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Denial of service attack detection through machine learning
for the IoT

Naeem Firdous Syeda, Zubair Baigb, Ahmed Ibrahima and Craig Vallia

aSecurity Research Institute, School of Science, Edith Cowan University, Perth, Australia; bSchool of
Information Technology, Deakin University, Geelong, Australia

ABSTRACT

Sustained Internet of Things (IoT) deployment and functioning are
heavily reliant on the use of effective data communication
protocols. In the IoT landscape, the publish/subscribe-based
Message Queuing Telemetry Transport (MQTT) protocol is popular.
Cyber security threats against the MQTT protocol are anticipated
to increase at par with its increasing use by IoT manufacturers. In
particular, IoT is vulnerable to protocol-based Application layer
Denial of Service (DoS) attacks, which have been known to cause
widespread service disruption in legacy systems. In this paper, we
propose an Application layer DoS attack detection framework for
the MQTT protocol and test the scheme on legitimate and
protocol compliant DoS attack scenarios. To protect the MQTT
message brokers from such attacks, we propose a machine
learning-based detection framework developed for the MQTT
protocol. Through experiments, we demonstrate the impact of
such attacks on various MQTT brokers and evaluate the
effectiveness of the proposed framework to detect these
malicious attacks. The results obtained indicate that the attackers
can overwhelm the server resources even when legitimate access
was denied to MQTT brokers and resources have been restricted.
In addition, the MQTT features we have identified showed high
attack detection accuracy. The field size and length-based features
drastically reduced the false-positive rates and are suitable in
detecting IoT based attacks.
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1. Introduction

Critical infrastructures (CIs) are increasingly aiming to improve their efficiencies to deliver

services to their stakeholders, with the Internet of Things (IoT) promising to provide signifi-

cant opportunities for improving various CI processes for industries and consumers alike.

The role of IoT in building future smart cities is indispensable and is already playing an

important role in transforming the energy, transportation and communications sectors

(Zanella et al., 2014). The increasing role of IoT devices in such infrastructures, is exposing

their vulnerabilities to adversarial cyber threats (Bekara, 2014). It is anticipated that the

attack surfaces will rapidly evolve in the near future, exposing CIs to a range of cyber
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security challenges (Asplund & Nadjm-Tehrani, 2016; Sadeghi et al., 2015). The attack

surface for a cyber-physical IoT system of a typical CI spans across its layers of operation;

Physical to Application (Sadeghi et al., 2015). Moreover, the variety of communication pat-

terns and formats adopted by the heterogeneous IoT protocols of a CI encumber the

design of a robust cyber security solution (Heer et al., 2011).

MQTT is a publish/subscribe-based Application layer protocol suitable for Machine to

Machine (M2M) communication pattern, where a central message broker routes the pub-

lished messages to subscribers based on their topics of interest. On a publish/subscribe

platform, the publishers would publish messages to a topic and subscribers would sub-

scribe to their respective topics of interest. The message broker, acting as an intermediary,

then forwards the published messages to subscribers based on the subscribed topics.

Figure 1 shows the message publish/subscribe process as implemented by the MQTT

protocol.

The message broker plays an important role in MQTT as it decouples the sensors and

actuators or monitoring IoT devices in both space and time. This is achieved by a process

known as filtering. The publish/subscribe messaging pattern employs two common forms

of filtering: content-based and topic-based. In content-based filtering, the subscribers

receive only those messages that contain or match the attributes defined by the subscribers,

whereas for topic-based filtering, subscribers receive only a subset of published messages

that match the message topics on logical channels subscribed by them. The MQTT protocol

does topic-based filtering to route messages to interested subscribers. The protocol specifies

various control packets to facilitate message exchange between its endpoints. Some of the

common control packets are enumerated in Table 1.

Figure 1. Publish/subscribe process in MQTT.

Table 1. MQTT control packets.

Control packet Description

CONNECT First packet sent by a client to broker to initiate a MQTT connection
CONNACK Acknowledgement for a CONNECT packet sent by broker to a client
PUBLISH Message sent by the publisher (client to broker or broker to client) to publish a message to a Topic
SUBSCRIBE Message sent by the subscriber client to the broker to subscribe to a Topic
DISCONNECT Message sent by the client to broker to disconnect the MQTT connection

2 N. F. SYED ET AL.



The messages between publishers and subscribers are communicated using various

control packets which contains a fixed two byte protocol header. This ensures a small

message overhead suitable for constrained devices operating in unreliable communi-

cation networks. These features have made MQTT protocol a favourable choice for M2M

communication in IoT. As the MQTT adoption rate increases for IoT data communication,

it is very important to assess and design its security.

