has been challenging 
because of the need to provide protection against all four 
dengue serotypes to avoid potentially causing antibody-
dependent enhancement in further infections.

Denvaxia® is currently the only licenced vaccine, but 
phase III clinical trials with two other vaccines, TV-003/
TV-005 and TAK-003, are currently ongoing, with 
promising results.

1 Introduction

Dengue fever represents a great burden for the public health 
systems worldwide and is considered the most prevalent 
mosquito-borne disease in tropical and subtropical regions 
of the world [1, 2], rapidly expanding every year due to sev-
eral factors such as climate change, deforestation associ-
ated with uncontrolled urbanization, overpopulation, and 

the emergence of mosquitoes resistant to common insec-
ticides, amongst others [3–5]. Dengue fever is caused by 
dengue virus (DENV), which is classified under the genus 
Flavivirus of the family Flaviviridae and is transmitted by 
mosquitoes from the Aedes genus, mostly Aedes aegypti and 
Aedes albopictus. Four genetically distinct DENV serotypes 
(DENV-1, DENV-2, DENV-3, and DENV-4) have been 
reported to co-circulate amongst humans worldwide [6, 
7]. Dengue is characterized by a wide spectrum of clinical 
manifestations ranging from a mild febrile illness to severe 
dengue, increasing the risk of developing dengue hemor-
rhagic fever (DHF) and dengue shock syndrome (DSS). A 
secondary DENV infection (e.g., exposure to a heterotypic 
serotype) is the greatest risk factor for serious diseases due 
to the phenomenon of antibody-dependent enhancement 
(ADE) [8]. Briefly, cross-reactive antibodies generated 
after exposure to the first DENV serotype combine with the 
second DENV serotype to create infectious immune com-
plexes that enter Fc-receptor-bearing cells. As a result, the 
number of infected cells and the amount of virus produced 
per cell increases. This is therefore imperative that DENV 
vaccines protect against infection from all four serotypes to 
avoid ADE.

At least seven DENV vaccines based on different plat-
forms including live attenuated viruses, inactivated viruses, 
chimeric live attenuated viruses, DNA, and recombinant 
proteins have been developed and are currently undergo-
ing different phases of clinical trials (Table 1) or are under 
preclinical investigation [6]. In this review we discuss 
recent progress of the three most advanced DENV vaccines 
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 (Dengvaxia®, TV003/TV005, and TAK-003) (Table 2), 
focusing on the molecular characteristics of each vaccine 
(Fig. 1) and the available clinical data on their efficacy and 
immunogenicity. Finally, we emphasize the safety-related 

challenges associated with the risk of vaccine-induced DHS/
DSS.

For this review we systematically searched PubMed, Web 
of Science, and clinicaltrial.gov to obtain results on specific 
topics such as vaccines, trials as well as safety on dengue 
vaccines, and immunopathogenesis. We selected the most 
appropriate bibliography for this document.

2  Development and Preclinical Evaluation 
of Dengue Virus (DENV) Vaccines

2.1  Dengvaxia®

Initially developed in the early 2000s by the National Insti-
tutes of Health (NIH), the University of St. Louis, and 
Acambis Inc, and subsequently licensed by Sanofi Pasteur, 
this vaccine takes advantage of the ChimeriVax™ technol-
ogy. Based on a vaccine strain (17D) of yellow fever virus 
(YFV) in which the pre-membrane (prM) and envelope (E) 
genes of YFV have been replaced by the homologous genes 
from each one of the four DENV serotypes derived from 
DENV isolates obtained in Thailand and Indonesia between 
1978 and 1988, this technology enabled the generation of 
four chimeric YF-DEN viruses that were used in the formu-
lation of a tetravalent DENV vaccine (ChimeriVax™ DENV 
1-4) [16, 17].

