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Abstract

The female Aedes aegypti salivary gland plays a pivotal role in bloodmeal acquisition and reproduction, and thereby dengue
virus (DENV) transmission. It produces numerous immune factors, as well as immune-modulatory, vasodilatory, and anti-
coagulant molecules that facilitate blood-feeding. To assess the impact of DENV infection on salivary gland physiology and
function, we performed a comparative genome-wide microarray analysis of the naı̈ve and DENV infection-responsive A.
aegypti salivary gland transcriptomes. DENV infection resulted in the regulation of 147 transcripts that represented a variety
of functional classes, including several that are essential for virus transmission, such as immunity, blood-feeding, and host-
seeking. RNAi-mediated gene silencing of three DENV infection-responsive genes - a cathepsin B, a putative cystatin, and a
hypothetical ankyrin repeat-containing protein - significantly modulated DENV replication in the salivary gland.
Furthermore, silencing of two DENV infection-responsive odorant-binding protein genes (OBPs) resulted in an overall
compromise in blood acquisition from a single host by increasing the time for initiation of probing and the probing time
before a successful bloodmeal. We also show that DENV established an extensive infection in the mosquito’s main olfactory
organs, the antennae, which resulted in changes of the transcript abundance of key host-seeking genes. DENV infection,
however, did not significantly impact probing initiation or probing times in our laboratory infection system. Here we show
for the first time that the mosquito salivary gland mounts responses to suppress DENV which, in turn, modulates the
expression of chemosensory-related genes that regulate feeding behavior. These reciprocal interactions may have the
potential to affect DENV transmission between humans.
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Introduction

With 2.5 billion people now living in areas at risk for epidemic

transmission, dengue has become the most important mosquito-

borne viral disease affecting humans [1]. Dengue virus (DENV) is

a positive-strand RNA virus of the family Flaviviridae, genus

Flavivirus. It exists as four closely related but antigenically distinct

serotypes (DENV-1, -2, -3, and -4), all of which have Aedes aegypti

mosquitoes as their primary vector, with A. albopictus as a

secondary vector. The incidence and geographic range of dengue

and dengue hemorrhagic fever have increased dramatically in

recent decades, and since there is at present no licensed vaccine or

drug treatment against DENV, vector control remains the best

method for preventing transmission.

Although vertical transmission of the virus has been reported

[2,3], mosquitoes mainly acquire DENV by feeding on the blood

of an infected human. DENV first infects and replicates in the

mosquito midgut epithelium. It subsequently spreads through the

hemolymph to replicate in other organs such as the fat body and

trachea, finally infecting the salivary gland at approximately 10–14

days post-bloodmeal [4]. Once in the saliva, DENV can be

inoculated into a human host when the mosquito acquires a blood

meal, thus spreading the disease.

The mosquito salivary gland plays important roles in DENV

transmission. Firstly, infection of the gland itself is an essential part

of the transmission cycle. Secondly, the salivary gland produces

numerous anti-coagulant, anti-inflammatory and vasodilatory

molecules which facilitate probing and bloodmeal acquisition

[5–10], as well as immune factors that reduce microbial loads in

ingested blood and nectar. Lastly, mosquito saliva can impair the

immune response of the vertebrate host to arbovirus infection,

resulting in increased viremia levels and increasing the risk of virus

transmission (reviewed in [11]). Despite its importance in pathogen

transmission, the current knowledge on antiviral defense in the

salivary gland is limited and is mainly represented by a recent

study which identified a cecropin-like peptide with antibacterial

and antiviral activities that was induced upon DENV infection of

the gland [12].
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Mosquitoes are exposed to a variety of microbes in their natural

habitats, and possess an innate immune system capable of

mounting a potent response against microbial challenge. In

addition to RNA interference (RNAi) [13], the Toll and Janus

kinase signal transducer and activator of transcription (JAK-

STAT) pathways have been found to be key players in A. aegypti

anti-DENV defense [14,15]. To date, however, most studies of

mosquito antiviral immunity have examined DENV replication in

the midgut, but not in other biologically relevant compartments

such as the salivary gland. In addition, despite the well-

documented involvement of the Toll and JAK-STAT pathways

in insect immunity, the specific molecular mechanisms by which

these pathways act remain uncharacterized. Viral pathogen-

associated molecular patterns (PAMPs) and their associated insect

pattern recognition receptors (PRRs) have not yet been discovered,

and only a few putative antiviral effector molecules have been

identified [12,15–17].

To gain a better understanding of how the A. aegypti salivary

gland experiences DENV infection at the global transcriptome

level, we have used whole-genome microarray-based analyses to

compare the naı̈ve and DENV-infected salivary gland. These

experiments revealed intriguing patterns of differential transcript

abundance that suggested a broad impact of DENV infection on a

variety of salivary gland functions, including those implicated in

immunity, host-seeking, and blood acquisition. To confirm the

functional relevance of DENV-modulated transcript abundance,

we used an RNAi-mediated gene silencing approach to show that

three DENV infection-induced salivary gland-enriched transcripts

can modulate DENV replication in the salivary gland, corrobo-

rating the earlier finding [12] that this organ mounts an anti-viral

response. In addition, we show for the first time that silencing of

two DENV infection-induced odorant-binding protein (OBP)

transcripts impaired the host-seeking and blood-feeding ability of

mosquitoes, suggesting that the virus is capable of modifying

mosquito behavior through the regulation of chemosensory genes.

Finally, inspired by these findings, we extended our study to show

that DENV is likely to exert a broader impact on mosquito

chemosensation by infecting its main olfactory organs, the

antennae.

Results

The A. aegypti salivary gland transcriptome
To determine the A. aegypti salivary gland transcriptome in terms

of genes whose transcripts are enriched in the uninfected mosquito

salivary gland relative to the carcass, we used whole genome

microarray analyses to compare transcript abundance in naı̈ve

salivary gland and naı̈ve carcass samples. We reasoned that this

analysis would yield information about potential gene function,

since salivary gland-enriched transcripts would be more likely to

perform functions specific to this organ.

Of the total number of salivary gland-expressed transcripts,

2255 (13.2%) were significantly enriched in the salivary gland

relative to the carcass, 2565 (15.0%) were significantly enriched in

the carcass relative to the gland, while 8722 (51.1%) had a similar

level of transcript abundance in the two mosquito compartments.

The transcripts of 3805 genes (22.3%) were non-detectable or did

not meet our signal-to-noise criteria (Figure 1A). Differentially

expressed transcripts are presented in Table S1. A previous study

by Ribeiro et al. (2007) [7] detected transcripts from 835 annotated

genes through sequencing of an A. aegypti salivary gland expressed

sequence tag (EST) library. Our study detected the vast majority

(789 out of 835) of these transcripts, supporting the robustness and

validity of our microarray-based approach.

Since our microarray-based analyses only provide information

on the ratio of differential transcript abundance between the

compared samples, we also considered the absolute abundance

levels of salivary gland transcripts. Based on the fluorescence

intensity of their spots on the microarray, we categorized

transcripts into high, medium, and low abundance (Table S2).

