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ZIKV is an arbovirus that belongs to the family flaviviridae and is trans-

mitted to man by Aedes mosquitos1. ZIKV was first isolated from a 

sentinel rhesus monkey in the Zika forest of Uganda in 1947 and has 

subsequently been found in mosquitos and humans1. Until recently, 

ZIKV was not viewed as a particularly important pathogen, as the 

majority of infections are asymptomatic2. Symptomatic cases of ZIKV 

resemble mild cases of dengue fever, with fever, myalgia, arthralgia, 

headache, conjunctivitis and rash3.

Until recently, cases were sporadic, largely in Africa and Southeast 

Asia, and epidemic activity had not been observed1. A large outbreak of 

ZIKV occurred on Yap island in the Western Pacific in 2007, then spread 

through Oceania and reached Brazil in 2015, where it rapidly spread to 

other South American countries1,4–7.

It is now apparent that ZIKV infection can cause substantial neuro-

logical complications; an increase in cases of Guillain Barré syndrome 

was first reported following the outbreak in French Polynesia in 2013 

(ref. 8). Dramatic increases in the incidence of microcephaly originating 

in northeastern Brazil were reported in late 2015, coincident with a large 

increase in ZIKV infection9,10. These increases in Guillain Barré syn-

drome and microcephaly led the World Health Organization to declare 

ZIKV a public health emergency in February 2016 (ref. 11).

ZIKV can be carried by a variety of Aedes mosquitos, but the princi-

pal species responsible for the current outbreaks is thought to be Aedes 

aegypti1,3. In parts of Brazil, A. aegypti is also spreading DENV and 

chikungunya viruses concurrently with ZIKV12–17. In the past 20 years, 

DENV has spread through areas of South America, and the seroprev-

alence of DENV in some areas affected by ZIKV exceeds 90% (refs. 

18–20).

DENV exists as four serotypes that differ by 30–35%, and the DENV 

serocomplex in turn differs from ZIKV by 41–46% (in amino acid 

sequence of the envelope protein)21. Published reports have shown 

difficulty in distinguishing DENV infection versus ZIKV infection 

serologically, indicative of a degree of antigenic similarity between the 

viruses4,22,23.

Following a primary DENV infection, a person develops life-long 

immunity to the infecting serotype but not to the other serotypes24,25. 

In DENV-endemic areas, all four serotypes of DENV frequently circu-

late together or cyclically replace each other, which means that multiple 

sequential infections are common26. One of the interesting features of 

DENV infection is that the life-threatening complications that lead to 

dengue hemorrhagic fever are more common after secondary infection 

than after primary infection21. One theory to explain this is ADE21. The 

ADE hypothesis suggests that antibodies generated during a primary 

infection with DENV will not be of sufficient concentration or avidity 

to neutralize a secondary infection with DENV of a different serotype 

that differs in amino acid sequence by 30–35%. However, they might 
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Zika virus (ZIKV) was discovered in 1947 and was thought to lead to relatively mild disease. The recent explosive outbreak of 

ZIKV in South America has led to widespread concern, with reports of neurological sequelae ranging from Guillain Barré syndrome 

to microcephaly. ZIKV infection has occurred in areas previously exposed to dengue virus (DENV), a flavivirus closely related to 

ZIKV. Here we investigated the serological cross-reaction between the two viruses. Plasma immune to DENV showed substantial 

cross-reaction to ZIKV and was able to drive antibody-dependent enhancement (ADE) of ZIKV infection. Using a panel of human 

monoclonal antibodies (mAbs) to DENV, we showed that most antibodies that reacted to DENV envelope protein also reacted to 

ZIKV. Antibodies to linear epitopes, including the immunodominant fusion-loop epitope, were able to bind ZIKV but were unable 

to neutralize the virus and instead promoted ADE. Our data indicate that immunity to DENV might drive greater ZIKV replication 

and have clear implications for disease pathogenesis and future vaccine programs for ZIKV and DENV.
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hospital. Samples were collected between 2002 and 2004 (Table 1); at this 

time, ZIKV was not described in the Khon Kaen region. Plasma collected 

from subjects around 6 months following secondary infection with DENV 

serotypes 1–4 was assessed for its binding to ZIKV and DENV by capture 

ELISA. In all cases, DENV-immune plasma bound to both DENV and 

ZIKV (Fig. 1). The overall patterns of binding to ZIKV strains originating 

in Africa (HD78788) or French Polynesia (PF13) were similar (Fig. 1).

