
Denial of Service Intrusion Detection Using Time
Dependent Deterministic Finite Automata

Joel W. Branch
Dept. of Computer Science

Rensselaer Polytechnic Institute
Troy, NY 12180

brancj@cs.rpi.edu

Alan Bivens
Dept. of Computer Science

Rensselaer Polytechnic Institute
Troy, NY 12180

bivenj@cs.rpi.edu

Chi Yu Chan
Dept. of Computer Science

Rensselaer Polytechnic Institute
Troy, NY 12180

chanc4@cs.rpi.edu

Taek Kyeun Lee
Dept. of Computer Science

Rensselaer Polytechnic Institute
Troy, NY 12180

leet3@cs.rpi.edu

Boleslaw K. Szymanski
Dept. of Computer Science

Rensselaer Polytechnic Institute
Troy, NY 12180

szymansk@cs.rpi.edu

ABSTRACT
In this paper, we describe a new approach for the real-time
detection of denial of service computer attacks using time-
dependent deterministic finite automata. Current network-
based intrusion detection systems employ state-transition
based methods as a primary mean to detecting system
penetrations and misuse as well. However, we utilize the
time intervals between certain event occurrences [as
defined in our automaton] to improve the accuracy of
detecting specific denial of service attacks. Unlike some
other detection systems, our design also lends itself to a
distributed detection architecture, permitting non-obtrusive
attack signature updating and operating system portability.
This paper discusses the implementation of our prototype
along with results from its test evaluation using publicly
available data.

Keywords
Intrusion detection, computer security, denial of service
attacks, computer networks, deterministic finite automata.

1. INTRODUCTION
Increasing attempts to compromise computer systems by
methods ranging anywhere from masquerading as a
privileged user to coordinating distributed attack probes
across a network have led to increased research in intrusion
detection. Traditionally, there have been two main classes
of intrusion detection systems (IDS): host-based and
network-based systems. A host-based IDS monitors the

detailed activity of a particular host in real-time. The
system call traces produced by an auditing mechanism such
as the Solaris Basic Security Module (BSM) typically
provides the IDS with the data needed to search for attack
signatures [13]. When an analysis of the BSM data shows
signs of an intrusion, the IDS alerts the system
administrator of an attack. Proceeding host-based IDSes
was the development of network-based IDSes. While some
network-based IDSes focus on a single host, most typically
monitor a network of computers and other devices (i.e.
routers, gateways) that are subject to attacks. Subsequently,
rather than using BSM data, network-based IDSes
primarily use raw network packets to search for attack
signatures throughout the network traffic. Our system is a
network-based IDS.

Network-based IDSes, as well as host-based systems, can
be further classified by different methods of protection:
anomaly detection and penetration identification. The
former method attempts to differentiate “anomalous”
activity from the established normal operating behavior of
a system. Our IDS falls under the last category: penetration
identification (often referred to as misuse detection). After
we define the “signature” of attacks in terms of sequences
of system events and traffic data, we can identify these
attacks in real-time and attempt to prevent any further
damage to the system. Furthermore, by knowing precisely
which attack we have detected, we can possibly tailor
defensive strategies and/or system alarms appropriately.

 In the approach described in this paper, we choose to focus
on detecting one type of network attack: denial of service
(DoS). DoS attacks are attempts to flood a network or an
individual host with unwanted traffic in order to totally
overwhelm the resources of the system. As a result, the
system looses the ability to handle legitimate
traffic/requests, experiences a loss in available bandwidth,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Walter Lincoln Hawkins Graduate Research Conference
Copyright 2002 Rensselaer

Bolek
Text Box
 Proc. Research Conference, Troy, NY, October, 2002

and is overall unable to provide normal service to its users.
In many cases, service is denied until the attacker’s address
is discovered so that further requests from that source can
be blocked. However, often the source address is spoofed
so that the true origin of an attack becomes untraceable. A
more difficult scenario is the distributed denial of service
(DDoS) attack, in which multiple clients are used to
simultaneously flood a computer system with requests. In
this case, more resources on the targeted system could be in
jeopardy and more clients need to be blocked to recover
from an attack. As with other attacks, it is most effective to
detect DoS (and DDoS) attacks as early as possible.