330 transcripts (2.4% of the total) were classified as high

abundance (fluorescence values .5000), 661 (4.9%) were medium

abundance (fluorescence values of 1000–5000), and 12551

transcripts (92.7%) were low abundance (fluorescence val-

ues,1000) (Figure 1B). This distribution is comparable to what

has been observed for the Anopheles gambiae salivary gland

transcriptome under the same analysis [6].

Genes that displayed differential transcript abundance between

the salivary gland and the carcass represented a range of

functional classes (Figure 1C). We next provide a brief description

of several functional classes that we consider pertinent to salivary

gland function.

Sugar and protein digestion. 24 transcripts putatively

involved in digestive functions were enriched in the salivary

gland. Among these were six alpha-amylases (three of which

belonged to the high abundance category - AAEL009524,

AAEL000392, AAEL006719) and an alpha-glycosidase, which

most likely play roles in the digestion of nectar meals. Several

protein digestive enzyme transcripts, including 12 trypsins, an

amidase, a serine protease and an endopeptidase, were enriched in

the salivary gland. These enzymes in saliva could be ingested along

with the bloodmeal and aid its digestion. Alternatively, they could

be involved in proteolytic events that occur in the vertebrate host

during blood-feeding, such as clot prevention or digestion of extra-

cellular matrix components [6].

Immunity-related functions. 148 transcripts with putative

immunity-related functions (of which 14 belonged to the high

abundance category) were salivary gland-enriched and

represented a wide variety of immune gene families. These

included two MD2-like proteins, six fibrinogen-related proteins,

eight antimicrobial peptides (AMPs), 27 serine proteases, and

several Toll pathway-related genes (three Spaetzles and two Tolls).

Although nothing is known about the potential roles of these genes

in salivary gland immunity, their enrichment in this organ suggests

Author Summary

Dengue virus (DENV) is transmitted between humans
through the bite of infected Aedes aegypti mosquitoes.
Since the virus is inoculated in saliva, infection of the
mosquito salivary gland is an essential requirement for
transmission. In addition, the gland also produces numer-
ous biologically active compounds that facilitate blood-
feeding. Despite the salivary gland’s crucial role in DENV
transmission, very little is known about the host-pathogen
interactions, at the molecular level, in this organ. In this
study, we characterized the A. aegypti salivary gland
response to DENV infection at both the gene expression
and functional levels. We found that DENV induced the
expression of several gene transcripts whose products
modulate virus replication in the salivary gland. Unexpect-
edly, the virus also induced transcripts of two odorant-
binding proteins, which we demonstrate to be important
for mosquito host-seeking and probing behavior. This is
the first study to demonstrate that besides affecting
cellular processes that modulate virus replication, DENV
also has the potential to alter chemosensory processes in
ways that may result in increased virus transmission.

Dengue - Aedes Reciprocal Interactions
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Figure 1. Microarray gene expression analysis of the naı̈ve and DENV-infected salivary gland transcriptomes. (A) Numbers of genes
that displayed differential (red and green circles) and similar (yellow circle) transcript abundance between the naı̈ve salivary gland and carcass. The
superimposed gray triangle shows the numbers of genes displaying significant differences in transcript abundance in the DENV-infected salivary
gland, and their overlap with genes expressed in the naı̈ve gland. (B) Salivary gland-expressed genes were classified into low, medium and high
abundance categories according to their spot intensities on the array. The pie chart shows the number of genes in each category and its
corresponding percentage of the total number of expressed genes. (C) Functional classification of differentially expressed genes in the naı̈ve salivary
gland (relative to the carcass), the DENV-infected salivary gland, and the DENV infected carcass. Functional group abbreviations: CS, cytoskeletal and
structural; CSR, chemosensory reception; DIV, diverse functions; DIG, blood and sugar food digestive; IMM, immunity; MET, metabolism; PROT,
proteolysis; RSM, redox, stress and mitochondrion; RTT, replication, transcription, and translation; TRP, transport; UKN, unknown functions. (D) Venn
diagram showing numbers of uniquely and commonly regulated genes in DENV-infected salivary glands and carcasses. Arrows represent the
direction of gene regulation.
doi:10.1371/journal.ppat.1002631.g001
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that the gland is capable of mounting potent and diverse immune

responses against pathogen challenge to ensure sterility of ingested

blood and nectar. AMPs may act against bacteria that the

mosquito comes into direct contact with during feeding, for

example in sugar sources or on vertebrate skin. One of the salivary

gland-enriched AMP transcripts (AAEL000598) encodes a

cecropin (AAEL000598) that has previously been found to be

induced upon DENV infection in the salivary gland and to possess

anti-DENV and antibacterial activities in vitro [12]. The large

number of salivary gland-enriched serine protease transcripts is

striking; these could be implicated in immune pathway activation

through the triggering of serine protease cascades, or some of these

may play roles in blood-feeding by hydrolyzing host proteins to

prevent clotting or inflammation [7].

Bloodmeal acquisition. Blood-feeding activates vertebrate

host responses that inhibit blood flow, activate antimicrobial

defenses, or call the attention of the host to the feeding mosquito.

For example, ATP and ADP released from injured cells and

activated platelets at the feeding site stimulate platelet aggregation

and mast cell degranulation, and adenosine activates inflammatory

responses that result in itching and burning sensations, increasing

the likelihood of detection of the mosquito [7,8]. To counteract

these responses, mosquito saliva contains numerous enzymes that

perform anti-hemostatic and anti-inflammatory roles. Salivary

apyrases hydrolyze ATP and ADP to AMP [18–20], while

adenosine deaminases (ADAs) hydrolyze adenosines to inosines

[21]. Three apyrases (two highly abundant - AAEL006347 and

AAEL006333) and two ADA transcripts (one highly abundant -

AAEL005672) were found to be enriched in the salivary gland.

Thrombin is a key enzyme in the vertebrate blood coagulation

cascade. Two putative anti-thrombin transcripts (AAEL007420,

AAEL006007) were salivary gland-enriched and also belonged to

the highly abundant transcript category. AAEL006007 encodes a

Kazal-type serine protease inhibitor that has been partially

characterized and found to have anticoagulant and thrombin

inhibitory activity [22].

Transcripts of the D7 gene family are widely found in mosquito

sialotranscriptomes [7]. D7 protein family members have been

suggested to bind and sequester biogenic amines such as serotonin,

histamine, norepinephrine and epinephrine [23], which are

released at the site of injury and play roles in platelet aggregation,

vasoconstriction, and inflammation. Four D7 family member

transcripts (one – AAEL006417 – belonged to the highly abundant

category) were found to be enriched in the salivary gland. The D7

proteins are related to the odorant-binding proteins (OBPs), and

may have been co-opted from this family to scavenge biogenic

amines [7,23].