Preclinical evaluation of the safety and immunogenicity 
of the tetravalent ChimeriVax™ DENV 1-4 vaccine showed 

Table 1  Candidate dengue vaccines in phase I or phase II clinical trials

Candidate Platform Phase/stage References

TDEN-LAV (WRAIR/GSK) Live-attenuated Phase II (Discontinued) [9]
TDENV-PIV (WRAIR/FioCruz/GSK) Inactivated adjuvanted Phase I (No recent reports) [10]
D1ME100/TVDV (NMRC) DNA vaccine Phase I (No recent updates) [11]
V180 (DEN-80E) (Merck/NIAD) Recombinant (subunit) Phase I (Published 2019) [12]
DENV-1-LVHC Live-attenuated Phase I (Published 2021) Clinicaltrials.gov [13]

Table 2  Dengue vaccines that have reach phase III or have been licensed

Vaccine Manufacturer Platform Efficacy Comments References

Licensed
CYT-TDV
Dengvaxia®

Sanofi Pasteur YFV ∆30 backbone 25–59% Increases hospitali-
zations in seron-
egative vaccinees

[7]

Phase III
TAK-003
(DENVax)

Takeda/Inviragen Attenuated DENV-2 backbone for the 
four serotypes

73.3–85.3% Well tolerated in 
adolescents and 
children

[14]

LATV
TV003/TV005

NIAD/Butantan/Merck DENV-1,3,4 ∆30 and rDENV2/4 ∆30 Not yet released Single dose [15]

Fig. 1  Molecular design of the anti-dengue virus (DENV) vaccines in 
advanced stages of clinical development. A  Dengvaxia® is based on a 
yellow fever backbone in which the pre-membrane (prM) and enve-
lope (E) genes of YFV have been replaced by the homologous genes 
from each one of the four DENV serotypes [16, 17]. B TV003/TV005 
was constructed by a deletion of 30 nucleotides (172–143) in the TL2 
stem-loop of the 3′-UTR of DENV-4 and DENV-1 (rDEN4∆30 and 
rDEN1∆30), DENV-2 and DENV-3 components were constructed 
from the rDEN4∆30 backbone [21, 22]. C Tak-003/DENVax is based 
on a live-attenuated DENV-2 strain (PDK-53-V) in which the pre-
membrane (prM) and envelope (E) genes of YFV have been replaced 
by the homologous genes from each one of the four DENV serotypes 
[27]
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a reduced neurovirulence profile in mice compared to the 
parental YFV vaccine strain (YF-VAX) [18]. Also, neuro-
virulence tests performed in Macaca fascicularis confirmed 
that the tetravalent ChimeriVax™ DENV 1-4 vaccine was 
significantly less neurovirulent than the parental YF-VAX 
strain [19]. In addition, the vaccine generated seroconver-
sion and strong neutralizing antibody responses against 
all four DENV serotypes following one administration of 
either a high or a low dose of the vaccine in cynomolgus 
macaques and limited viremias compared to the parental 
DENV strains. Interestingly, challenge studies revealed that 
92% of the vaccinated monkeys were protected against a 
challenge with wild-type DENV 1-4 [20].

2.2  TV003/TV005

The development of the live attenuated DENV vaccines 
called TV003/TV005 began in 1996 at the Laboratory of 
Infectious Diseases (LID) of the National Institute of Allergy 
and Infectious Diseases (NIAID). Considering the impor-
tance of the untranslated regions (UTRs) for the replication 
of DENV genome, the initial attenuation strategy focused 
on deleting 30 contiguous nucleotides (172-143) in the TL2 
stem-loop from the 3´-UTR of DENV-4 (rDEN4∆30) [20]. 
A mutant lacking the same homologous genomic region was 
also constructed for DENV-1 (rDEN1∆30). Both mutants 
displayed an attenuated phenotype as demonstrated by their 
reduced infectivity, and exhibited their capacity to induce 
strong neutralizing antibody responses in rhesus macaques 
that correlated with the protection when challenged with 
wild types of DENV-1 and DENV-4 [21].

Further efforts to achieve a tetravalent DENV vaccine led 
to the generation of the attenuated DENV-2 component by 
using the backbone of rDEN4∆30 to generate two attenuated 
DENV4-DENV2 chimeric viruses in which the membrane 
and envelope genes (rDEN2/4 ∆30 (ME)), or the capsid, 
membrane, and envelope genes (rDENV2/4 ∆30 (CME)) 
of DENV-4 were replaced with the homologous genes of 
DENV-2 [21, 22]. Preclinical evaluation of the two chime-
ras showed that both display a highly attenuated phenotype 
in SCID-HuH-7 mice, and rhesus macaques in which the 
chimerization and the ∆ 30 deletion was additive render-
ing the virus not infectious for monkeys [21]. A chimeric 
DENV3-DENV4 virus containing the original 30 nt dele-
tion at the 3′-UTR was generated (rDEN3 ∆30 (ME)) and 
further modified by introducing a non-continuous deletion 
of 31 nt (258-228) (rDEN3 ∆30/31). Preclinical evaluation 
of the mutant virus rDENV3 ∆30/31 in non-human pri-
mates revealed the desirable safety, undetectable viremia, 
and strong neutralizing antibody responses, which were suf-
ficient to protect the vaccinated monkeys when challenged 
with wild-type DENV-3 [23].