A range of security challenges exist for IoT, but Denial of Service (DoS) attacks that

target the data communication system pose a particularly significant challenge to IoT

deployments (Heer et al., 2011). Such attacks can also pose as a major challenge in

cyber-physical CIs, which rely on real-time inter-device communications (Ten et al.,

2010). A consequent delay in message delivery due to DoS attacks would disrupt

smooth operations of cyber-physical systems of CI. Most of the work as found in the IoT

literature either presents DoS attack detection techniques (Alanazi et al., 2015; Kasinathan

et al., 2013) or merely refers to DoS attacks as one of the challenges to the IoT ecosystem

(Borgohain et al., 2015; Roman et al., 2013; Shaker & Zarrabi, 2017). Furthermore, the MQTT

OASIS specification (Cohn, 2014) lists DoS attacks as one of the security threats to the

MQTT protocol. Hence, a security solution to protect MQTT-based IoT infrastructures

against such attacks is essential.

In this paper, we propose a machine learning-based MQTT DoS attack detection frame-

work for the IoT platform, based on a custom made DoS attack model. The key contri-

butions of this paper are:

. Identification of network traffic features to represent the MQTT protocol meta-data,

. Modelling of DoS attacks for MQTT brokers,

. Design of an effective detection framework to detect MQTT DoS attacks, and

. Testing of the attack model and the attack detection framework on a physical IoT

deployment.

The rest of the paper is organized as follows: in Section 2, we present the related work.

Section 3 details the DoS attack model. Section 4 presents attack detection framework.

Section 5 presents the experimental results and analysis thereof. The conclusion is

presented in Section 6.

2. Literature review

The most common types of DoS attacks aim to exhaust the network bandwidth, CPU

cycles or memory on the target system to make services unavailable for legitimate

users (Durcekova et al., 2012). To maximize the impact of DoS attacks against a target

system, findings reported in the literature indicate that Application layer attacks are

being increasingly perpetrated by adversaries (Brenner, 2010; Mantas et al., 2015). Such

attacks aim to consume the target resource by sending carefully crafted legitimate

requests towards the victim. The most common DoS attacks against Application layer pro-

tocols exploit vulnerabilities in the initial connection-establishment message exchanges,

as listed in Table 2.

Most of the works related to MQTT protocol available in the literature focus on perform-

ance evaluation (Fehrenbach, 2017; Gündoğan et al., 2018; Lee et al., 2013; Luzuriaga et al.,
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2015; Scalagent, 2015; Thangavel et al., 2014; Yokotani & Sasaki, 2016), proposing security

enhancements to the existing protocol (Mektoubi et al., 2016; Shin et al., 2016; Singh et al.,

2015), formal modelling (Aziz, 2016; Houimli et al., 2017) and security evaluation (Andy

et al., 2017; Firdous et al., 2017; Perrone et al., 2017).

The various performance evaluation methods proposed in Scalagent (2015), Lee et al.

(2013), Thangavel et al. (2014), Luzuriaga et al. (2015), Yokotani and Sasaki (2016), Gündo-

ğan et al. (2018) and Fehrenbach (2017) do not evaluate the broker performance during

the DoS attacks. In a work done by Fehrenbach (2017), the author conducted tests to simu-

late a Distributed-DoS (DDoS) attack on the MQTT broker. The main focus of his contri-

bution was to identify the impact of using Transport Layer Security (TLS) for

communication and message QoS on the broker resources. One of the drawbacks of his

work was that it focused only on the impact of various message QoS levels and TLS con-

nection on the broker performance. Our work is different from the study presented in Feh-

renbach (2017) as the focus of this work is on modelling DoS attacks by varying the

parameters in control packets and assessing their impact on various MQTT brokers and

deployment scenarios.

Perrone et al. (2017) presented a security analysis of MQTT protocol and described the

various security requirements for IoT deployments. In another work, Andy et al. Andy

et al. (2017) presented some attack scenarios as well as a security analysis of the

MQTT protocol. In their work, the authors highlighted the security issues of the MQTT

protocol and discussed attack scenarios against brokers with open authentication. Feasi-

bility of such attacks is questionable as most MQTT broker deployments in industrial

environment disable open authentication feature as it poses security risk of unauthor-

ized access. In order to understand the security issues in the MQTT protocol, a threat

model and the impact of SYN-Flood DoS attack on message brokers was presented in

Firdous et al. (2017).

Santiago Hernández Ramos and Lacuesta (2018) proposed a fuzzing approach to test

vulnerabilities of an MQTT based application. The proposed approach tested the behav-

iour of the MQTT based application when fuzzed data was inserted between clients and

the broker. The authors used a proxy fuzzing technique along with a non-normative

packet variable header data template to asses the behaviour of both broker and clients

when presented with unexpected data. Failures were detected in certain versions of the

broker software and in client applications. A similar MQTT fuzzer tool known as F-secure

Table 2. DoS attack strategies adopting protocol-specific legitimate requests for various Application
layer protocols.