Next we assessed neutralization of ZIKV by plasma collected from 

DENV-infected subjects during the convalescent phase. All such plasma 

was able neutralize DENV nearly 100% at the lowest dilution used (1:50) 

(Fig. 2a). However, neutralization of ZIKV was considerably less effi-

cient, with most plasma samples showing no appreciable neutralization 

at a dilution of 1:50 (Fig. 2b). The three samples that showed appreciable 

neutralization of ZIKV HD78788 were among the strongest neutralizers 

of DENV (Fig. 2b). The finding that plasma containing antibodies to 

DENV substantially cross-reacted with ZIKV prompted us to determine 

whether it was able to promote ADE.

DENV plasma potently induces ADE

We assessed the ability of plasma from DENV-infected subjects to pro-

mote ADE in the human myeloid cell line U937, which is relatively resis-

tant to infection by DENV in the absence of ADE31. Here, we found that 

U937 cells were also poorly permissive to ZIKV, with infection of <0.6% 

of cells in the absence of ADE (Fig. 3a). ZIKV was pre-incubated with 

a titration of pooled serum collected from convalescent subjects at 1–2 

weeks after recovery from infection with DENV and was then used to 

infect U937 cells. Pooled serum from convalescent subjects led to sub-

stantial enhancement (>100-fold) of infection of cells by ZIKV strains 

PF13 and H78788 (Fig. 3b). As expected, plasma pooled from control 

subjects not infected with DENV did not enhance such infection (Fig. 3b). 

Next we assessed a panel of convalescent plasma collected from subjects 

around 6 months following acute secondary infection with DENV. In all 

but one case, plasma from DENV-infected subjects enhanced the infection 

of cells with ZIKV, with a median increase of 12-fold for infection by the 

HD78788 strain of ZIKV (Fig. 3c,d). In summary, these results demon-

strated that cross-reacting antibodies to DENV were able promote ADE 

of ZIKV infection but were poorly neutralizing.

Cross-reaction of mAbs to DENV

We used a previously created a panel of human mAbs that react to the 

DENV envelope protein, generated from plasmablasts isolated from 

DENV-infected patients27. Detailed epitope mapping of these anti-

bodies has demonstrated three broad reactivities. Around one third of 

the antibodies react to the well-described fusion-loop epitope (FLE), 

and another one third have not been definitively mapped but, like the  

still opsonize the secondary virus and target it for Fc-receptor-mediated 

endocytosis into myeloid cells such as monocytes and macrophages 

(which are the principal site of DENV replication) and thus drive higher 

viral loads. ADE can be readily demonstrated in vitro and has also be 

shown to drive higher viral loads of DENV in animal models27–30.

Here we took advantage of a panel of human mAbs generated from 

DENV-infected subjects to demonstrate substantial cross-reactivity 

between DENV and ZIKV. Most mAbs to DENV also bound to ZIKV, 

but those that recognize the major linear fusion-loop epitope (FLE) did 

not neutralize ZIKV, whereas they showed neutralizing activity against 

DENV. DENV-immune plasma and mAbs to DENV potently enhanced 

ZIKV infection, which suggests the possibility that preexisting immunity 

to DENV might increase ZIKV replication.

RESULTS

DENV plasma cross-reacts with ZIKV

We studied a cohort previously established to investigate DENV infection 

in children in Khon Kaen in northeast Thailand. After informed consent 

was obtained, subjects were enrolled in the study; plasma and periph-

eral blood mononuclear cells were collected during their hospital stay 

for the acute phase of the illness, and samples were also collected during 

the convalescent phase, around 6 months following discharge from the 
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Table 1  Study subjects