In this paper, we will first explore some related IDS
projects. Before entering a detailed discussion of the
system’s architecture, we will explain our specialized
automata-based approach to penetration identification. We
will then conclude with an evaluation of some system test
results and also explain pursuable areas of future
development.

2. RELATED WORKS
Due to the increasing complexity of computer networks as
well as the growing sophistication of network-based
attacks, network-based intrusion detection has recently
gained more attention from academic, military, and
commercial sectors. Consequently, various IDSes have
been implemented that address different aspects of network
security and use different methods of detection. For
example, some tools employ artificial neural networks,
trained for misuse detection across a network [2]. Another
system, GrIDS, constructs activity graphs from network
traffic data to detect large-scale automated attacks in real-
time [11]. EMERALD uses a scalable distribution of
surveillance monitors throughout a network to apply
distributed event correlation models in detecting network
intrusions [8].

Our system shares methodologies similar to those of a
couple of other IDSes. For instance, Snort is a lightweight
network-based IDS that utilizes a rules-based approach,
along with network packet-sniffing and logging to perform
content pattern matching and detect a variety of attacks [9].
In turn, we also use a rules-based approach in detecting
attacks, but we apply it in the form of a deterministic finite
automaton, which considers the actual sequence of rules
needed to define a probable attack. Another comparable
tool is NetSTAT. NetSTAT is an implementation of the
STAT design which models an attack as a sequence of
actions which progressively takes a computer from an
initial normal state to a compromised state [4, 14].
NetSTAT applies that model to a networked environment
by modeling both the guarded network and the attacks. In
doing this, it determines which network events have to be
monitored and where in the network they should be
monitored. However, we bypass modeling the network and

focus directly on the representation of various DoS attacks.
We also consider the time intervals between system events
when defining the transitions between a computer’s states.

3. TIME- DEPENDENT DETERMINISTIC
FINITE AUTOMATA APPROACH

3.1 Time-Dependent Deterministic Finite
Automata
Conceptually, a deterministic finite automaton (DFA) is a
computational model designed to represent an idealized
computer. Just as a computer changes states of operation
and produces some outputs given particular inputs, so does
a DFA. Specifically, DFAs are designed to recognize
member strings of a specified language. More formally,
they recognize those languages belonging to the class of
regular languages [10]. In our particular case, we want to
recognize the language of DoS attacks (to be explained in
section 4.2). DFAs carry two important properties. First,
they embody a finite number of states. Second, they are
deterministic, meaning that given a current state and an
input, the automaton “transitions” to only one state (which
could be the same state or a new one).

DFAs are usually represented by state-transition diagrams.
Circles represent the automaton’s different states and
unidirectional arrows represent inputs that may allow
transitions between different states. Typically, final states,
in which the entirety of an input string is accepted, are
double circled. Also, for every state, there must be an
exiting transition for every character defined in the
language’s alphabet. Figure 1 is an illustration of a simple
DFA which accepts inputs of the alphabet {a, b} containing
the string “aba”. In this example, q1 is the start state and q4
is the final state. If the DFA is in state q1 and receives “a”
as an input, then the DFA travels to state q2. If while in
state q2 the DFA receives “b” as an input, then it travels to
state q3. If an “a” is received while in q3, the DFA then
travels to the final state and the input is accepted. An
examination of figure 1 shows that any input disrupting the
pattern “aba” sends the DFA back to its start state. While
the DFA in figure 1 has only one final state, this is not a
specification for DFAs in general. A DFA can have more
than one final state.

Figure 1. An example DFA.

Figure 2. An example TDFA.

A time-dependent deterministic finite automaton (TDFA) is
very similar to the machine we just described. However, it
considers more than just the sequence of inputs; a TDFA
also considers the time intervals between inputs in
recognizing members of a language. This becomes very
beneficial in the use of automata to recognize DoS attack
signatures since many DoS attacks are dependent upon the
time intervals between arriving network packets. Figure 2
shows an example TDFA. We can think of this machine as
recognizing the pattern “a, b<5, a<5.” In other words, the
“b” must occur within five seconds of the initial “a”, and
the last “a” must occur within five seconds of the “b”. All
transitions shown without the five second time restraint are
default transitions. If the desired input does not occur
within the specified time restraints, then the default
transition sends the TDFA back to the appropriate state
where it can continue monitoring for the required pattern.
The same occurs for input symbols that do not match the
required character (i.e., receiving a “b” when either “a<5”
or “a” is expected). Notice that the transition from q1 to q2
is a default transition even though it takes the TDFA closer
to the final state. This is because this “a” is the first
character in the pattern; it does not make sense for it to
come within five seconds of some other input.