Chemosensory function. 62 transcripts with putative

chemosensory functions were enriched in the salivary gland,

while only 10 were enriched in the carcass, suggesting that the

salivary gland may have uncharacterized roles in chemosensory

signaling. These transcripts encoded, among other proteins, three

putative insect pheromone-binding protein serine/threonine

kinases, seven odorant-binding proteins (OBPs), eight gustatory

receptors (GRs), and numerous odorant receptors (ORs). The vast

majority of these transcripts belonged to the low abundance

category, with the exceptions of AAEL006408 (encoding a

conserved hypothetical protein with a predicted role in odorant

binding) and AAEL002587 (encoding OBP11), which belonged to

the high abundance category.

OBPs are small, water soluble, secreted proteins that are highly

abundant in the lymph of the sensilla of insect antennae and

maxillary palps. They are specialized for ligand binding, and are

thought to act as carriers for hydrophobic odorant molecules by

facilitating their transport through the aqueous lymph to OR

neurons [24,25]. Enrichment of their transcripts in the salivary

gland was somewhat unexpected, but salivary gland OBP

transcripts have been reported in A. aegypti and A. gambiae, and

interestingly were found to be transcriptionally down-regulated in

this organ after blood-feeding, suggesting that they perform some

function related to this behavior [6,26,27].

The DENV infection-responsive A. aegypti salivary gland
transcriptome
Since DENV replication in the salivary gland is a prerequisite

for virus transmission, we next performed a microarray analysis to

compare transcript abundance between DENV-infected and naı̈ve

salivary glands at 14 days post-bloodmeal (dpbm) to gain a better

understanding of how this organ responds to infection. DENV

infection stimulated a significant enrichment of 130 and depletion

of 17 salivary gland transcripts (Figure 1A, 1C, Table S3).

DENV altered the abundance of 38 transcripts with functions

related to metabolic processes, transport and stress response. The

majority of these transcripts (33 of 38; 87%) were enriched in the

infected salivary gland, perhaps indicating a shift in cellular

metabolic state to support virus replication. Six transcripts with

predicted cytoskeletal functions were enriched upon infection; this

may reflect maintenance in structural integrity of the infected

salivary gland, since cytopathology has been reported in this organ

following arbovirus infection [28,29]. Also up-regulated were two

tetraspanin transcripts, which encode transmembrane proteins

that have roles in cell-cell interactions, adhesion, motility, and

proliferation. Tetraspanins have been found to be induced upon

DENV infection of Aedes albopictus C6/36 cells [30], and are

believed to facilitate cell-to-cell spread of virus. Twelve transcripts

with immune-related functions were induced by DENV infection,

and included two MD2-like gene family members, which code for

secreted proteins containing Niemann-Pick lipid recognition

domains. Mammalian MD2 is a co-receptor that is required for

Toll-like receptor 4 (TLR4) binding to lipopolysaccharide (LPS)

[31,32], and silencing of the A. gambiae MD2-like family member

AgMDL1 significantly increases midgut Plasmodium falciparum

infection levels [33]. These data suggest a potential role for A.

aegypti MD2-like family members in immune defense against

DENV.

Transcripts encoding a transferrin and a fibrinogen-related

protein were also up-regulated. Transferrins bind iron with high

affinity and play roles in iron metabolism, immunity, and

development. They are up-regulated upon parasite or bacterial

infection, and may sequester iron from pathogens; alternatively,

proteolytic fragments from these proteins have also been suggested

to also act as anti-microbial peptides or inducers of the immune

response [34]. Fibrinogen-related proteins bind bacteria and

parasites in mosquitoes and may function as pattern recognition

receptors [35].

Transcripts of three leucine-rich repeat (LRR)-containing

proteins and one ankyrin repeat-containing protein were induced

by DENV infection. The broader LRR-containing protein family

includes the mosquito Tolls, and family members are commonly

involved in protein-protein interactions and signal transduction

pathways [36]. Ankyrin repeats mediate protein-protein interac-

tions and are present in several immune-related proteins, such as

the IkB inhibitory domain of the NFkB-like transcription factor

Rel2 of the mosquito IMD immune pathway.

Three cathepsin B transcripts and a putative cystatin transcript

were induced upon DENV infection. Cathepsin Bs are lysosomal

cysteine proteases known to be involved in the apoptosis of

immune cells [37]. They can also play roles in TLR signaling, and

Dengue - Aedes Reciprocal Interactions
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are required to cleave the endolysosomal TLRs 7 and 9 before

these molecules can signal [38–40]. Cystatins are cysteine protease

inhibitors that may play roles in regulating apoptosis, since many

enzymes (such as the caspases and cathepsins) involved in

apoptotic pathways are cysteine proteases [41,42]. A cystatin has

also been reported to induce autophagy in mammalian cells [43],

and DENV is known to induce autophagy as a means of regulating

lipid metabolism in the host cell [44,45].

The transcripts of three peptides with sequence similarity to

secreted salivary peptides from Culicine mosquito species were

also up-regulated by DENV infection. The functions of these

peptides remain unknown, but some may be involved in the

production of allergic reactions to mosquito bites [7].

Finally, DENV also induced two OBP transcripts (OBP10 and

OBP22), which had also been found to be enriched in the naı̈ve

salivary gland.

To determine whether our observed salivary gland transcrip-

tomic infection responses were specific for this organ, or if they

also occurred in other tissues, we went on to characterize the

DENV infection-responsive carcass transcriptome at 14 dpbm.

DENV infection significantly up-regulated 61 transcripts and

down-regulated 74 in the carcass compartment (Figure 1C, Table

S4). Only 28 genes were similarly regulated between the salivary

gland and the carcass upon infection (Figure 1D), indicating that

the transcriptomic responses in these two compartments are quite

distinct.

Functional analysis of selected DENV infection–
responsive salivary gland genes
Our transcriptomic analyses suggested that at least some of the

DENV infection-responsive transcripts may play roles in limiting

infection, or reflect a virus-mediated modulation of salivary gland

functions that could have implications for mosquito behavior. We

were particularly interested in modulators of DENV replication in

the salivary gland. Based on our transcriptomic analyses and

literature searches, we selected seven candidate genes for

functional analysis via RNAi-mediated gene silencing (Table 1).

We have elaborated on the potential modes of action of these

genes in the previous section.

Mosquitoes were orally infected with DENV through a

bloodmeal, and candidate genes were silenced in the salivary

gland at 7 dpbm by the injection of 2 ug of dsRNA per mosquito

[19]. At this time point, the midgut and carcass are fully infected,

and the virus is initiating infection of the salivary gland [4]. Gene

silencing efficiency ranged from 26–90% (Figure S1). Salivary

glands were subsequently dissected at 7 days post-silencing

(14 dpbm), and virus titers were determined by plaque assay.

Silencing of the putative cystatin (AAEL013287) and the

conserved hypothetical protein with ankyrin repeats

(AAEL003728) genes significantly increased salivary gland DENV

titers, while silencing of the cathepsin B (AAEL007585) gene

resulted in significantly reduced DENV titers (Figure 2).