Patient identifier Age (years) Sex Severity Infection serotype

K01 5 M DHF1 DENV 1

K02 2 F DHF3 DENV 1

K03 15 M DHF1 DENV 1

K04 5 M DF DENV 1

K06 10 F DHF1 DENV 2

K07 11 M DHF3 DENV 2

K08 11 F DHF1 DENV 2

K09 14 F DHF1 DENV 2

K11 14 F DHF2 DENV 3

K12 14 M DHF1 DENV 3

K13 11 F DHF2 DENV 3

K14 13 M DF DENV 3

K15 15 F DHF2 DENV 4

K16 5 M DF DENV 4

K17 8 F DF DENV 4

K18 6 M DF DENV 4

Information on DENV-infected patients enrolled in the study. Severity is assigned 

grades of dengue hemorrhagic fever (DHF1–DHF3) or dengue fever (DF). M, male; 

F, female.
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Figure 1  DENV-immune plasma cross-reacts with ZIKV. (a) Capture ELISA of the binding of plasma from DENV-infected subjects collected at 6 months  

after discharge from the hospital (six samples (open symbols or ‘x’)) and plasma pooled from control subjects not infected with DENV (filled circles) to ZIKV 

strains PF13 and HD78788 and DENV, assayed at 12 concentrations of plasma and presented (in arbitrary units (AU)) as titration curves; for DENV, the 

DENV serotype corresponding to the previous acute infection was used as the capture ELISA antigen. (b) Capture ELISA of the endpoint titers of DENV-

immune plasma (n = 16 samples) against ZIKV (strains PF13 and HD78788) and DENV. Each symbol represents an individual sample; small horizontal lines 

indicate the median. Data are representative of one experiment with 16 samples.
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removal of Asn153, while the binding of mAbs to EDE1 is not)27. Some 

antibodies to EDE are fully cross-reactive to all four DENV serotypes 

and are able to broadly neutralize infection in the picomolar range27 .

Binding of the panel of mAbs to DENV to ZIKV was assessed by 

capture ELISA and compared with their binding to DENV (Fig. 4a). The 

profile of their binding to the African (HD78788) and French Polynesian 

(PF13) strains of ZIKV was highly similar; all of the mAbs to FLE cross-

antibodies to FLE, they react to envelope protein, by immunoblot 

analysis (called ‘non-FLE’ here, as the antibodies are not sensitive to 

substitution of residue Trp101 of the envelope protein)27. A group of 

around 50 antibodies do not react to envelope protein, by immunoblot 

analysis, and bind only to intact viral particles27. These antibodies have 

been shown by cryo-electron microscopy and X-ray crystallography to 

bind to a conformational quaternary epitope formed at the interface 

of two envelope protein monomers that make 

up the basic head-to-tail dimer, 90 of which are 

arranged in icosahedral symmetry into the DENV 

glycoprotein shell27,32. This new epitope has been 

called the ‘envelope dimer epitope’ (EDE) and 

is subdivided this into two groups, EDE1 and 

EDE2, on the basis of sensitivity to removal of the 

N-linked glycan at Asn153 in the envelope protein 

(the binding of mAbs to EDE2 is diminished by 

Figure 3  DENV plasma enhances ZIKV infection. 

(a) Flow cytometry of U937 cells infected with ZIKV 

strain PF13 or HD78788 or DENV serotype 2 in 

the absence (–PCS) or presence (+PCS) of serum 

pooled from convalescent subjects, at a dilution 

of 1:10,000 (the dilution that results in peak 

enhancement). Numbers in outlined areas indicate 

percent cells positive (right) or negative (left) for 

staining with mAb 4G2 (to DENV envelope protein). 

SSC, side scatter. (b) Infection of U937 cells with 

ZIKV (strain PF13 or HD78788) or DENV serotype 2 

in the presence of pooled serum from convalescent 

subjects (PCS) or plasma pooled from control 

subjects not infected with DENV (PND), presented 

as the ratio of viral titer in the presence of plasma to 

viral titer in the absence of plasma. (c) Infection of 

U937 cells with ZIKV (strain PF13 or HD78788) or 

DENV serotype 2 in the presence of serially diluted 

plasma from subjects infected with DENV (six 

samples; as in Fig. 1) or plasma pooled from control 

subjects not infected with DENV (negative control; 