3.2 DoS Attack Representation Using Time-
Dependent Deterministic Finite Automata
The very nature of TDFA models makes it a logical choice
in representing DoS attacks. DoS attacks can aptly be
viewed as a characteristic series of network events or
special packets that render a particular resource inoperable.
Therefore, we use the transitional arcs of TDFAs to
represent those characteristic attack events (or packets).
TDFA states are used to represent incremental conditions
of a system as it reaches a state of intrusion. The final
state(s) of a TDFA then represent points of attack
completion.

4. SYSTEM ARCHITECTURE
Now, we will discuss the full architecture of our system,
including its prime functions and its various subsystems
and their interactions. Before continuing, it would be useful
to note that our system detects DoS attacks occurring in

TCP, UDP and ICMP network traffic. These are all
industry-standard network communication protocols [12].
The following are the key characteristics of our IDS:

• Our system detects DoS attacks from both real-
time and historical data

• It uses time-dependent deterministic finite
automata to model and confirm attacks

• It supports the updating of attack models without
interruption to other system components

Having the option between operating from real-time or
historical data offers a couple of advantages for a site
security officer (SSO). Real-time monitoring of network
traffic provides the best level of protection because
ongoing attacks may be prevented. However, with the
addition of pre-recorded (historical) datasets, offline
operation still allows the SSO to see if and when attacks
might have occurred while the IDS was down for
maintenance. Also, the SSO can use experimental datasets
to test and tune the system for newer attacks. Next, while
confirmation procedures will be discussed in greater detail
later, it is important to further note the significance of time-
dependent deterministic finite automata in our system here.
Earlier, we discussed how TDFAs serve as an appropriate
model for DoS attacks. However, the additional benefit of
TDFAs for site security officers is that they permit the
storage of both an attack’s base signature and its
variation(s) using only one model construct. A SSO can
even use one TDFA model to represent multiple DoS
attacks, as we do in our implementation. Additionally,
using time-based information in attack signatures increases
the accuracy of detecting DoS attacks. Last, the ability to
update attack models without disturbing other system
components prevents degradation to the system’s
performance during detection. As will be discussed later,
this feature also presents the opportunity for an agent-based
distributed architecture. Also worthy of noting is our
selected development language, Java v1.2. Due to Java’s
platform independence, our program can easily be run on
any operating system with a Java virtual machine installed.

At present, four distinct components make up our system:
(1) the data filtration unit, (2) the event token generator, (3)
the TDFA transversal unit, and (4) the TDFA provider.
External components with which our system interacts are a
local area network (LAN), stored (historical) network
traffic data, a client machine. The connectivity of the entire
system is illustrated in figure 3.

4.1 Data Filtration Unit
Network packets carry a wealth of information (i.e.
sequence number, header length, checksum, etc.), all of
which are not needed for the purposes of all network-based
IDSes. Since our focus is on DoS attacks, the packet data

fields we are interested in are those pe rtaining to such
things as source and destination addresses and also the
various flag fields (i.e., SYN and ACK). The function of
the data filtration unit (DFU) is to process relevant network
packet information for subsequent components of the
system (according to the flow of data).

As seen in figure 3, network traffic data originates from
either of two sources: a local area network (LAN) or a
stored data source. We mentioned before how the Solaris
BSM utility supplies audit data for host-based IDSes.
However, the utility module we use is tcpdmp [5], which
can provide a record of network activity for a particular
machine in ASCII text form, delimited into various fields.
The following are fields for which the DFU parses:

• Packet type • Timestamp

• Source IP address • SYN flag

• Destination IP address • ACK flag

• Destination port • Echo request

• More fragments flag • Echo reply

Live data originating from connected LAN devices are
used in real-time detection while stored data, our second
source of extraction, is used in offline mode. As opposed to
the prior source, stored data usually resides in a log file and
may or may not be in ASCII, but binary (non-text) form.
Since the data filtration unit is designed to process packet
information only in ASCII form, any binary information
must first be converted to the proper format before it can be
processed. The end product is a delimited ASCII text
message which contains specific network event information
(including TCP, UDP and ICMP packet data).