2.3  TAK‑003 (DENVax)

The development of the DENVax vaccine started in the 
late 1980s, when researchers from the Mahidol University 
in Bangkok, Thailand, isolated a DENV-2 strain (DENV-2 
16681) from the serum of a patient with dengue hemor-
rhagic fever. The attenuation of the DENV-2 16681 strain 
by 53 serial passages in primary dog kidney cells (PDK 
cells) lead to the obtention of the DENV-2 PDK-53-V 
strain, which in contrast to the parental DENV-2 PDK-
53 strain, which has attenuation-related mutations in the 
5´UTR and NS1 gene, possesses an additional non-synon-
ymous mutation in the NS3 gene. The DENV-2 PDK53-V 
strain displays reduced neurovirulence in suckling mice 
and lower replication rates in C6/36 cells [24–26], and 
was further used as the backbone to generate the DENVax 
vaccines.

The vaccine strains for DENV-1, DENV-3, and DENV-4 
used to formulate tetravalent DENVax vaccine were gener-
ated by replacing the pre-membrane (prM) and envelope (E) 
genes from the DENV-2 PDK53-V strain, with the prM and 
E genes from wild-type DENV strains [27]. The chimeric 
DENVax viruses displayed “small plaque” and temperature-
sensitive phenotypes when replicated in LLC-MK2 cells, 
in contrast to the parental wild-type strains. Tetravalent 
formulations containing the four DENVax vaccine strains 
(DENV 1-4) demonstrated reduced neurovirulence profiles 
in newborn ICR mice and were shown to be immunogenic in 
AG129 knockout mice, inducing high neutralizing antibody 
titers (1:320–1:2560) against the four DENV serotypes [27]. 
Preclinical evaluation of the tetravalent DENVax vaccine in 
cynomolgus macaques (Macaca fascicularis) showed a good 
vaccine safety profile and was well tolerated when adminis-
tered by the subcutaneous route, while inducing protection 
against the four DENV serotypes (measured by the protec-
tion against viremia) after two immunizations with a high 
dose scheme of a 5:5:5:5 formulation of each DENVax strain 
(DENVax 1-4) [28].

3  Clinical Evaluation of DENV Vaccines

To date,  Dengvaxia® is the only licensed DENV vaccine, 
yet phase III clinical trials with the TV-003/TV-005 and 
TAK-003 are currently ongoing with promising results. 
Nevertheless, as we discussed, differences between the age 
and serostatus of the vaccinees have been shown to have a 
direct impact on vaccine efficacy and safety. Most of the 
safety concerns regarding the DENV vaccines derive from 
phase III pediatric clinical trials to date, only  Dengvaxia® 
and TAK003 (DENVax) have been tested in children, with 
mixed results (Fig. 2).
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3.1  Dengvaxia®

Early phase I and phase II clinical trials to evaluate the 
safety, immunogenicity, and reactogenicity of the tetrava-
lent presentation of  Dengvaxia® (TDV) in healthy adults, 
between 18 and 45 years, were carried out in USA, the Phil-
ippines, Australia, Mexico, Vietnam, Singapore, and India; 
some of these studies also included pediatric populations 
aged between 2 and 18 years [29].

The primary safety evaluation of the  Dengvaxia® vac-
cine in adults showed that it was safe and well tolerated in 
a three-dose regimen at 0, 3–4, and 12 months, inducing 
mild to moderate transient local and systemic adverse events 
such as injection site pain, headache, malaise, and low-grade 
fever amongst others, with no vaccine-related severe adverse 
events (SAEs) reported. Assessment of the vaccine-induced 
cellular responses revealed that the vaccine did not induce 
the release of proinflammatory cytokines (IFN-γ, IL-1β, 
IL-6, IL-8, IL-10, IL-12p70), while inducing DENV sero-
type specific T-helper responses [30, 31].