filled circles), at 12 different dilutions, presented 

as in b. (d) Peak enhancement of the infection of 

U937 cells with ZIKV or DENV via plasma from 

DENV-infected subjects (n = 16 samples), at 12 

different dilutions, presented as in b. Each symbol 

represents an individual sample; small horizontal 

lines indicate the median. Data are representative 

of two experiments (a,b) or one experiment with 16 

samples (c,d).
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Figure 2  Neutralization of ZIKV by DENV-immune plasma. (a) Neutralization of ZIKV strains PF13 and HD78788 and DENV (on Vero cells) in the presence 

of plasma from DENV-infected subjects (obtained as in Fig. 1; six samples (open symbols or ‘x’)) or plasma pooled from non-DENV-infected subjects (negative 

control; filled circles), assayed at 12 different dilutions; results calculated as (foci in the absence of plasma– foci in the presence of plasma / foci in the absence 

of plasma) × 100. (b) Neutralization of infection with ZIKV or DENV by plasma from DENV-infected subjects (n = 16), presented as the concentration that 

results in 50% reduction in a focus-reduction-neutralization test (FRNT50), calculated as ((foci in the absence of plasma –foci in the presence of plasma) / foci 

in the absence of plasma) × 100. Each symbol represents an individual sample; small horizontal lines indicate the median. Data are representative of one 

experiment with 16 samples assayed in duplicate.
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also promoted ADE of ZIKV infection when added at sub-neutralizing 

concentrations, although peak enhancement was seen with lower con-

centrations than the concentrations of mAb to FLE required for peak 

enhancement. This demonstrated that mAbs isolated from DENV-

infected patients, with different specificities, had broad cross-reactivity 

to ZIKV.

mAbs to EDE can inhibit ADE of DENV plasma

FLE and EDE are overlapping epitopes, as the footprint of the EDE also 

covers the fusion-loop region32. To investigate whether mAbs to DENV 

could overcome ADE induced by serum containing polyclonal antibod-

ies to DENV, we added a titration of mAbs to DENV to ZIKV incu-

bated with an enhancing concentration of serum containing antibodies 

to DENV, then assessed the infection of U937 cells. mAbs to FLE had 

no effect, whereas the mAbs to EDE1, except 752-2B2 (which has lower 

reacted with ZIKV, and 36 of 37 of mAbs to non-FLE cross-reacted with 

ZIKV, whereas the cross-reaction of the mAbs to EDE1 or EDE2 was 

variable, with 27 of 33 mAbs to EDE1 binding to ZIKV, and 8 of 17 mAbs 

to EDE2 binding to ZIKV (Fig. 4a). Binding curves showed lower avidity 

of binding of ZIKV by mAbs to EDE2 versus binding by mAbs to EDE1 

and lower avidity of mAb 752-2B2 (to EDE1) (Fig. 4b).

It has been demonstrated that almost all mAbs generated against 

DENV promote ADE, and this includes all of the human mAbs tested 

before27. Because the mAbs to DENV cross-reacted with ZIKV, we next 

assessed the ability of mAbs to DENV to promote ADE of the infec-

tion of U937 cells by ZIKV. First, we tested three mAbs to FLE that 

showed no neutralization activity against ZIKV33. All of these antibodies 

promoted ADE, enhancing infection of the HD78788 strain by 39- to 

91-fold relative to the infection of this strain of ZIKV incubated with no 

antibody (Fig. 5). As expected, the ZIKV-neutralizing mAb to EDE33 
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ZIKV epidemic, this still translates to large number of cases8. Much work 

still needs to be performed to elucidate the exact causes of the micro-

cephaly; however, it is becoming increasingly clear that this is caused 

by intrauterine infection of the developing brain10,34–37. ZIKV has been 

shown in animal models to infect the placenta and stunt growth and is 

also able to cross the placenta and infect the brain38–40. Furthermore, 

in vitro, ZIKV can infect neural cell cultures and disrupt development 

in neurospheres41,42. The exact risk of neurological damage following 

avidity for ZIKV), were able to 

potently inhibit ADE of infection 

with the PF13 strain of ZIKV, 

with 50% inhibition occurring 

at titers of 0.091 ± 0.007 mg/ml 

(for mAb 752-2C8) and 0.034 ± 

0.006 mg/ml (for mAb 753(3)

C10) (Fig. 6). The mAbs to 

EDE2 of lower avidity for ZIKV 

than that of the mAbs to EDE1 

were not able to inhibit ADE in 

this assay. These studies demon-

strated that antibodies to EDE1 

potently inhibited ADE of infection with ZIKV and that when present 

at sufficient concentrations, they were protective in vivo.