Protocol Request type Attack packet sending methods

HTTPa HTTP-GET, HTTP-POST . Flooding (exponentially increasing attacks, Flash attacks, constant high-rate
attacks)

. Low rate: Periodic (square wave DoS stream – low average packet rateb) ,
Slowloris

SIPc SIP-INVITE, SIP-
REGISTER

Flooding

DNSd Name resolution query Flooding
SMTPe Email flooding Flooding
aSingh et al. (2017), Adi et al. (2016) and Ranjan et al. (2009).bShan et al. (2017).cRafique et al. (2009) and Luo et al.
(2008).dBallani and Francis (2008).eBencsath and Ronai (2007).
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MQTT-FUZZ was developed by Vähä-Sipilä (2015) which uses sniffed raw MQTT control

packet payload to launch fuzzed MQTT packets against the broker.

An existing work that attempts to detect IoT based attacks proposed MQTT transaction

based features Moustafa et al. (2019). However, the authors used features based on the

TCP protocol analysis, which do not provide sufficient information on the MQTT protocol

parameters. In contrast, our proposed MQTT features are based on MQTT header and

payload meta-data, which can effectively detect and differentiate such attacks. In addition,

the main drawback of Moustafa et al. (2019) is that the performance of their attack detec-

tion scheme was not presented for MQTT attacks. The primary reason behind this was that

no real MQTT attack datasets existed to evaluate the detection techniques. In our work, we

first present various vulnerabilities in MQTT and also develop several attack scenarios to

generate actual DoS attack traffic. We also evaluate the detection capability of the pro-

posed IoT attack detection framework. In the following section, the DoS attack model

used to create the DoS attack scenarios on MQTT protocol is presented.

3. DoS attack model

The main goal of DoS attacks is to overwhelm server resources and to deny access by legit-

imate clients. According to Little’s Law (Little & Graves, 2008), the average number of items

in a queuing system can be defined as:

L = l∗W (1)

where λ is the arrival rate of items into the system and W is the average time spent by an

item in the system. DoS attacks aim to fill-up the system queue, thus denying service to

legitimate clients. DoS attacks can either increase arrival rate of packets or increase the

per-packet processing time by forcing complex computing operations at the victim

device. In most industrial MQTT applications, authentication and authorization help

prevent unauthorized access, and authenticated clients are authorized to either send or

receive messages on selected topics only. Access levels available for MQTT clients are

one of two:

. Valid Credentials to connect to MQTT broker, or

. Valid Authorisation to Publish/Subscribe to topics.

An attacker without valid credentials can only vary the parameters of a CONNECT

packet as clients cannot publish or subscribe without successful connection to the

broker. However, after a successful connection using valid credentials but without valid

authorization to publish and subscribe to topics, the attacker can vary PUBLISH or SUB-

SCRIBE control packet parameters. Based on the control packet type and the access

level available to an attacker, the flooding attacks can be categorized into:

(1) Basic CONNECT Flooding (BF1): The attacker only sends a large volume of CONNECT

packets to the target server to overwhelm the server with the processing of authenti-

cating requests.

(2) Delayed CONNECT Flooding (BF2): The CONNECT packet transmission is delayed by

the attacker after the establishment of the TCP session. This will result in a high volume
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of half-open TCP sessions at the broker, as it is waiting for the CONNECT request to

complete. It also causes the broker to process these invalid credentials, thus leading

to an increase in CPU utilization.

(3) WILL Payload CONNECT Flooding (BF3): The CONNECT packet size is increased by

the attacker through piggy-backing a WILL Payload on a CONNECT packet. This will

lead to the consumption of both the entire bandwidth at the victim server as well

as CPU resources, preventing it from processing new connections.

(4) Invalid Subscription Flooding (IAUTHS): With valid credentials but no authorization

to access various topics, an attacker can flood the broker with invalid subscriptions or

publish requests to the subscriber. This will result in consumption of broker CPU

resources in verifying individual request.

4. Attack detection framework

In this section, a DoS attack detection framework is proposed. The framework comprises of

a network traffic generator, feature extraction engine and a machine learning-based DoS

attack traffic classifier.

4.1. MQTT traffic generation

An IoT-MQTT network typically comprises of a set of IoT sensors that observe environ-

mental phenomena and constantly communicate with each other or with monitoring or

control devices through a centralized message broker. The proposed traffic generation

component of the detection framework includes two physical servers, one hosting the

VerneMQMQTT broker virtual machine and the second serving as the attacker. Thirty Rasp-

berry Pi (RPI) devices and four WEMOS ESP8266 devices were connected to two wireless

routers; equally distributed. Twenty RPI devices and four ESP8266s, each interfaced with

physical sensors was configured to publish sensor data periodically. The sensors comprised

of: a PIR motion sensor, CCS811-Air Quality Sensor, DS130 RTC clock, DS18B20 temperature

sensor and MH-MQ Gas sensor. The remaining 14 RPI devices were configured to period-

ically send MQTT messages to the broker. The broker was configured with 1000 user-

name/password combinations to authenticate the clients, and 1000 MQTT Access

Control-list (ACL) to authorize devices to publish/subscribe to various topics. Anonymous

login was disabled to allow only authenticated access to publish and subscribe topics.