The CD8 responses against the NS3 protein of the YFV-
17D strain used as the backbone for the ChimeriVax™ 

viruses were observed [32]. In individuals with pre-existing 
DENV immunity, the vaccine induced broader neutralizing 
antibody responses and boosted specific CD8+ responses 
against DENV non-structural proteins, particularly NS3, 
which are not elicited in naïve individuals. Even though 
most of the phase III clinical trials to evaluate the effi-
cacy of  Dengvaxia® have been conducted in the pediatric 
population (< 18 years), a randomized phase III clinical 
trial to evaluate the lot-to-lot consistency of the vaccine in 
healthy adults in Australia [33] revealed that even though 
naïve individuals developed neutralizing antibodies against 
all four DENV serotypes after receiving one dose of the 
vaccine, the only serotype-specific neutralizing antibodies 
produced were against DENV-4 [34]. Instead, DENV 1-3 
were neutralized by cross-reactive antibodies, revealing 
the immunodominance of the DENV-4 component of the 
vaccine [34]. Moreover, differential rates of viral replica-
tion of each vaccine component were observed by RT-PCR 
in dengue-naïve individuals after receiving one vaccine 
dose: DENV-4 (44%), DENV-3 (12%), DENV-1 (7%), and 
DENV-2 (0%), which may pose a risk for seronegative indi-
viduals to develop vaccine-enhanced disease when infected 
with DENV-2.

The most informative study regarding the efficacy and 
safety of  Dengvaxia® in the pediatric population was con-
ducted in 35,000 children aged between 2 and 16 years. The 
study revealed that the efficacy was age dependent, rang-
ing from 65% in children > 9 years to 45% in children 9 
years or younger [35]. Worryingly, children under 9 years 
showed a tendency to develop severe dengue after immuni-
zation following natural exposure to the virus, an effect that 
was particularly seen in dengue-naïve children [36]. Pedi-
atric studies to evaluate the efficacy of  Dengvaxia® have 
shown that efficacy varies between DENV serotypes and age 
groups. Results from a phase IIb trial conducted in Thailand 
to evaluate the efficacy of  Dengvaxia® in a cohort of 4002 
children between 4 and 11 years revealed that vaccine effi-
cacy was higher against DENV-4 and DENV-3 (100% and 
75.3%, respectively) than for DENV-1 and DENV-2 (55.6% 
and 9.2%, respectively) [37].

In larger pediatric phase III trials conducted in five den-
gue endemic Latin America countries in a cohort of 20,869 
healthy children between 9 and 16 years of age, efficacy 
against DENV-3 and DENV-4 was higher (74.0% and 
77.0%, respectively) than for DENV-1 and DENV-2 (50.3% 
and 42.3%, respectively), confirming that the vaccine effi-
cacy varies between serotypes and that it is age depend-
ent [38]. The latter was later confirmed by a larger phase 
III clinical trial to evaluate the efficacy of  Dengvaxia® in 
a cohort of healthy children from Latin America and Asia 
aged between 2 to 16 years. Results from this study revealed 
that the pooled rates of efficacy for symptomatic dengue in 
a follow-up period of 25 months were higher for children 

Fig. 2  Overview of the efficacy trials of anti-dengue virus (DENV) 
vaccines in children in Latin America and Asia. Phase III clinical 
trials have been conducted for Dengvaxia and DENVax with mixed 
results. TV003/TV005 is currently undergoing phase III clinical tri-
als. *The seroconversion rates for TV003/TV005 observed in phase II 
clinical trials are illustrated. **The lower value of the efficacy range 
depicted corresponds to the efficacy observed during the phase IIb 
trial conducted in Thailand. ***DENVax was only efficacious against 
DENV-1 and DENV-2 in seronegative individuals [38, 86]
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older than 9 years (65.6%) than for children under 9 years 
(44.6%). Moreover, the pooled relative risk of dengue requir-
ing hospitalization was higher for children under 9 years of 
age (1.58) than for children aged over 9 years (0.5) [39].

Further trials have suggested that the observer age-
dependent risk of dengue requiring hospitalization in chil-
dren under 9 years of age might be related to pre-existing 
anti-DENV immunity. A cohort study that analyzed data 
from three different efficacy trials revealed a higher inci-
dence of hospitalization due to virologically confirmed den-
gue (VCD) for seronegative vaccinees aged between 2 and 
16 years (3.06%) than for seronegative controls (1.87%), a 
trend that was also observed for seronegative vaccinees aged 
between 9 and 16 years (1.57% in seronegative individuals 
vs. 1.09% in seropositive individuals) [36].