Since injection of dsRNA into the mosquito thorax results in

non-compartment-specific silencing, it is possible that the altered

virus titers observed in the salivary gland are a consequence of

gene silencing in other parts of the mosquito carcass. However, we

consider this less likely for several reasons: firstly, DENV infection

induced these genes only in the salivary gland and not in the

carcass (Table 1), suggesting that they play infection-related

functions in the gland; secondly, dsRNA injections were carried

out at 7 dpbm, when carcass DENV titers have already peaked,

while salivary gland infection is just beginning [4]; and lastly, we

Table 1. Candidate genes selected for functional testing via RNAi-mediated gene knockdown.

Gene ID Description

Functional

Group Log2-fold Comment Tested for role in

DENV SG DENV Car Naı̈ve SG

DENV

replication

Feeding

behavior

AAEL015136 Niemann-Pick Type
C-2, putative (MD6)

IMM 1.60 21.19 21.89 MD2-like, lipid-binding
domain

X

AAEL009760 Niemann-Pick Type
C-2, putative (MD21)

IMM 2.12 0.92 23.59 MD2-like, lipid-binding
domain

X

AAEL014906 LAP4 protein, putative IMM 0.87 0.81 Leucine-rich repeats X

AAEL007585 cathepsin B IMM 1.49 Lysosomal cysteine protease;
pro-apoptotic, role in
TLR signaling

X

AAEL003728 conserved hypothetical
protein; ankyrin repeats

DIV/UNK 0.87 0.92 Ankyrin repeats present
in several immune-related
proteins

X

AAEL017380 hypothetical protein;
putative glycine-rich
salivary secreted peptide

DIV/UNK 1.07 1.68 1.94 Putative allergen/
anti-coagulant

X

AAEL013287 conserved hypothetical
protein; putative cystatin

DIV/UNK 0.81 Cysteine protease inhibitor,
pro-apoptotic, induces
autophagy in mammalian cells

X

AAEL005772 Odorant-binding protein
99c, putative (OBP22)

CSR 1.38 0.86 Putative roles in olfaction X

AAEL007603 Odorant-binding protein
56a, putative (OBP10)

CSR 0.92 1.22 Putative roles in olfaction X

Candidate genes selected for functional testing via RNAi-mediated gene knockdown and their associated log2-fold values in the DENV-infected salivary gland (DENV
SG), DENV-infected carcass (DENV Car), and naı̈ve salivary gland (naı̈ve SG). Functional group abbreviations: IMM, immunity; DIV, diverse functions; UNK, unknown
functions; CSR, chemosensory reception.
doi:10.1371/journal.ppat.1002631.t001
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found no significant differences in virus titers between the

carcasses of DENV-infected gene-silenced and control GFP

dsRNA-treated mosquitoes (Figure S2).

Effect of OBP gene silencing on mosquito blood-feeding
behavior
Transcripts of OBPs 10 and 22 (AAEL007603 and

AAEL005772) displayed an elevated abundance in the salivary

gland upon DENV infection, and were also enriched in the naı̈ve

gland. This finding was unexpected and intriguing to us, and we

hypothesized that these genes could participate in chemosensory

signaling during host-seeking or probing. To test this hypothesis,

these genes were individually silenced by the injection of 2 ug

dsRNA per mosquito, 4 days prior to a behavioral feeding assay.

Mosquitoes were offered an anesthetized Swiss Webster mouse,

and the following parameters were measured: a) Probing

propensity (percentage of mosquitoes that probed within a fixed

time period); b) Probing initiation time (time from the introduction

of the mouse to the time at which the mosquito initiated probing –

a rough measure of host-seeking ability); and c) Probing time (time

from the initial insertion of the proboscis in the skin to the initial

engorgement of blood [6,10]).

Silencing of the OBP10 or OBP22 genes resulted in a reduced

probing propensity, which was statistically significant for OBP22-

silenced mosquitoes (Figure 3A). Knockdown of either OBP was

found to significantly increase the probing initiation time

compared to GFP dsRNA-treated mosquitoes (Figure 3B). Probing

time was also increased in OBP gene-silenced mosquitoes,

although this increase was not statistically significant (Figure 3C).

Since only mosquitoes that probed were considered for the

probing time analysis, the lower number of mosquitoes that

probed in OBP-silenced groups could have contributed to the lack

of statistical significance for this parameter. Taken together, these

data indicate that gene silencing of these OBPs impairs the

efficiency of mosquito blood-feeding.

Quantification of OBP transcript abundance and DENV
infection in the mosquito chemosensory apparatus
The observed effect on feeding behavior could also be due to

gene silencing in the chemosensory organs (antennae and

Figure 2. Effect of candidate gene knockdown on salivary gland DENV titers. Candidate genes were silenced in DENV-infected mosquitoes,
and salivary gland virus titers at 14 dpbm were determined by plaque assay. A pool of three biological replicates is shown, and p values were
determined using the Mann-Whitney U test (*, p,0.05). Gene name abbreviations: AnkP, ankyrin repeat-containing protein; Cyst, cystatin; SSP,
salivary secreted peptide; CatB, cathepsin B.
doi:10.1371/journal.ppat.1002631.g002

Dengue - Aedes Reciprocal Interactions
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maxillary palps) instead of or in addition to the salivary gland. To

further investigate the molecular basis of this interesting

phenotype, we determined OBP gene silencing efficiency in these

two body compartments by quantitative RT-PCR. High silencing

efficiencies for both OBP genes were consistently obtained in the

salivary gland (averages of 87.4% and 86.8% respectively), while

efficiencies were lower and more variable in the antennae and

palps (average of 22.9% for OBP10; 0%, 73.4%, and 32.5% for

three trials of OBP22 (Figure 4A)). While these data suggest that

the impaired feeding behavior was at least in part due to OBP

gene silencing in the salivary gland, we also considered the

possibility that the altered host-seeking and feeding behavior was

due to DENV infection of the antennae and its effect on OBP

transcript abundance there.

To test the hypothesis that DENV infects the antennae and as

such can influence OBP transcript abundance, immunofluorescent

staining was first performed on head squashes of orally-infected

mosquitoes at 14 dpbm. DENV-infected cells were clearly present

in the antennae of infected mosquitoes but not in mock-infected

controls (Figure 5). Female A. aegypti antennae consist of 13

flagellar segments; DENV-specific labeling was detected through-

out the antennae but was stronger in the proximal segments

(Figure 5D–I). DENV labeling was also detected in the maxillary

palps and the proboscis (Figure 5J–O). Additionally, we also

detected DENV by quantitative RT-PCR in the antennae and

palps at 10 and 14 dpbm. Relative DENV loads were significantly

higher at 14 dpbm compared to 10 dpbm, indicating that virus

actively replicates in the chemosensory organs (Figure 4B).

We next compared OBP transcript abundance in the chemo-

sensory organs (antennae, palps and proboscis) of DENV- and

mock-infected mosquitoes. While OBP22 transcript abundance

was not affected by DENV infection, OBP10 transcripts were

enriched by almost 2.5-fold at 14 dpbm (Figure 4C).