Figure 2 illustrates the network traffic generator testbed deployed. Sensors were

sending updates to the broker with a varying periodicity with a sleep interval between

4 and 8 s. The reason to keep the sleep intervals below 10 s was to achieve a realistic

message publish rate, in alignment with the standard practice (Sivanathan et al., 2018).

Sensors were also configured with LAST WILL message generated varying length mess-

ages, where a LAST WILL message is transmitted to update the subscribed clients if the

publishing client disconnects abruptly.

DoS attack traffic was generated using a custom-built MQTT attack tool based on the

Ecliplse-Paho library (Eclipse, 2018). Since these MQTT attacks were generated from a

single attack source, a multi-threaded approach was adopted in the attack tool to maxi-

mize the impact on victim server’s available resources. Each attack was based on

6 N. F. SYED ET AL.



specific MQTT protocol settings. The brute force CONNECT flooding attacks were confi-

gured with a random length character comprising a ClientID, username and password,

similar to a real client. The Subscribe flooding attack sent 200 subscription requests in

each session with six subscriptions per request. The number of subscription requests

was randomly selected to maximize the number of SUBSCRIBE packets sent to the

broker per connection request. The delayed CONNECT flooding attack (BF2) was launched

using 250 threads and the remaining three attacks were launched using three threads to

generate maximum number of attack packets targeting the broker. Selection of the

number of threads for each attack type was based on the evaluation of number of

attack packets received by the broker while incrementing the number of threads and

the value that generated maximum number of attack packets was chosen.

Attack traffic was generated from a separate physical server connected to the network

based on the various attack scenarios described previously. Network traffic was captured

on the victim machine using the TCPDUMP (2019) tool in packet capture (pcap) format

separately for normal and individual attacks to ease the labelling process for supervised

classification. The TCPDUMP tool was configured to save the captured packets in 30MB

chunks so as to reduce the processing load associated with feature extraction. Tshark

tool (Wireshark, 2019) was deployed to extract specific packet parameters of the TCP

and MQTT protocols for subsequent extraction.

4.2. MQTT feature extraction

In this phase, the custom-built feature generator module was deployed to generate flow-

based statistical data. The tool extracted each flow identified through the following

network traffic features: Source IP, Destination IP, Source Port and Destination Port, for

each pcap file. The tool also extracted various aggregate values of the MQTT parameters.

These aggregate/statistical flow features were calculated based on the parameters of

Figure 2. MQTT data set generation testbed and the associated tools for feature generation.
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MQTT sessions, such as count, size and field lengths. Specifically, two groups of statistical

MQTT flow features namely, session features and MQTT packet and field length features,

were generated. Session features were based on the counts of number of packets, number

of control packets and number of QoS packets that belonged to the same flow. Packet size

and field length features were based on the captured IP packets and the various MQTT

field lengths, illustrated in Table 3. Only packet meta-data were utilized to generate the

features instead of deep inspection of the payload. Hence, this feature extraction

method can also be utilized on flows with encrypted MQTT payloads. In order to

measure the accurate number of subscription requests per flow, the feature generation

module counted the individual subscription requests and the number of topics in the

request as separate request.

4.3. Attack detection module

The attack detection module of the framework is a machine learning (ML) based detection

system. Statistical flow features extracted from MQTT network traffic serve as input to the

classification system and help differentiate normal from attack flows, as well as inter-attack

flow classification. The task of differentiating between the various flooding attacks will

enable effective counter measures to be applied to thwart such attacks. The use of legit-

imate requests in Application layer DoS attacks can pose a significant challenge to the

detection framework in differentiating between normal and attack network flows.

Table 3. Proposed MQTT DoS detection features (feature type N: Numeric, B: Binary).

S.No Feature Description Type

MQTT session statistical features
1 flow_duration Duration of Flow N
2 pkt_in_flow No. of Packets in a Flow N
3 Connect_Command No. of CONNECT packets in Flow N
4 Publish_Message No. of PUBLISH packets in the Flow N
5 Subscribe_Request No. of SUBSCRIBE packets in the Flow N
6 Disconnect_Req No. of DISCONNECT packets in the Flow N
7 Ping_Request No. of PING packets in the Flow N
8 Subs_Qos0 No. of SUBSCRIBE packets with QoS 0 in the Flow N
9 Subs_Qos1 No. of SUBSCRIBE packets with QoS 1 in the Flow N
10 Subs_Qos2 No. of SUBSCRIBE packets with QoS 2 in the Flow N
11 Pub_Qos0 No. of PUBLISH packets with QoP 0 in the Flow N
12 Pub_Qos1 No. of PUBLISH packets with QoP 1 in the Flow N
13 Pubs_Qos2 No. of PUBLISH packets with QoP 2 in the Flow N
14 Will_Qos0 No. of WILL messages with QoS 0 in the Flow N
15 Will_Qos1 No. of WILL messages with QoS 1 in the Flow N
16 Will_Qos2 No. of WILL messages with QoS 2 in the Flow N
17 tcp.time_delta Time between packets in the flow N