DISCUSSION

The recent explosion of ZIKV infection in South America, with associ-

ated Guillain Barré syndrome and microcephaly, is of great concern8–10. 

Guillain Barré syndrome is a relatively rare complication, estimated to 

affect 0.024% of ZIKV-infected people, but owing to the scale of the 
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and had been primed by but not protected by the vaccine. For this rea-

son, the vaccine is not licensed for use in children under 9 years of age 

and, furthermore, it is recommended that it be used only in populations 

in which the seroprevalence of prior DENV exposure in the age group 

to be vaccinated is 70% or greater47.

There is now great pressure to produce a vaccine against ZIKV, and 

in this context, the extensive serological cross-reaction between DENV 

and ZIKV must be considered. It is likely that the vaccine will need to 

be deployed in areas with high seroprevalence for DENV, and raising de 

novo ZIKV-neutralizing responses in such a setting might be challeng-

ing. There is also the possibility that vaccination of DENV-naive subjects 

against ZIKV might promote ADE of DENV infection and, conversely, 

that vaccination against DENV might promote ADE of ZIKV infection.

The results described here have shown a complex serological interac-

tion between DENV and ZIKV. The precise reason for the explosion of 

ZIKV infection and its complications in Brazil will need to be fully deter-

mined, but it is possible that preexisting immunity to DENV is driving 

greater ZIKV replication in ZIKV-infected people, which might in turn 

create a greater risk of complications following infection and transmis-

sion of ZIKV to mosquitoes. The possibility that ADE of infection might 

aid the transplacental transfer of ZIKV also needs to be investigated. The 

timing of DENV infection versus that of ZIKV infection might also be 

important, as cross-reactive protective and enhancing immunity might 

change over time following DENV infection.

In summary, although ZIKV differs from DENV by around 41–46% 

(in the sequence of the envelope protein), the similarities are sufficient 

to allow cross-reaction of antibodies to DENV with ZIKV and to drive 

ADE of infection. In this context, ZIKV could be considered a fifth 

member of the DENV serocomplex, a factor that must be considered in 

vaccine approaches to these two viruses.

METHODS

Methods and any associated references are available in the online  

version of the paper. 

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Samples. Blood samples were collected after written informed consent was 

obtained, with approval of the ethical committee of the Khon Kaen and Siriraj 

Hospitals in Thailand and the Riverside Ethics Committee in UK. The serotypes 

of DENV infection was determined by RT-PCR detection of the viral genome48. 

Samples were collected around 6 months after recovery from dengue illness 

(Table 1). Secondary DENV infection was classified based on the ratio of <1.8, 

anti-DENV IgM to anti-DENV IgG, measured by IgM and IgG capture ELISA48. 

The dengue disease severity was classified according to the WHO 1997 classifica-

tion. Pooled serum from convalescent subjects was obtained by combining serum 

taken from dengue-infected patients around 1–2 weeks after recovery. Plasma 

pooled from control subjects not infected with DENV was obtained from normal 

healthy subjects that had no detectable anti-DENV antibodies.

Cells, reagents and antibodies. Vero cells (a gift from Armed Forces Research 

Institute of Medical Sciences (AFRIMS)), 293T cells and U937 cells were cul-

tured at 37 °C in MEM, DMEM and RPMI-1640, respectively. C6/36 cells (a gift 

from AFRIMS) were grown in Leibovitz L-15 at 28 °C. All medium contained 

10% heat-inactivated fetal bovine serum, 100 units/ml penicillin and 100 mg/ml 

streptomycin. All cell lines were free from mycoplasma contamination.

Alkaline phosphatase (ALP)-conjugated anti-human IgG (A9544) and horse-

radish-peroxidase-conjugated anti-human IgG (P0214) were purchased from 

Sigma and Dako, respectively. Mouse mAb 4G2 to DENV envelope protein was 

a gift from AFRIMS. RPMI-1640 (R8758), DMEM (D5046), p-nitrophenylphos-

phate (PNPP, N2770-50), Bovine serum albumin (BSA, A7030), diaminobenzi-

dine (D5905), and polyethylenimine (408727; Sigma) were from Sigma. MEM 

(31095) and Leibovitz L-15 (11415) were from Gibco and UltraDOMA-PF (12-

727F) was from Lonza.