Insect ORs form heteromeric complexes consisting of a

conventional OR and a highly conserved universal co-receptor,

termed OR co-receptor (Orco) [46]. Orco is required for

trafficking of OR/Orco complexes to the sensory cilia where

signal transduction occurs, and is essential for OR-mediated

chemosensation in vivo [47]. We found that A. aegypti Orco

(Aaeg\Orco) transcripts were enriched by approximately two-fold

in the chemosensory organs of DENV-infected mosquitoes as

compared to mock-infected mosquitoes at 14 dpbm (Figure 4C).

Effect of DENV infection on mosquito blood-feeding
behavior
The behavioral and gene expression data presented above

suggest that DENV infection may heighten the chemosensory

abilities of mosquitoes, rendering them more efficient at bloodmeal

acquisition. To test this hypothesis, we compared the blood-

feeding behavior of DENV- and mock-infected mosquitoes at

14 dpbm. Slightly shorter probing initiation and probing times

were observed for DENV-infected mosquitoes compared to mock-

infected mosquitoes, but these differences were not statistically

significant (Figure 6A, B). Furthermore, we did not observe

changes in probing propensity upon DENV infection (Figure 6C).

Discussion

We have used genome-wide microarray analyses to characterize

the naı̈ve and DENV-infected A. aegypti salivary gland transcrip-

tomes, and to identify candidate genes with potential roles in

controlling DENV replication or mosquito feeding behavior.

RNAi-mediated gene silencing in conjunction with infection assays

revealed three genes that modulate DENV replication in the

salivary gland, and two olfaction-related genes that modulate

mosquito host-seeking and blood-feeding behavior.

DENV induced 130 and repressed 17 transcripts in the salivary

gland at 14 dpbm, indicating that significant molecular and

biochemical changes are induced in this organ by infection. In

contrast, DENV infection appeared to have an overall negative

effect on transcript abundance in the mosquito carcass, repressing

more than half of the 135 differentially represented transcripts in

this compartment at the same time point. The carcass response to

infection at this late stage of infection was also subdued compared

to what we have previously observed at 10 dpbm [14], suggesting

that the transcriptional response is being negatively regulated after

an initial induction phase. Furthermore, the salivary gland

infection-responsive genes were largely distinct from those in the

carcass at the same time point (14 dpbm), as well as from those

regulated at 10 dpbm in both carcass and midgut [14], suggesting

Figure 3. Effect of OBP gene knockdown on mosquito blood-feeding behavior. A behavioral feeding assay was performed 4 days post-
silencing of OBPs 10 and 22. Mosquitoes were offered an anesthetized mouse and observed individually for 400 seconds. The following parameters
were measured and are represented here: (A) Probing propensity: the percentage of mosquitoes that probed within the observation period; (B)
Probing initiation time: the time from the introduction of the mouse until the mosquito starts to probe; (C) Probing time: the time from the initial
insertion of the mouthparts in the skin to the initial engorgement of blood. The data are a pool of six biological replicates, and p values were
determined with the Mann-Whitney U test (*, p,0.05).
doi:10.1371/journal.ppat.1002631.g003
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unique host-pathogen interactions. It is of course possible that

some of the many tissues and cell types of the carcass may have

displayed greater changes in transcript abundance that were not

detected because of a dilution with the transcripts of other

compartments.

As has been previously reported [6,7], the naı̈ve salivary gland

was enriched for transcripts involved in the digestion of blood and

sugar meals, and for those that play anti-hemostatic and anti-

inflammatory roles during bloodmeal acquisition. In addition, the

gland was also enriched for numerous transcripts with immunity-

related functions, suggesting that this organ is capable of mounting

an immune response against both vertebrate pathogens and

microbes encountered during feeding. An unexpected finding was

the large number of transcripts with putative chemosensory roles,

many of which were found to be enriched in the naı̈ve gland

compared to the carcass tissue, suggesting an as yet uncharacter-

ized function for these molecules in mosquito saliva.

Despite their high abundance in the antennae and maxillary

palps, mosquito OBPs are not exclusively expressed in olfactory

tissue. OBPs have previously been detected in the salivary gland,

as well as in other body compartments such as the proboscis,

thoracic spiracles, midgut, and even A. aegypti semen [6,26,27,48–

50]. Indeed, a screen of Culex quinquefasciatus OBPs revealed that

only a minority are transcriptionally expressed solely in olfactory

tissue [51]. In A. gambiae, a number of OBP transcripts are

enriched in the bodies of males and females relative to olfactory

tissue, without the coordinate expression of chemoreceptors [52].

Taken together, these studies suggest multiple ligand-binding roles

for OBPs beyond olfaction. Insect OBPs and chemosensory

proteins (CSPs) have been isolated in non-chemosensory organs

complexed with endogenous ligands [53,54], suggesting roles

similar to those of vertebrate OBPs which deliver hydrophobic

pheromones to the environment in urine or saliva.

The intimate association of the salivary gland and the proboscis

raises the possibility that salivary gland-expressed OBPs and ORs

may function in gustatory-related roles in the proboscis during

blood- and sugar-feeding. Indeed, OBPs and ORs have been

detected in the mosquito and fly proboscis [48,55–57], as well as in

other gustatory tissues [58], suggesting dual roles for these

molecules in olfaction and taste. In addition, although the

proboscis is primarily a gustatory organ, it also responds to

olfactory stimuli, and OR neurons extend from the proboscis into

the antennal lobes of the brain, suggesting that the proboscis may

be involved in olfactory processes that are important at close

proximity to the host, such as alighting, probing and blood-feeding

[59]. We speculate that chemosensory molecules secreted in saliva

could coat the proboscis and facilitate tasting, although there is as

yet no evidence for this process.

RNAi-mediated gene silencing assays were performed to

identify genes that may modulate DENV replication in the

Figure 4. OBP silencing efficiency and gene expression in the chemosensory organs; detection of DENV by RT-PCR in the
chemosensory organs. (A) Silencing efficiencies for OBPs 10 and 22 in the salivary gland and chemosensory organs (antennae and palps) 4 days
post-injection of 2 ug dsRNA, relative to dsGFP-injected controls. (B) Detection of DENV by RT-PCR in the antennae and palps of DENV-infected
mosquitoes at 10 and 14 dpbm. *, p,0.05 in Student’s t-test. (C) OBP and Aaeg\Orco gene expression in the antennae and palps of DENV-infected
mosquitoes at 10 and 14 dpbm, relative to mock-infected mosquitoes. p values were determined with the Student’s t-test.
doi:10.1371/journal.ppat.1002631.g004

Dengue - Aedes Reciprocal Interactions

PLoS Pathogens | www.plospathogens.org 8 March 2012 | Volume 8 | Issue 3 | e1002631



salivary gland as a mosquito defense response. The silencing of a

cathepsin B gene significantly reduced salivary gland DENV titers,

while silencing of a putative cystatin significantly increased DENV

titers in the salivary gland. These genes could potentially play roles

in apoptosis: cathepsins are lysosomal cysteine proteases that

trigger apoptosis through both caspase-dependent and –indepen-

dent pathways, probably by leaking or translocating from the

lysosome into the cytosol [37,60], while cystatins are cysteine

protease inhibitors that may regulate the activity of pro-apoptotic

caspases and cathepsins [41,42]. While DENV-induced cytopa-

thology has not been observed in A. aegypti [61,62], West Nile virus

(WNV) (also a mosquito-borne flavivirus) infections have been

reported to cause cytopathology with features of apoptosis in both

salivary glands and midguts of Culex mosquitoes [28,29,63],

although it should be noted that WNV tends to replicate to

higher titers than DENV [29,64].