MQTT Packet and Field Length Features
18 frame.len Avg. Frame Length in the Flow N
19 tcp.len Avg. TCP length in the Flow N
20 mqtt.clientid_len ClientID length in the Flow N
21 mqtt.username_len username length in the Flow N
22 mqtt.passwd_len password length in the Flow N
23 mqtt.willtopic_len WILL Topic length in the Flow N
24 mqtt.willmsg_len WILL Message length in the Flow N
25 mqtt.len Avg. MQTT packet length N
26 mqtt.topic_len Avg MQTT Topic Length N
27 mqtt.kalive MQTT Keep Alive interval N
28 mqtt.conflag.cleansess CleanSession Flag Set/Unset B
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Furthermore, broken sessions due to loss of network connectivity can potentially increase

the challenge to detect attacks. Hence, the ML algorithms selected in the framework

should be sensitive to small variations in feature vector values, to accurately classify

network traffic. For example, a normal flow can have the following communication

sequence in the IoT-MQTT message exchange: TCP handshake + Connect + Publish/Sub-

scribe + Disconnect, whereas, an attack communication sequence can be: TCP handshake

+ Connect or TCP handshake + Connect + multiple Publish/Subscribe + Disconnect.

In this study, three fundamentally different machine learning approaches namely,

average one-dependence estimator (AODE), C4.5 decision trees and artificial neural

network (ANN) were integrated into the detection framework. The steps followed in the

detection framework to classify MQTT traffic are illustrated in Figure 3 and the three clas-

sifiers adopted in MQTT attack detection are discussed below:

AODE Classifier Webb et al. (2005): The AODE classifier is a variant of the Naïve Bayes

classifier that estimates the probability of the class of each output variable Y given a set of

input features x1,…xn. It is based on a simple Naïve Bayes classifier which relies on the

assumption of independence of attributes. Assuming that all attributes are independent

given the class, then Naïve Bayes can be defined as:

argmax
c[C

P(C)
∏n

i=1

P(ai|C) (2)

Where C is the class label and a is the attribute. In this scenario, the computation cost is

reduced; however, the performance of Naïve bayes decreases if the dependency

Figure 3. Detection framework work-flow in detecting MQTT attacks.
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between the attributes is high (Koc & Carswell, 2015). To counter this effect, the AODE

classification technique uses a weaker independence assumption to achieve a higher

accuracy rate compared to Naïve Bayes. AODE classifiers are simple to implement and

provide high accuracy in classifying data.

Decision Trees (DT): The decision tree-based algorithms build training data sets into

the tree structure applying the information entropy principle. Each branch of the tree rep-

resents an association between the feature vector and the class label. C4.5 is one of widely

used DT method which recursively partitions the training data set by choosing the most

effective features to differentiate between the classes. In the first step, C4.5 identifies

the best feature that can divide the data instances. In further steps, child nodes are

created to divide the instances into subclasses. The attributes selected in each division

point in the tree are based on the largest information gain using the best attribute.

Entropy is used as a measure of information gain, calculated as follows:

H(X) = −
∑n

i=i

pi log2 (pi) (3)

Multi-Layer Perceptron (MLP): MLP is a type of feed-forward artificial neural network

(ANN) that comprises multiple nodes known as artificial neurons, emulating the biological

neurons of brain. The nodes in the MLP are grouped as input layers representing the input

features, hidden layer and an output layer. In MLP, the nodes of a given layer use activation

functions to control the node’s output, as well as to serve as an input for the next node.

The nodes in MLP are connected by weights which are tuned by using back-propagation

algorithms, that adjust the weights to reduce the error between outputs and expected

results where, the error is calculated as follows:

ei(n) = ti(n)− yi(n) (4)

Where ti(n) is the expected output and yi(n) produced output value of the instance n and

output node i.

5. Experimental results and analysis

5.1. DoS attack assessment

The individual DoS attack scenarios were evaluated on MQTT protocol version 3.1,

deployed through three open-source broker software tools deployed using virtual

machines. Oracle Virtual Box (Oracle, 2018) running on Windows 10 machine (64GB

RAM, Intel Core i7-5820K, 6 physical CPUs, 12vCPU, 3.30GHz) was used to host the three

virtual machines to deploy the broker software and each virtual machine was configured

with 1 CPU, 8GB RAM and 15GB hard disk. The three open-source MQTT broker implemen-

tations deployed in this study were namely: Eclipse Mosquitto (1.4.12) (Mosquitto, 2017),