Despite the high vaccine efficacy observed with 
 Dengvaxia® in different clinical trials, recent mathemati-
cal models using data of more than 800,000 children vac-
cinated in the Philippines estimate there will be more than 
1000 hospitalizations due to severe dengue in a period of 4 
years post-vaccination, in both seronegative and seropositive 
individuals [40]. These models along with the high rates 
of hospitalization observed in children under 9 years of 
age, that were wrongly considered as vaccine failure cases, 
highlight the importance of conducting enhanced phase IV 
surveillance studies in children vaccinated with  Dengvaxia® 
for a better assessment of the effectiveness of the vaccine 
in dengue endemic countries, even before the approval and 
deployment of the vaccine.

3.2  TV003/TV005

During the early phases of its clinical development, several 
phase I clinical trials were conducted using monovalent for-
mulations of the DENVax vaccine candidates to evaluate the 
safety profile, replication capacity of the individual DENVax 
viruses, and transmissibility from vaccinated individuals to 
Toxorhynchites splendens mosquitoes [41–45].

After these initial studies, six monovalent DENVax vac-
cine candidates were selected for further clinical evalu-
ation formulated as five tetravalent mixtures (TV-001 to 
TV-005). Two vaccine candidates (TV003 and TV005) for-
mulated with rDEN1D30 rDEN2/4D30, rDEN3D30/31, and 
rDEN4D30, but with different amounts of the rDEN2/4D30 
component  (103 PFUs/mL in TV003 and  104 PFUs/mL in 
TV005) were selected for further clinical evaluation after 
inducing the most balanced neutralizing antibody responses 
against the four DENV serotypes [46].

The safety and immunogenicity of TV003 and TV005, 
evaluated in two randomized placebo-controlled trials [47, 
48] in flavivirus-naïve subjects, revealed that both TV003 
and TV005 were well tolerated and showed a good safety 
profile, with low-grade rash reported as the most frequent 

adverse event in 76% of the participants in both groups. A 
single dose of TV003 induced balanced neutralizing anti-
body responses against the four DENV serotypes with sero-
conversion rates between 64% (DENV-2) and 100% (DENV-
4), while the specific response against DENV-2 improved 
with the TV005 vaccine (84%) after a single dose.

The lower proportion of participants that seroconverted 
to DENV-2 after receiving one dose of TV003 led to the 
development of a DENV-2 challenge model in which the 
original rDEN2D30 was used as a challenge virus 6 months 
post-vaccination, since it induced viremias 100-fold higher 
than the vaccine strain (rDEN2/4D30). The results showed 
that all the participants developed protective DENV-2 
responses and induced specific neutralizing antibodies 
against DENV-2 [21].

These results led to the licensing of the TV003 vaccine 
by the Butantan Institute in Brazil under the name Butantan-
DV, which was manufactured as a lyophilized tetravalent 
DENV vaccine and subjected to a two-step, double-blind, 
randomized, placebo-controlled, phase II clinical trial in 155 
DENV-naïve and 145 DENV-exposed healthy individuals, 
aged between 18 and 59 years [48]. The vaccine was safe 
and well tolerated and induced robust balanced neutralizing 
antibody responses with seroconversion frequencies above 
78% for the four DENV serotypes, in both DENV-naïve and 
DENV-exposed participants. Significant T-CD8 responses 
were observed in DENV-naïve and DENV-exposed partici-
pants 91 days after receiving one dose of the Butantan-DV 
vaccine, suggesting that this vaccine elicits broader protec-
tive immune responses in adults, in comparison to tetrava-
lent vaccines based on the expression of structural DENV 
proteins. A randomized, multicenter, double-blind, placebo-
controlled phase III clinical trial for the Butantan-DV vac-
cine is currently being conducted in Brazil with 16,944 par-
ticipants divided into three age groups (18–59 years, 7–17 
years, and 2–6 years); results for this trial are still to be 
published.