Figure 5. Detection of DENV infection in the chemosensory organs by immunofluorescence staining. Head squashes from mosquitoes
at 14 dpbm were stained with mouse hyperimmune ascitic fluid to DENV and an AlexaFluor568-conjugated anti-mouse antibody. (A–C) Uninfected
antennae, (D–F) Infected antennae at segments 2–4, (G–I) Infected antennae at segments 9–11, (J–L) Infected maxillary palp, (M–O) Infected
proboscis. Red, DENV antigen.
doi:10.1371/journal.ppat.1002631.g005
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A possible hypothesis for our observations is that apoptosis of

infected cells facilitates the cell-to-cell spread of DENV in the

salivary gland. A separate but related possibility is that infected

cells that produce dsRNA triggers of RNAi are removed from the

population by apoptosis, thereby facilitating infection by the virus.

Inhibition of apoptosis (by cathepsin B silencing for example)

would preserve these cells, maintaining dsRNA production and

impairing DENV replication through RNAi. Since silencing a

cysteine protease (cathepsin B) and a cysteine protease inhibitor

(the putative cystatin) resulted in opposite effects on virus titers, it is

tempting to speculate that these two genes are involved in the same

process, but further studies are obviously required to test this

hypothesis.

Silencing of a gene encoding a hypothetical protein containing

ankyrin repeats resulted in significantly elevated salivary gland

DENV titers. Ankyrin repeats mediate protein-protein interactions

and are present in immune-related proteins such as the IkB

inhibitory domain of Rel2, the NFkB-like transcription factor of

the mosquito IMD immune signaling pathway. This protein lacks

a predicted signal peptide, and could act intracellularly to regulate

immune signaling.

DENV infection induced OBP10 and OBP22 transcripts in the

salivary gland, a finding that surprised and intrigued us. OBPs

facilitate the olfactory processes of host-seeking and probing,

which mosquitoes rely on for bloodmeal acquisition. Since DENV

transmission also relies on these same processes, we investigated

the possibility that these OBPs influence feeding behavior. Indeed,

silencing of these OBP genes reduced the percentage of

mosquitoes that probed on mice, and also increased probing

initiation and probing times, indicating less efficient feeding

behavior. To our knowledge, this is the first observation of

potential arbovirus modulation of mosquito feeding behavior

through chemosensory-related molecules.

We could not conclusively determine if OBP gene silencing in

the salivary glands or in the chemosensory organs was responsible

for this impaired feeding behavior. OBP silencing efficiency in the

salivary gland was much higher and more consistent than in the

antennae and maxillary palps, suggesting that silencing in the

salivary glands might be responsible for at least part of the

observed feeding impairment. More efficient gene silencing in A.

aegypti antennae has been achieved through thoracic injection of

dsRNA into pupae [65], as well as with a double subgenomic

Figure 6. Effect of DENV infection on mosquito blood-feeding behavior. A behavioral feeding assay was performed on DENV- and mock-
infected mosquitoes at 14 dpbm. Mosquitoes were offered an anesthetized mouse and observed for 400 seconds. The following parameters were
measured and are represented here: (A) Probing initiation time; (B) Probing time; and (C) Probing propensity. The data are a pool of three biological
replicates, and p values were determined with the Mann-Whitney U test.
doi:10.1371/journal.ppat.1002631.g006
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Sindbis virus expression system [66]; these methods may be useful

for elucidating the location of action of these OBPs.

Since both probing initiation time (a rough measure of host-

seeking behavior, associated with antennal function) and probing

time (associated with salivary proteins that inhibit hemostasis and

inflammation) were negatively affected by gene silencing, both

compartments could potentially be involved. In consideration of

this, we provide evidence that DENV successfully infects and

replicates in the female A. aegypti antennae and maxillary palps,

and that transcripts of one of the OBPs (OBP10) also increases in

the chemosensory organs upon DENV infection. In addition,

increased transcript abundance of Aaeg\Orco, the universal OR

co-receptor which is essential for OR-mediated chemosensation,

was also observed in the chemosensory apparatus. The signifi-

cance of this is unclear, but may indicate an overall increase in

OR/Orco complex abundance and chemosensory-related signal

transduction during DENV infection.

Insect OBPs are quite diverse, and more than 60 members of

this family have been found in the A. aegypti genome [24]. OBPs 10

and 22 are both ‘‘classic’’ OBPs containing a highly conserved

pattern of six cysteine residues, and share 44% protein sequence

identity but almost no nucleotide sequence similarity. Neither of

these OBPs is exclusively expressed in olfactory tissue. OBP10 is

male-enriched, increases with mosquito age, and (in addition to

the antennae and palps) is expressed in the wings, legs, and

proboscis [58]. Since gustatory sensilla are present on these tissues

[67], this OBP could be involved in taste perception mediated

through these organs. OBP22 has been detected in A. aegypti

semen, and is transferred to the spermathecae of mated females

[48,49], perhaps indicating roles in pheromone binding and

delivery. OBP22 is also expressed in thoracic tracheal spiracles,

suggesting roles in respiration, and in the proboscis [48]. The

expression patterns of these OBPs make it difficult to pinpoint

their mode and location of action, but suggest that they could fulfill

multiple functions.

Our data imply that viral induction of OBPs could facilitate

mosquito host-seeking and/or probing behavior, and thus at least

theoretically increase transmission efficiency. DENV readily

infects the mosquito brain, nervous system [4,68], and, as we

show here, the chemosensory apparatus, making such behavioral

modulation plausible. A number of groups have reported changes

in locomotor activity and metabolism in A. aegypti infected with

various pathogens or symbionts [69–71]; specifically, DENV-

infected A. aegypti displayed an increase in locomotor activity [71],

perhaps suggesting an increased ability to seek out hosts. However,

we found no significant differences between the feeding behavior

of DENV-infected and mock-infected mosquitoes, although a

small shift towards shorter probing initiation and probing times

was observed in infected insects. As behavioral experiments are

sensitive to numerous environmental variables that are difficult to

control in a laboratory setting, this does not rule out the hypothesis

that DENV modulates mosquito feeding behavior through the

regulation of chemosensory transcripts. In the field, mosquitoes

must be able to locate hosts over longer distances and this feature

cannot be effectively replicated in the laboratory; small differences

in feeding behavior may thus have greater consequences on host-

seeking under such conditions. In addition, mosquito defense

mechanisms against arboviral infections can carry fitness costs

[72]. The high level of DENV infection achieved under our

experimental conditions alters many physiological processes other

than chemosensation, such as energy metabolism, immunity, and

stress responses, any of which could also affect feeding behavior,

thereby counteracting the direct effect exerted on the chemosen-

sory system.