VerneMQ (1.6.2) (Vijay, 2018) and EMQ (3.0) (EMQ, 2018). Mosquitto is a light-weight, por-

table and single-threaded MQTT broker. In contrast, VerneMQ and EMQ brokers are multi-

threaded and scalable MQTT brokers designed using Erlang/Open Telecom Platform(OTP)

to achieve high scalability. These brokers were deployed on Ubuntu Server 17.10. A sep-

arate physical machine running Ubuntu server 18.04, connected to the broker network

using a router, was configured to launch the DoS attacks as shown in Figure 4.
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5.2. Attack impact analysis

Various attack metrics were measured to assess the impact of DoS attacks against the

MQTT brokers. These include: CPU utilization, bandwidth and memory utilization. CPU util-

ization was measured usingmpstat Linux command line tool, which provides a break-up of

CPU usage by various system tasks. A custom BASH script was run to measure memory and

bandwidth utilization at each 1 s interval. All the experiments and measurements were

repeated three times to ensure validity and repeatability of results. The metrics measured

to evaluate the DoS attack impact were:

. %usr: Percentage time spent by CPU executing application related task

. %sys: Percentage time spent by CPU executing kernel level task

. %iowait: Percentage time spent by CPU executing disk I/O requests

. %soft: Percentage time spent by CPU servicing software interrupts

. %idle: Percentage time spent by CPU not executing any tasks and no pending I/O

requests. A high idle % indicates the CPU is least utilized and a low idle % indicates

high CPU utilization.

. Process CPU (pCPU): Measured using bash script fetching the CPU utilization associ-

ated with broker process ID using top Linux command

. Bandwidth: Total bandwidth consumed during the attack (kbytes)

. Memory: Percentage Memory consumed during the attack

The flooding attack results achieved with maximum attack packet rate indicate that the

all the three brokers suffered high CPU utilization during the various attack scenarios. The

percentage of time the CPU was idle measured during the attack reduced drastically as

shown in Figure 5. The VerneMQ and EMQ brokers had the maximum impact as the CPU

idle percentage reached zero for more than one attack scenario. However, the idle percen-

tage for Mosquitto broker was close to 20% and reached 0% for invalid subscription attack.

The results also show that invalid subscription flooding attack caused the maximum impact

on the CPU utilization as all the brokers had CPU idle percentage below 5%.

The CPU utilization break-up in Table 4 shows that during the various attack scenarios

the VerneMQ and EMQ brokers spent more time in I/O Wait and application-related pro-

cessing. In contrast, the Mosquitto broker spent more time in kernel functions and

Figure 4. MQTT broker deployment to assess DoS attacks.
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software interrupts. These results show that various MQTT brokers use different techniques

to handle connection requests as mentioned in Karagiannis et al. (2015).

The results also indicate that VerneMQ and EMQ brokers are vulnerable to malformed

MQTT packets which contain non-ASCII characters. Both the brokers suffered high memory

utilization with the non-ASCII characters included in the MQTT fields. The EMQ broker had

the worst performance among the brokers as it had high CPU utilization during all the

attack scenarios as shown in Figure 6 and higher memory utilization compared to other

brokers. Especially, the broker suffered high memory utilization during the bruteforce

attack with WILL payload and can be potentially exploited to cause memory-exhaustion

attacks to completely incapacitate the broker.

Figure 5. CPU Idle percentage for three MQTT brokers in four attack scenarios along with malformed
packet attack.

Table 4. CPU utilization break-up into system tasks during the four DoS attacks along with malformed
packet attack (mBF1).

Attack Type Broker %usr %sys %iowait %soft %idle

BF1-RandomID Mosquitto 7.08 28.42 0.02 41.77 22.69
VerneMQ 31.95 26.69 0.00 30.25 11.08
EMQ 20.92 10.12 61.78 7.16 0.00

mBF1 Mosquitto 6.84 26.79 0.01 42.66 23.69
VerneMQ 36.03 13.56 31.86 18.55 0.00
EMQ 36.39 7.78 44.10 11.73 0.00

BF2 Mosquitto 7.17 30.88 0.01 39.19 22.75
VerneMQ 32.79 30.04 0.00 31.13 6.03
EMQ 21.27 11.81 59.74 7.17 0.00

BF3 Mosquitto 4.63 20.75 0.01 57.75 16.86
VerneMQ 27.41 24.88 0.01 44.81 2.90
EMQ 92.78 4.05 2.21 0.95 0.00
Mosquitto 84.00 0.50 0.00 15.50 0.00

IAUTHS VerneMQ 82.47 1.33 0.00 16.21 0.00
EMQ 90.67 0.40 0.00 8.93 0.00
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5.3. Attack classification results and analysis

The performance of various classifiers was tested using the Hall et al. (2009) machine learn-

ing software. The effect of the selected MQTT features on attack detection was evaluated

by comparing the detection framework performance with count-based statistical features

and the full feature set including the size and length based features, for both the four-class

and seven-class datasets.