3.3  TAK‑003 (DENVax)

The clinical evaluation of DENVax started with a rand-
omized, double-blind, dose-escalation phase I clinical trial 
conducted by Takeda in Rionegro, Antioquia, Colombia, 
aimed to evaluate the safety and the immunogenicity against 
the four DENV serotypes of a two-dose scheme of DENVax 
administered intradermally (ID) or intramuscularly (IM) to 
DENV-naïve adults between 18 and 45 years of age [49]. 
The vaccine was safe and well tolerated among the partici-
pants in the study, inducing transient local reactogenicity 
and mild systemic adverse events. Vaccination induced the 
production of neutralizing antibodies against the four DENV 
serotypes, yet antibody titers against DENV-3 and DENV-4 
were lower among the participants [50].
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Due to the lower antibody responses against DENV-4, 
DENVax (now named TDV) was reformulated to increase 
the amount of the DENVax4 component, and different for-
mulations and dosing schedules were tested in a randomized, 
multicenter, phase 1b study carried out in the USA with 
140 DENV-naïve individuals between 18 and 45 years of 
age [51]. The seroconversion rates observed among the par-
ticipants in the study were 84–100% (DENV-1), 96–100% 
(DENV-2), DENV-3: 83–100% (DENV-3), and 33–77% 
(DENV-4).

The evaluation of the safety and immunogenicity of 
a two-dose scheme (0, 90 days) of the TDV vaccine in 
DENV-exposed individuals during a randomized, double-
blind, placebo-controlled phase II clinical trial carried out 
in Puerto Rico, Colombia, Singapore, and Thailand using a 
“high-dose” vaccine with higher titers of the DENVax3 and 
DENVax4 components, revealed that the vaccine induced 
lower neutralizing antibody responses against the DENVax4 
component regardless of prior DENV exposure [52].

A large-scale phase III clinical trial to evaluate the effi-
cacy of DENVax in a cohort of 20,071 healthy children, 
between 4 ando 16 years in dengue-endemic countries from 
Latin America and Asia, is currently being conducted. Pri-
mary results at 12 months post vaccination showed efficacy 
variations according to DENV serotype: 97.7% for DENV-2, 
73.7% for DENV-1, and 62.6% against DENV-3, while the 
efficacy results for DENV-4 were inconclusive. Interestingly, 
the overall vaccine efficacy was similar between participants 
who were seronegative at baseline (74.9%) and those who 
were seropositive at baseline (82.2%), and were independent 
of age range. Overall vaccine efficacy against dengue leading 
to hospitalization was shown to be 95.4% amongst seronega-
tive individuals and 94.4% for seropositive individuals [14].

Data from the same trial at 18 months post-vaccination 
revealed an overall vaccine efficacy of 76.1% in seropositive 
individuals and 66.2% in seronegative individuals, with an 
overall efficacy against different DENV serotypes ranging 
from 95.1% against DENV-2 to 48.9% against DENV-3. The 
overall efficacy against dengue requiring hospitalization was 
90.4%, and 85.9% against DHF. Yet, when stratified by age 
group, the vaccine efficacy against requiring hospitalization 
was significantly lower in those previously seronegative chil-
dren aged between 4 and 5 years (59.1%), as the efficacy to 
prevent hospitalization in seropositive children the same age 
was 51.6% [53].

The cumulative efficacy data of the DENVax vaccine 3 
years post-vaccination were recently published, showing an 
overall vaccine efficacy of 62% against VCD, significantly 
lower than the one observed at 18 months post-vaccination. 
A similar effect was observed with the overall efficacy 
against dengue requiring hospitalization, which reduced 
from 90.4 to 83.6%. In baseline seropositives, vaccine effi-
cacy against VCD ranged between 52.3% for DENV-3 and 

83.4 % for DENV-2, yet, in baseline seronegatives the vac-
cine was only efficacious against DENV-1 and DENV-2 
(43.5% and 91.9%, respectively), while no efficacy was 
observed for DENV-3. The efficacy against dengue requir-
ing hospitalization remained high amongst seropositive 
individuals but not in seronegative individuals, when the 
vaccine was only efficacious against DENV-1 and DENV-
2. Interestingly, the vaccine efficacy did not show any clear 
patterns that associated the efficacy observed with the age 
of the participants [54].

These significant variations in vaccine efficacy, assessed 
18 months apart, should be further analyzed during long-
term phase IV surveillance trials to rule out that the protec-
tive efficacy observed is due to cross-protection and might 
decline over time, as has been observed in pediatric popula-
tions during natural infections [55].