4.2 Event Token Generator
After network event data is processed by the DFU, the
corresponding ASCII text (remaining in a delimited
format) is sent to the event token generator (ETG). The
ETG is then responsible for translating the DFU text

messages, each representing a particular network event,
into special tokens. We must note that there is not
necessarily a “one-to-one” relationship between DFU
messages and ETG tokens. It is quite possible that the
information in one message will cause the ETG to generate
a “sequence” of tokens. Together, all of these predefined
tokens, each being a string of one or more ASCII
characters, compose a language used by our system for
recognizing DoS attacks. The efficiency of domain-
independent IDS languages has been shown with such
languages as STATL [3] (used by both USTAT and
NETSTAT), which partially serves as our motivation for
using a proprietary language. Our other incentive is that it
drives the operation of our detection engine: the TDFA
transversal unit (to be explained later).

 The following is a condensed explanation of how the ETG
operates. Suppose that after reading the DFU text message,
the ETG determines that the UDP destination port number
of the packet is set to an echo port number (a condition
indicative of a UDP Storm attack). Subsequently, the ETG
generates the token “e” and sends it to the TDFA
transversal unit, where it will be used for [UDP Storm]
attack recognition. Table 1 highlights just a few of the
tokens that compose the language for our system.

4.3 TDFA Transversal Unit
Most intrusion detection systems have some distinguishable
core component primarily responsible for recognizing

Token(s) Definition
S Packet’s SYN flag is checked
F Packet’s MF flag is checked

J>5 Non-initial ACK packet; time interval
between this and current packet is greater
than 5 seconds

& First ICMP echo reply packet to a particular
destination [address and port]

Table 1. Sample ETG tokens and their definitions.

Figure 3. Overview of system architecture.

attacks. In our system, the TDFA transversal unit (TTU) acts
as th e main attack detection engine. The TTU is what
actually embodies the TDFA that represents the various DoS
attacks to be detected.

The relationship between the TTU and the previous module,
the event token generator, is best thought of as that between a
physician and patient. The EVT (patient) displays
“symptoms” [on behalf of the guarded host] of probable DoS
attacks. As discussed earlier, these symptoms materialize
themselves as tokens. The intent of the TTU (physician) is to
read the tokens and “diagnose” the host as being under, or
not under a state of attack. It does this by using the EVT
tokens as input characters to traverse the supplied TDFA.
When the TTU finds that its TDFA has reached a final state,
it will alert the site security officer that an attack (specified
by its respective final state) has occurred.

As we mentioned in section 3, it would be beneficial for a
SSO to verify the effectiveness of the IDS using pre-recorded
network traffic data containing traces of successful
intrusions. Specifically, this entails verifying the correctness
of the TDFA transversal unit. Table 2 lists seven DoS attacks
we designed our TDFA to recognize.

4.4 TDFA Provider
We mentioned earlier in section 4 how our system supports
the updating of TDFA attack models without interruption
to the rest of the system. The TDFA provider is what
makes this feature possible. When a site security officer
(client) wants to replace the resident TDFA, it interacts
with the TDFA provider in giving it a description of the
new TDFA model. However, models such as those
depicted in figures 1 and 2 are not required. A client has
only to specify the attack “signature”, meaning only those
states and transitions that lead directly to attack completion.
All other transitions, such as those sending a TDFA back to

its start state, would automatically be supplied by the
TDFA provider. This is convenient for the client as he or
she needs only to provide a simple, linear attack model.
The TDFA provider then supplies the TDFA traversal unit
with the user-defined TDFA description. The passing of a
new attack model can occur without degradation to other
components of the system because the TDFA provider
interacts only with the TDFA transversal unit. It should be
noted that at start-up time, the TDFA transversal unit does
contain a default TDFA model, so detection is possible
before interjection by the SSO. As will be described with
more detail in section 6, this component allows the
opportunity to develop a distributed modular architecture
permitting a more automated approach to updating attack
signatures.