5.3.1. Dataset description

The normal and attack packets were captured separately and pre-processed to generate

the dataset for testing the detection framework. Three different types of MQTT attacks

were generated against the broker to capture the attack dataset namely: MQTT-DoS

(based on the attack scenarios described in this work ), MQTT-FUZZER (using a MQTT

Fuzzing tool Vähä-Sipilä, 2015) and TCP-DOS (using hping3 SYN-Flood tool Sanfilippo,

2006). The MQTT fuzzing tool was configured to send fuzzed packets sniffed from the

deployed IoT network. Based on the class labels, two datasets were generated, four-

class and seven-class dataset. The class labels in the four-class dataset were: Normal,

MQTT-DOS, MQTT-FUZZ and TCP-DOS. In contrast, the seven-class dataset contained

four sub-classes of MQTT-DoS attacks presented in this work namely:MQTT-DOS-BF1,

MQTT-DOS-BF2, MQTT-DOS-BF3 and MQTT-DOS-IAUTHS. The seven-class dataset was

used to evaluate the detection framework performance in detecting the four attack

types discussed in this work. The total number of flows in the four-class dataset was

1,012,052 samples and 1,042,500 for the seven-class dataset.

Re-sampling technique was applied to balance the classes to avoid bias in classifier

accuracy. The data were under-sampled to produce random sub-samples of the original

dataset with following setting in Weka: biasToUniformClass=1.0, noReplacement=True,

sampleSizePercent=40.0. The break-up of classes in original and re-sampled datasets is

presented in Table 5.

Figure 6. Memory utilization for three brokers during four attack scenarios along with malformed
packet attack (mBF1).
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5.3.2. Detection metrics

The performance of the detection framework was evaluated by conducting several exper-

iments with the two datasets described in the previous section. The individual classifiers

performances were measured to assess the effectiveness in detecting anomalous MQTT

traffic. The following metrics were adopted to evaluate the performance of detection fra-

mework: Detection Rate (DR), Accuracy and False-Positive Rate (FPR). These metrics can be

calculated by measuring the True Positive (TP), True Negative (TN), False Positive (FP) and

False Negative (FN) from the number of correctly and incorrectly classified instances. TP is

the number of correctly detected anomalous instances in the dataset. TN is the number of

correctly detected legitimate instances. FP is the number of normal records classified as

anomalous while the FN is the number of anomalous instances classified as legitimate.

Accuracy (ACC) is the percentage of instances correctly classified as either anomalous or

legitimate and it is calculated by:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(5)

True positive rate (TPR) measures the percentage of instances correctly classified as anom-

alous and is calculated by:

TPR =
TP

TP+ FN
(6)

False-positive rate (FPR) is percentage of instances incorrectly classified as anomalous and

is calculated by:

FPR =
FP

FP+ TN
(7)

Several experiments were conducted to measure the performance of AODE, DT and MLP

classifiers used in the detection framework. A 5-fold cross-validation method was enforced

which trained and tested the machine learning models on complementary subset of data

to prevent bias and over-fitting issues. Weka settings used for A1DE classifier are: frequen-

cyLimit=1, subsumptionResolution=False, weight=1.0, weightedAODE=False. The J48 DT

algorithm an implementation of C4.5 classifier in Weka was configured with the following

setting: confidenceFactor=0.25, minNumObj=2, reducedErrorPruning=False, unpruned=False,

Table 5. Class distribution of the two datasets used for training and testing the classifiers.

Class No. of Instances before balance No. of Instances after balancing

4-Class MQTT Dataset

Normal 71217 71217
MQTT-DOS 623246 151807
MQTT-FUZZ 49916 49916
TCP-DOS 267673 151807
7-Class MQTT Dataset

Normal 73982 59571
MQTT-DOS-BF1 240349 59571
MQTT-DOS-BF2 277454 59571
MQTT-DOS-BF3 90550 59571
MQTT-DOS-IAUTHS 49916 49916
MQTT-FUZZ 42576 42576
TCP-DOS 267673 59571
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useLaplace=False and useMDLcorrection=True. The default settings of Weka MLP classifier

used in this work was: batchSize=100, decay=False, hiddenLayers = (attributes + classes) /

2, learningRate=0.3, momentum = 0.2, trainingTime = 500.

5.3.3. Detection results

The evaluation results of the classifiers used in the MQTT attack detection framework are

presented in terms of the accuracy (%), error (%), TPR and FPR and time to build the model.

The classifiers were evaluated with both count-based (counts) features (statistical MQTT

session features presented in Table 3) and with full features set. The performance of the

three classifiers on the four-class and seven-class datasets respectively, is presented in

Table 6. Figures 7 and 8 show that the AODE classifier achieved the highest classification

accuracy in detecting the attack traffic for both four-class and seven-class datasets.

Table 6. Performance comparison of three classifiers used in the MQTT attack detection framework.