4  Challenges in DENV Vaccine Development

Immunopathological events are a common feature of DENV 
infections, with several underlying mechanisms such as an 
overreactive proinflammatory immune response (cytokine 
storm) characterized by an elevation of the plasmatic con-
centrations of several proinflammatory cytokines such as 
granulocyte-macrophage colony-stimulating growth fac-
tor (GM-CSF), macrophage inflammatory protein 1 beta 
(MIP-1β), interferon gamma (IFN-γ), and Intereukin 10 
IL-10 [56], which eventually leads to vascular leak, hemor-
rhages [56, 57], and some other thrombotic events [58, 59]. 
Molecular mimicry involving E and NS1 viral proteins has 
also been documented to activate cross-reactive antibodies 
against platelets and endothelium leading to severe dengue 
[60–62]. Moreover, naturally infected individuals with one 
DENV serotype, showing low levels of anti-DENV antibod-
ies (<1:80) suffer complications during secondary infections 
with a heterologous DENV serotype [63]. Specific antibod-
ies produced during infections constitute a significant part 
of immune response to neutralize invaders; however, for 
pathogens such as DENV, under certain conditions antibod-
ies generated in an initial encounter may enhance further 
infections [64, 65]. Interestingly, patients who develop high 
titers of anti-DENV antibodies (>1:320) exhibit protection 
against further symptomatic DENV infections.

The infection enhancement process known as antibody-
dependent enhancement (ADE) in dengue is well docu-
mented [66], but the details of this event in dengue remain 
elusive. Virus entry is known to be facilitated by Fcγ (Fig. 3) 
and mediates T-cell activation and release of TNF-α and 
other cytokines that cause endothelial dysfunction. Hence, 
effective DENV vaccines must induce a strong and highly 
neutralizing response against all four DENV serotypes to 
avoid vaccine-induced immunopathologic events.
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Evidence shows that this process might be potentiated 
mostly by anti-prM antibodies. prM is present in immature 
virus particles. Antibodies like anti-prM not only facili-
tate Fc uptake, but these antibodies in high concentrations 
also poorly neutralize virus [67]. Different IgG subclasses 
(IgG1–4) exist and exhibit dissimilar properties regard-
ing half-lives, levels in serum, complement activation, and 
binding to Fc receptors. Therefore, not only the targeted 
viral protein, but also the IgG subclass could help to better 
understand how neutralization/protection can be favored 
rather than ADE/immunopathogenesis. ADE occurrence 
in vaccinees must be examined regarding not only the IgG 
subclasses, but also the glycosylation stage [68, 69] to 
separate protective from immunopathogenic events. This 
is because glycosylation might alter affinity to Fc receptors 
as has been documented [70].

It seems all the live attenuated vaccines against den-
gue show capacity to induce antibodies against prM and 
fusion loop epitope resulting in serotype cross-reactivity 
and increasing the risk of ADE [71]. A new and important 
concern is how individuals will react to dengue vaccines, 
which arises in regions affected by the Zika virus (ZIKV). 
ADE has also been reported in individuals infected by 
DENV-2 who were previously infected by ZIKV [72]. Evi-
dence in animal models show this event for both DENV 
and ZIKV when using live attenuated vaccines [73].

An inefficient innate immune response followed by pro-
duction of subneutralizing antibodies and hyper-reactive 
T-cell response might contribute to immunopathologic 
events [67] in both dengue-infected individuals and vac-
cinees, but these events must be carefully analyzed in both 
vaccinees and naturally infected individuals to assess biolog-
ical significance. Maps of epitopes targeted by highly neu-
tralizing antibodies have been developed in macaques [74]; 
however, similar studies are needed in humans and these 
data must be considered for future vaccine development.

5  Safety Issues with Dengue Vaccines

To develop vaccines against dengue it is important for these 
to recognize the four existing serotypes; the three more 
advanced vaccines have considered this for their design 
(Table 3). An important consideration in natural infection 
is that a primary infection with one DENV serotype would 
establish a long-term memory against that specific sero-
type, but might result in a short-term, subneutralizing, and 
enhancing response for the other serotypes [75–77]. The 
enhancing phenomenon in subsequent dengue infections 
with a different DENV serotype could result due to previous 
heterotypic exposure, and avoiding these events is a constant 
concern in the field of dengue vaccines [78, 79].

Hence, from the beginning, the need for tetravalent, 
equally effective immunization for all the four DENV sero-
types was recognized as the most important challenge for 
design and development. Other concerns emerged later, such 
as the stimulation of high titers of neutralizing antibodies 
over those that sensitized individuals and enhance infection 
by DENV [71].