Apart from our data, the effect of DENV infection on mosquito

feeding behavior has been previously studied, with conflicting

results: one study found no effect of infection status on feeding

behavior [73], while another observed longer probing times in

DENV-infected mosquitoes [68]. In agreement with the latter

study, infection has also been found to increase intradermal

probing times for several other pathogen-vector combinations

[74–76], and it is thought that this allows more time for

inoculation of the pathogen into the vertebrate host. In these

scenarios, we speculate that an up-regulation of chemosensory-

related transcripts may be a result of an attempt to compensate for

this less efficient feeding behavior.

Our transcriptomic analysis suggests novel and uncharacterized

roles for many genes in salivary gland function and response to

pathogens. In addition, DENV infection in the salivary gland not

only regulates genes that modulate virus replication, but also genes

that potentially affect bloodmeal acquisition (and hence DENV

transmission) by modifying mosquito host-seeking or probing

behavior. Further characterization of these genes will yield a

clearer picture of these reciprocal host-pathogen interactions in

this poorly-studied organ.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Animal Care and Use Committee of

the Johns Hopkins University (Permit Number: M006H300).

Commercial anonymous human blood was used for dengue virus

infection assays in mosquitoes, and informed consent was therefore

not applicable. The Johns Hopkins School of Public Health Ethics

Committee has approved this protocol.

Mosquito rearing and cell culture
A. aegypti mosquitoes (Rockefeller/UGAL strain) were main-

tained on 10% sucrose solution at 27uC and 95% humidity with a

12 h light/dark cycle. The C6/36 Aedes albopictus cell line was

maintained in MEM (Gibco) supplemented with 10% heat-

inactivated FBS, 1% L-glutamine, 1% non-essential amino acids,

and 1% penicillin-streptomycin. BHK-21 (clone 15) hamster

kidney cells were maintained on DMEM (Gibco) supplemented

with 10% FBS, 1% L-glutamine, 1% penicillin-streptomycin, and

5 ug/ml Plasmocin (Invivogen). C6/36 cells were incubated at

32uC and 5% CO2, while BHK-21 cells were incubated at 37uC

and 5% CO2.

DENV infections
Mosquito infections with DENV were carried out as previously

described [77]. The New Guinea C (NGC) DENV-2 strain was

propagated in C6/36 cells: Cells seeded to 80% confluency in

75 cm2 flasks were infected with virus stock at a multiplicity of

infection (MOI) of 3.5, and incubated for 6 days at 32uC and 5%

CO2. Infected cells were scraped into solution and lysed to release

virus particles by repeated freezing and thawing in dry ice and a

37uC water bath. Virus suspension was mixed 1:1 with

commercial human blood and supplemented with 10% human

serum. For experiments involving an uninfected control, a flask of

uninfected C6/36 cells was maintained under similar conditions

and used to create a naı̈ve bloodmeal. The bloodmeal was

maintained at 37uC for 30 min and then offered to mosquitoes via

an artificial membrane feeding system.
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Sample collection and preparation for microarray gene
expression analysis
DENV-infected and control mosquitoes were dissected at 14

days post-bloodmeal, and salivary glands and carcasses were

collected and stored in Buffer RLT (Qiagen) with 1% b-

mercaptoethanol. Three independent biological replicates were

performed, with approximately 200 salivary glands and 20

carcasses per replicate. Total RNA was extracted from samples

using the RNeasy Mini kit (Qiagen).

Microarray gene expression analysis
The Low Input Quick Amp Labeling kit (Agilent Technologies)

was used to synthesize Cy-3- or Cy-5-labeled cRNA probes from

total RNA (100 ng for salivary gland samples and 200 ng for

carcass samples). In addition to three biological replicates, a

pseudo-replicate containing an equal amount of Cy-5-labeled

probe from each experimental biological replicate was also

included. Hybridizations were carried out on an Agilent-based

microarray platform using custom-designed whole genome

4644K A. aegypti microarrays, and arrays were scanned with an

Agilent Scanner. Expression data were processed and analyzed as

previously described [14,15,78]; in brief, background-subtracted

median fluorescent values were normalized with the LOWESS

normalization method, and Cy5/Cy3 ratios from replicate assays

were subjected to t-tests at a significance level of p,0.05 using

TIGR MIDAS and MeV software. Expression data from replicate

assays were averaged with the GEPAS microarray preprocessing

software (http://www.gepas.org) and logarithm (base 2)-trans-

formed. Self-self hybridizations have been used to determine the

cutoff value for the significance of gene regulation on these

microarrays to 0.78 in log2 scale, which corresponds to 1.71-fold

regulation [79]. Numeric microarray gene expression data are

presented in Tables S1, S2, S3, S4.

For classification of transcripts by abundance, microarray spot

hybridization fluorescence intensities were used as an indicator of

transcript abundance. Spot intensity values were averaged across

replicate assays for each spot, and then for each gene using the

GEPAS software. Transcripts were then categorized into three

categories based on mean fluorescence value (at 635 nm): high

abundance (fluorescence intensity $5000), medium abundance

(1000–5000), and low abundance (#1000). Data are presented in

Table S3.

Gene silencing assays
RNA interference (RNAi)-mediated candidate gene silencing in

mosquitoes was performed as previously described [14,15,80]. For

gene silencing assays targeting the salivary gland, 5-day old female

mosquitoes fed with DENV-supplemented blood were held until

7 dpbm, at which time they were cold-anesthetized and injected

with 2 ug of dsRNA per mosquito [19]. Mosquitoes injected with

dsRNA to GFP were used as controls. Salivary glands were

dissected at 14 dpbm and individually stored in DMEM at 280uC

until they were titrated by plaque assay. Data presented are a pool

of three independent biological replicates, and p-values were

determined with the Mann-Whitney U test. dsRNA was

synthesized using the HiScribe T7 in vitro transcription kit (New

England Biolabs). The primer sequences used for dsRNA synthesis

are presented in Table S5, and primer sequences used to confirm

gene silencing by real-time PCR are presented in Table S6.

DENV titration by plaque assay
DENV titers in midguts and salivary glands were determined by

plaque assay on BHK-21 (clone 15) cells. Individual midguts and

salivary glands were homogenized in DMEM with a Bullet

Blender (NextAdvance), serially diluted, and then inoculated onto

cells seeded to 80% confluency in 24-well plates (100 ul per well).

Plates were rocked for 15 min at room temperature, and then

incubated for 45 min at 37uC and 5% CO2. Subsequently, 1 ml of

DMEM containing 2% FBS and 0.8% methylcellulose was added

to each well, and plates were incubated for 5 days at 37uC and 5%

CO2. Plates were fixed with a methanol/acetone mixture (1:1

volume) for .1 h at 4uC, and plaque-forming units were

visualized by staining with 1% crystal violet solution for 10 min

at room temperature.