Classifier/Features ACC Error TPR FPR Training time

4-Class

AODE-counts 99.0025 0.9975 0.99 0.005 4.33
C45-Counts 99.0905 0.9095 0.991 0.005 30.19
MLP-Counts 95.9399 4.0601 0.959 0.021 847.41
AODE-full 99.968 0.032 1 0 14.17
C45-Full 99.9546 0.0454 1 0 50.52
MLP-Full 99.4957 0.5043 0.995 0.001 1828.23
7-Class

AODE-counts 88.2161 11.7839 0.882 0.021 5.51
C45-Counts 85.6236 14.3764 0.856 0.026 31.24
MLP-Counts 65.5542 34.4458 0.656 0.062 1215.42
AODE-full 99.8483 0.1517 0.998 0 10.82
C45-Full 99.8294 0.1706 0.998 0 42.09
MLP-Full 84.221 15.779 0.842 0.028 1962.65

Figure 7. Performance comparison of classifiers with various combination of features on 4-Class
dataset.
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The results also indicate that the detection accuracy of classifiers increased when

packet size and field length based features were considered along with the count-

based features, when compared to using only count-based features. The AODE classifier

had the lowest and MLP classifier had the highest training times among the selected clas-

sifiers. These results indicate that the proposed MQTT features provided good separation

between normal and attack traffic resulting in high detection rates and low false positives.

However, the MLP classifier only achieved a classification accuracy of 84% for the seven-

class dataset, when all the features were used. Hence, the MLP classifier was further eval-

uated with various optimization parameters to identify the most optimal settings to

increase its detection performance. The optimization parameters considered in this

study for improving MLP classifier were: activation and solver functions.

In an ANN, an activation function of a neuron maps the input signal to an output signal.

Choosing the correct activation function supports the MLP classifier in generating more

accurate and complex non-linear mappings between the inputs and outputs, hence

improving the classifier accuracy (Karlik & Olgac, 2011). The solver functions refer to algor-

ithms that try to estimate the optimal weights for the hidden and output layers in order to

reduce the training errors. These are classified into first and second order methods and

vary in computation complexity when they are minimizing or maximizing the loss func-

tion. Since Weka does not have options to vary the activation and solver functions, the

MLP optimization parameters was tested using Python scikit-learn ML platform (Pedregosa

et al., 2011). On this platform, the performance was evaluated with three activation func-

tions: Relu, logistic-sigmoid and tanh. In addition, two solver algorithms: Stochastic Gradi-

ent Descent (SGD) and limited-Memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)

were compared for their optimization performance in tuning the ANN weights for the

seven-class dataset. The SGD algorithm uses learning-rate and momentum to optimize

Figure 8. Performance comparison of classifiers with various combination of features on 7-Class
dataset.
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the model by iteratively estimating the training loss using samples from the training

dataset. The optimal momentum and learning-rate were identified by iteratively varying

the two variables and the settings, selecting the least training loss for evaluating the acti-

vation functions. Figures 9 and 10 show the observed training loss of the MLP classifier for

various values of momentum and learning rates, respectively. These results show that a

momentum of 0.9 and a learning-rate of 0.001 yielded the least training loss. Furthermore,

Figure 11 shows that the performance of MLP classifier achieved a higher detection accu-

racy with relu activation function compared to logistic-sigmoid and tanh activation func-

tions when applied to both SGD and L-BFGS optimization algorithms.

Figure 9. Training loss observed for the MLP classifier for various values of momentum and numbers of
iterations on seven-class dataset.

Figure 10. Average training loss for the MLP classifier calculated for various values of learning rate with
a maximum of 500 iterations on seven-class dataset.
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6. Conclusion

In this work, a DoS attack detection framework for MQTT attack detection in IoT environ-

ments was proposed and evaluated. The attack detection testbed was designed to capture

normal and attack traffic, and count-based statistical flow features. In addition, MQTT

control packet field size/length feature sets were evaluated on two datasets. The effective-

ness of the proposed feature set was validated using three fundamentally different

machine learning algorithms namely, AODE based on Naive Bayes, C4.5 based on Decision

Tress and MLP based on ANN. The performance of the classifiers were tested with count-

based flow features and field length features, to measure the detection accuracy of normal

and attack classes. The MQTT DoS attack modelling results indicate that the adversaries

can cause large scale impact with just basic access to the MQTT broker by launching

the invalid subscription flooding attack. However, the invalid authentication attacks

were found to cause little impact with a single attack source machine, as these attacks

depended on a large volume of attack packets. In addition, using a malformed

CONNECT request, a high memory utilization on broker machines was witnessed, which

could be exploited during a memory-exhaustion attacks. The DoS detection model

showed that the proposed MQTT features yielded high detection capabilities, especially

when the control packet field size-length based features were selected. Hence, the

packet size and field length distribution features can be effectively used in detecting

DoS attacks in IoT networks. As future work, we intend to study a real MQTT dataset to

assess its features, and how these can be beneficial in clearly de-marking legitimate and

malicious MQTT traffic.
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Figure 11. Performance evaluation of the activation function and MLP optimization solver functions on
seven-class dataset.
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