Dengvaxia®, one of the most advanced developments 
in vaccines against dengue, raised serious safety concerns 
when data showed an increased risk of hospitalization in 
naïve vaccinees when they were exposed to natural infec-
tion [80]. Takeda vaccine TAK-003 is still in phase III tri-
als and has been shown to be safe and to induce protection 
against dengue-related hospitalization with efficacies around 
75–80% independent of serostatus of vaccinated individuals 
[9]. Numerous phase II studies are still being carried out for 
this live-attenuated vaccine over the globe and in different 
age-group populations [31, 43, 81]. However, a phase III 
trial is still ongoing and the final conclusions on efficacy, 
side or rare adverse effects for this vaccine have not been 
drawn.

Regarding TV003/TV005, another live-attenuated vac-
cine developed in the National Institute of Allergy and 
Infectious Disease, data show these do not allow immuno-
dominant expression of any of the four serotypes, resulting 
in a desirable immune response. Moreover, initial reports 
showed that a single dose is protective and nearly sterilizing 

Fig. 3  Schematic representation of antibody-dependent enhancement 
(ADE) in dengue virus (DENV) infection. Low levels of anti-DENV 
antibodies (< 1:80) against one DENV serotype promote the forma-
tion of virus-immune complexes during secondary infections with a 
heterologous DENV serotype. These virus-immune complexes are 
internalized into monocytes, macrophages and dendritic cells via the 
Fcγ receptor, promoting viral release into the cell cytoplasm. Virus-
immune complexes modulate innate immune pathways promoting 
viral replication and release
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immunity is achieved in a second dose 6–12 months after 
the first immunization [10, 82, 83]. This vaccine has been 
licensed by different manufacturers and the Instituto Butan-
tan started a phase III trial to evaluate its efficacy [47].

Data of clinical trials for other promising developments 
using different vaccine platforms are still necessary, but 
much work is directed towards improving the existing vac-
cines. Developers aim to assure vaccines raise a broad and 
long-lasting highly neutralizing antibody response against 
all four serotypes [84]. Nevertheless, cellular response must 
also be evaluated and be efficient in vaccinees along with 
the antibody responses to assure the desirable protection. 
Most of all, vaccines should not pose any risk for develop-
ing severe disease in either naïve or previously exposed to 
DENV individuals. Thus, the scientific community is still 
working towards the safe and universal dengue vaccine the 
world needs.

6  Challenges and Opportunities

Reviewing clinical data on current dengue vaccines, 
clearly these pose a singular challenge for developers since 
protection must be achieved equally for all four serotypes 
without causing any potentially immunopathogenic event 
in further DENV encounters. Despite all efforts, dengue 

epidemics have intensified in number and frequency, and 
are affecting new geographical areas, thus it is critical to 
greatly improve control measures in dengue areas, and 
to develop a universal and highly effective vaccine to 
counteract dengue as one of those important measures. 
As safety remains a concern, the race to get an effective 
and safe dengue vaccine continues to be an imperative 
necessity.
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Table 3  Dengue vaccine characteristics

Molecular design Efficacy Main side effects Immunogenicity

Dengvaxia® DENV-1 (prM-E) YFV-17D 
genome

DENV-2 (prM-E) YFV-17D 
genome

DENV-3 (prM-E) YFV-17D 
genome

DENV-4 (prM-E) YFV-17D 
genome

45–65%
44.6% under 9 yo
65.6% over 9 yo

Injection site pain, 
headache, malaise, 
low-grade fever, 
among others

CD8+ reponse mostly to NS3 and 
neutralizing antibodies mostly 
against DENV-4

[16, 17, 85] [35, 38, 39] [30, 31] [34, 81]
TV003/TV005 Complete DENV-1 Δ30 (3´UTR)

DENV-2 (prM-E) in DENV-4 
Δ30 (3´UTR)

Complete DENV-3 Δ30 (3´UTR)
Complete DENV-4 Δ30 (3´UTR)

Low grade rash Reported as close to sterilizing
Strong neutralizing antibodies in 

rhesus macaques

[21, 22, 85] Data not available [47, 48] [21, 46, 81]
TAK003 (DENVax) DENV-1 (prM-E) in DENV-2 

genome*
DENV-2 complete genome*
DENV-3 (prM-E) in DENV-2 

genome*
DENV-4 (prM-E) in DENV-2 

genome*
*Referring to genetic construction

74.9–76.1% in sero-
positive (previously 
exposed)

66.2–82.2% in seronega-
tive (naïve)

Transient local reac-
togenicity and mild 
systemic adverse 
events

Neutralizing antibodies against all 
four serotypes

[27, 85] [14, 53] [49, 50] [50, 52]
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