Host-seeking and probing assays
Candidate genes were silenced in 4-day old female mosquitoes

by the injection of 2 ug of dsRNA per mosquito (dsRNA to GFP

was used as a control), and behavioral assays were carried out at 4

days post-injection. Mosquitoes were deprived of sucrose solution

overnight prior to the assay. Mosquitoes were transferred in pairs

to a small cage and allowed to rest for at least 10 min before being

offered an anesthetized Swiss Webster mouse. The mosquitoes

were observed for a maximum of 400 seconds, and the following

parameters were measured for each mosquito: a) Probing

propensity (percentage of mosquitoes that probed within the fixed

time period of 400 seconds); b) Probing initiation time (time from

the introduction of the mouse to the time at which the mosquito

begins to probe); and c) Probing time (time from the initial

insertion of the mouthparts in the skin to the initial engorgement

of blood; if the mosquito makes multiple probing attempts, the

subsequent probing times are added to the first until blood is

ingested, and the interprobing times are not included [6,10]). Data

presented are a pool of six independent biological replicates, and

p-values were determined with the Mann-Whitney U test.

Behavioral assays involving DENV-infected mosquitoes were

carried out at 14 dpbm. A maximum of seven mosquitoes were

placed in a single cage and deprived of sucrose solution overnight.

A Swiss-Webster mouse was euthanized via the administration of

an overdose of ketamine, and offered to the mosquitoes. To

counteract the drop in body temperature, a heat pack was placed

over the mouse for the duration of the assay. Because of the larger

number of mosquitoes per cage, video recordings were made

during the assay to allow the experimenter to keep track of

individual mosquitoes. As above, probing propensity, probing

initiation time and probing time were measured.

Real-time PCR quantification of odorant-binding protein
gene expression and detection of DENV in the antennae
Quantitative RT-PCR was used to measure relative transcript

abundance of odorant-binding proteins in the mosquito chemo-

sensory apparatus following DENV infection, as well as to measure

relative DENV loads in these organs. Antennae and maxillary

palps were dissected from DENV- and mock-infected mosquitoes

at 10 and 14 days post-bloodmeal. Total RNA was extracted from

samples using the RNeasy Mini Kit (Qiagen), treated with Turbo

DNase (Ambion) and reverse-transcribed with M-MLV Reverse

Transcriptase (Promega) and oligo-dT20. For detection and

relative quantification of DENV transcripts, total RNA was

reverse-transcribed with a DENV-specific reverse primer. Real-

time quantification was performed using SYBR Green PCR

Master Mix and the StepOne Plus Real-Time PCR system

(Applied Biosystems). Three independent biological replicates

were analyzed, and technical duplicates were run for each sample.

Expression values were normalized against the ribosomal gene S7.

p-values were determined with the student’s t test. Primers used in

this assay are listed in Table S6.
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Indirect immunofluorescence assay for detection of
DENV antigen
Heads were dissected from DENV- and mock-infected mosqui-

toes at 14 days post-bloodmeal, squashed on 3-aminopropyl-

triethoxysilane (APES)-treated glass slides, and fixed in acetone at

4uC overnight. Slides were incubated with mouse hyper-immune

ascitic fluid specific for DENV2 (diluted 1:1000 in PBS with 0.1%

Triton X-100 and 0.2% BSA) at 4uC overnight, and washed three

times in PBS. Slides were then incubated with AlexaFluor 568-

conjugated goat anti-mouse IgG (Molecular Probes) for 1 hour at

room temperature, and washed three times in PBS. Samples were

covered with ProLong Gold Antifade with DAPI (Invitrogen), and

sealed with a cover-slip and nail varnish. Slides were visualized

under a Leica fluorescence microscope.

Supporting Information

Figure S1 Salivary gland silencing efficiencies of candi-

date genes in dsRNA-injected mosquitoes. Mosquitoes

were each injected with 2 ug of dsRNA to the candidate gene or to

dsGFP as a control. Salivary glands were collected at 4 days post-

injection. Silencing efficiencies were determined by quantitative

RT-PCR, and expression values were normalized against the

ribosomal gene S7. Gene name abbreviations: AnkP, ankyrin

repeat-containing protein; Cyst, cystatin; SSP, salivary secreted

peptide; CatB, cathepsin B.

(TIF)

Figure S2 DENV titers in the carcasses of mosquitoes

injected with dsRNA. Effect of candidate gene knockdown on

carcass DENV titers. Candidate genes were silenced in DENV-

infected mosquitoes, and carcass (with salivary glands and heads

removed) titers at 14 dpbm were determined by plaque assay. A

pool of three biological replicates is shown. In the Mann-Whitney

U test, DENV titers in candidate gene silenced-mosquitoes were

not significantly different from titers in dsGFP-treated mosquitoes.

Gene name abbreviations: AnkP, ankyrin repeat-containing

protein; Cyst, cystatin; CatB, cathepsin B.

(TIF)

Table S1 Log2-fold values and functional groups of

transcripts that were significantly enriched in the naı̈ve

salivary gland relative to the carcass. Functional group

abbreviations: CS, cytoskeletal and structural; CSR, chemosensory

reception; DIV, diverse functions; DIG, blood and sugar food

digestive; IMM, immunity; MET, metabolism; PROT, proteolysis;

RSM, redox, stress and mitochondrion; RTT, replication,

transcription, and translation; TRP, transport; UKN, unknown

functions.

(XLSX)

Table S2 Spot intensities, log2-fold values, and func-

tional groups of transcripts expressed in the naı̈ve

salivary gland. Functional group abbreviations: CS, cytoskeletal

and structural; CSR, chemosensory reception; DIV, diverse

functions; DIG, blood and sugar food digestive; IMM, immunity;

MET, metabolism; PROT, proteolysis; RSM, redox, stress and

mitochondrion; RTT, replication, transcription, and translation;

TRP, transport; UKN, unknown functions.

(XLSX)

Table S3 Log2-fold values and functional groups of

transcripts that were significantly regulated by DENV

infection in the salivary gland at 14 days post-infection.

Functional group abbreviations: CS, cytoskeletal and structural;

CSR, chemosensory reception; DIV, diverse functions; DIG,

blood and sugar food digestive; IMM, immunity; MET,

metabolism; PROT, proteolysis; RSM, redox, stress and mito-

chondrion; RTT, replication, transcription, and translation; TRP,

transport; UKN, unknown functions.

(XLSX)

Table S4 Log2-fold values and functional groups of

transcripts that were significantly regulated by DENV

infection in the carcass at 14 days post-infection.

Functional group abbreviations: CS, cytoskeletal and structural;

CSR, chemosensory reception; DIV, diverse functions; DIG,

blood and sugar food digestive; IMM, immunity; MET,

metabolism; PROT, proteolysis; RSM, redox, stress and mito-

chondrion; RTT, replication, transcription, and translation; TRP,

transport; UKN, unknown functions.
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Table S5 Sequences of primers used for synthesis of

double-stranded RNA.
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Table S6 Sequences of primers used for real-time PCR

quantification.

(DOCX)
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