5. TEST RESULTS
In keeping with the standard measure of most other
intrusion detection systems, we used the datasets from the
Defense Advanced Research Projects Agency (DARPA)
Intrusion Detection Evaluation in testing our IDS.
Specifically, we used the publicly available datasets from
both the 1998 and 1999 evaluations [7].

In total, we used 8 tcpdump training data files: 5 from 1998
and 3 from 1999. Currently, we have tested our system on
5 of the 7 attacks we listed earlier. The results of the test
are highlighted in table 3. The third column shows the
timestamp of the packet finalizing the specified DoS attack,
according to the DARPA dataset. The fourth column shows
when our system recognized the specified attack. As is
visible from the table, we were very accurate in detecting
five various DoS attacks. However, in one dataset,
1998_week6_fri, we did fail to detect the SYN Flood
attack. The attack was successfully detected in most other
datasets, although there was also a problem with the
1998_week4_tues dataset. We falsely detected the SYN

Table 2. DoS attacks sought for by our IDS.
Name of attack Protocol used Effect

Land TCP Operating system loops and eventually freezes

SYN Flood TCP Legitimate service requests are denied as CPU resources become
totally consumed; operating system may crash or loop

Ping Flood ICMP Network slows down; network connectivity may be disabled

Process Table TCP Process table is completely filled with network server
instantiations; new processes cannot be started

Smurf ICMP Host floods both itself and intermediate network with ICMP echo
replies

Teardrop N/A Host may hang or crash

UDP Storm UDP Legitimate service requests are denied as CPU resources become
totally consumed; network may become congested

Flood attack approximately three hours before it
supposedly occurred—a “false positive”. In turn, this also

presents a “false-negative” because we still failed to detect
the attack at the correct time (just as with the
1998_week6_fri dataset).

6. CONCLUSION
We were pleased with the results from our system evaluation.
However, we are concerned about the lack of SYN flood
attack detection in two of the 1998 datasets. We are
considering the fact that the TDFA we used in modeling the
attacks did not embody most variations of the attack
signatures. Currently, we are studying the DARPA datasets
in attempts to improve our TDFA model. We are also in the
process of testing our system for the remaining attacks:
process table and UDP storm.

We also acknowledge that our IDS, being a misuse detection
system, has a significant flaw: it can only detect attacks for
which it knows a signature. Detecting malicious activity by
way of signature pattern, however, has been a widely
supported practice, such as in anti-virus utilities.
Furthermore, it decreases the number of false-positives in the
detection process, which is very important for performance.

In general, network-based intrusion detection is still a
relatively young field of study in computer science. As
networks increasingly become more complex, the need for
sophisticated security tools will rapidly grow in importance.
While our IDS does not detect all malicious network
penetrations, it does a great job detecting a significant subset
of these attacks: denial of service. Evidently, from the test
results, considering the time intervals between network
events (in DoS attacks) is worthy of pursuit. We contribute to
the network security field by offering a detection tool that is
based off of the temporal characteristics of these attacks. Our
IDS detects these attacks in an accurate and efficient manner
and is compact enough to be coupled with other IDSes

Figure 4. Overview of proposed modular architecture.

Table 3. Test Results.
Dataset Attack MIT

Time
TDFA
Time

SYN Flood 11:55:38 8:50:15

Ping Flood 20:11:31 20:11:31

1998_week4_tues

Teardrop 23:15:08 23:15:08

Teardrop 08:15:02 8:15:02

Smurf 12:53:15 12:53:15

1998_week5_mon

Smurf 15:33:28 15:33:28

SYN Flood 17:27:07 17:27:07 1998_week5_fri

Smurf 18:00:15 18:00:17

Ping Flood 13:04:56 13:04:56 1998_week6_tues

Land 17:53:49 17:53:49

Teardrop 08:32:12 8:32:12

SYN Flood 09:31:52 NO

1998_week6_fri

Smurf 19:12:37 19:16:27

Ping Flood 08:50:15 8:50:15 1999_week2_mon

Land 15:57:15 15:57:15

SYN Flood 11:04:16 11:04:16 1999_week2_thur

Land 15:47:15 15:47:15

Ping Flood 09:18:15 9:18:15 1999_week2_fri

SYN Flood 11:20:15 11:20:15

(perhaps even anomaly detection systems) to build a
complete suite of general attack detection/prevention tools on
multiple platforms.