Viral stocks. All viruses were grown in C6/36 cells. A.S. provided ZIKV strain 

HD78788 (African strain). ZIKV strain PF13/251013-18 (PF13) was isolated 

from a patient during the ZIKV outbreak in French Polynesia in 2013. DENV-1 

(Hawaii), DENV-2 (16681), and DENV-3 (H87) were gifts from AFRIMS. 

DENV-4 (1-0093) was isolated from a DENV-4-infected patient. Virus-

containing supernatants were clarified by centrifugation at 2,000 r.p.m. at 4 °C 

before being stored at –80 °C. Viral titers were determined by a focus-forming 

assays on Vero cells27. All viral stocks were free from mycoplasma contamination.

Expression of human mAbs to DENV envelope protein. A pair of plasmids 

containing heavy and light chains of IgG1 were co-transfected into 293T cells 

using the polyethylenimine method and cultured in protein-free media. Culture 

supernatant containing antibodies was harvested after 5 d.

Determination of ZIKV cross-reactivity of anti-DENV antibodies by ELISA. 

A MAXISORP immunoplate (442404; NUNC) was coated with 50μl of 5μg/ml 

of mouse antibody 4G2 to envelope protein (a mouse antibody to the fusion loop 

that cross-reacts with ZIKV). Plates were blocked with 3% BSA (A7030, Sigma) 

for 1 h, followed by incubation with viral supernatant. After 1 h, 10 mg/ml human 

mAbs to DENV or serially diluted plasma was added. The reaction was visual-

ized by ALP-conjugated anti-human IgG antibody at a 1:10,000 dilution (A9544; 

Sigma) and PNPP substrate (N2770, Sigma). Reactions were stopped with NaOH 

and the absorbance was measured at 405 nm. Endpoint titers (EPTs) were defined 

as reciprocal plasma dilutions that corresponded to two times the average OD 

values obtained with mock antigen.

Neutralization assay. The focus reduction neutralization assay (FRNT) was 

employed to determine the neutralizing potential of antibodies. Virus was incu-

bated with serial dilutions of antibodies or plasma samples for 1 h at 37 °C. The 

mixtures were then added to Vero cells and incubated for 2 d (for ZIKV) or 3 d 

(for DENV). Focus-forming assays were then performed as described27. Vero 

cells were stained with mAb 4G2 (to envelope protein; cell culture supernatant 

(a gift from AFRIMS)), followed by peroxidase-conjugated goat anti-mouse 

immunoglobulin at a 1:1,000 dilution (P0047; Sigma). The foci (infected cells) 

were visualized by adding the peroxidase substrate DAB (D5905, Sigma). The 

percentage focus reduction was calculated and 50% FRNT was calculated using 

the probit program from the SPSS package.

Antibody-dependent enhancement assay. Serially diluted mAb or plasma 

samples were incubated with virus at moi of 2 (ZIKV) or 5 (DENV) for 1 h at 37 

°C before adding to U937 cells. After incubation for 2 d (ZIKV) or 3 d (DENV), 

supernatants were harvested and viral titers determined by focus forming assays. 

Fold enhancement was calculated by comparison to viral titers in the presence 

or absence of antibody. For flow cytometry, infected U937 cells were fixed and 

permeabilized in 3.7% formaldehyde and 0.5% saponin, respectively. Intracellular 

staining was performed with 4G2 conjugated with Alexa Fluor 647 at 4 °C for 30 

min. Infected cells were analyzed by BD FACSVerse.

ADE inhibition by human mAbs was performed by premixing pooled convales-

cent dengue hyper-immune serum at 1:10,000 dilution (a peak enhancing dilution) 

with serially diluted mAb before performing the ADE assay as described above.

48. Mongkolsapaya, J. et al. Original antigenic sin and apoptosis in the pathogenesis of 

dengue hemorrhagic fever. Nat. Med. 9, 921–927 (2003).
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