7. FUTURE WORKS
We mentioned earlier the opportunities that the TDFA
provider component can offer us in the area of distributed
attack detection. Currently, this serves as the focus of our
next area of further development pertaining to this system.

Our application, as well as other intrusion detection systems,
uses “sniffed” network traffic to determine significant
intrusion events. However, sniffed data traditionally can only
be obtained from a packet sniffer running on the same
network as the monitored host machines. When the
monitored hosts are in different networks, multiple sniffers
are needed. The growing degree of segmentation in
networks has caused problems in many intrusion detection
applications relying on network sniffed data [6]. To facilitate
distributed detection, it is important to recall the modular
framework of our application such as that portrayed in figure
3. Modularity such as this would be necessary to distribute
the functionality of our system. Our intent is to use the
DOORS system (Distributed Online Object Repositories) in
which our detection process would be encoded into mobile
agents and sent to the network in need of monitoring [1].
Figure 4 illustrates the topology of such a network scheme.
This figure is a portrayal of a large network, similar to the
Internet, in which smaller LANs are connected by gateway
and core routers. In this case, a host in each monitored
network will be equipped to receive an agent containing our
TDFA IDS. A site security officer will update the host
running the IDS with a new TDFA structure when necessary
by sending a new TDFA to the TDFA provider module
shown in figure 3. This module would then immediately
replace the TDFA structure used by the TDFA transversal
unit to determine attacks. We believe this would effectively
distribute the detection while providing a centralized
management for continual TDFA updates.

REFERENCES
[1] J. Bivens, P. Fry, L. Gao, M. F. Hulber and B.

Szymanski. Agent-based Network Monitoring. Agent
Based High Performance Computing Workshop,
Agents '99 Conference. Seattle, Washington, May
1999.

[2] J. Cannady. Artificial Neural Networks for Misuse
Detection. In Proceedings of the 1998 National
Information Systems Security Conference (NISSC'98),
pages 443 - 456, Arlington, VA, October 1998.

[3] S. T. Eckmann, G. Vigna, and R. A. Kemmerer.
STATL: An Attack Language for State-based Intrusion

Detection. Dept. of Computer Science, University of
California, Santa Barbara, 2000.

[4] K. Ilgun, R. Kemmerer, and P. Porras. State Transition
Analysis: A Rule-Based Intrusion Detection System.
IEEE Transactions on Software Engineering, 21(3),
March 1995.

[5] V. Jacobson, C. Leres, and S. McCanne. tcpdump,
June 1989. Available via anonymous FTP from
ftp.ee.lbl.gov.

[6] S. McCloghrie and J. Scambray. Once-Promising
Intrusion Detection System Stumbles Over Switched
Networks. InfoWorld, volume 22, page 58, InfoWorld
Media Group, Inc., December 2000.

[7] MIT Lincoln Laboratory. DARPA Intrusion Detection
Evaluation. http://www.ll.mit.edu/IST/ideval/, 1999.

[8] P.A. Porras and P.G. Neumann. EMERALD: Event
Monitoring Enabling Responses to Anomalous Live
Disturbances. In Proceedings of the 20th National
Information Systems Security Conference, pages 353 –
365, Baltimore, Maryland, October 1997.

[9] M. Roesch. Snort – Lightweight Intrusion Detection
for Networks. Snort – The Open Source Network IDS.
http://www.snort.org/docs/lisapaper.txt.

[10] M. Sipser. Introduction to the Theory of Computation.
PWS Publishing Company, 1997.

[11] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger,
J. Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip, and
D. Zerkle. GrIDS - A Graph Based Intrusion Detection
System for Large Networks. Proceedings of the 19th
National Information Systems Security Conference,
volume 1, pages 361 - 370, October 1996.

[12] W. Stevens. UNIX Network Programming, Volume 1,
Second Edition. Prentice Hall PTR, 1998.

[13] Sun Microsystems, Inc., 901 San Antonio Road, Palo
Alto, CA 94303, USA. SunSHIELD Basic Security
Module Guide, Solaris 7, October 1998. Part No. 805-
2635-10.

[14] G. Vigna and R. A. Kemmerer. NetSTAT: A Network-
based Intrusion Detection Approach. In Proceedings of
the 14th Annual Computer Security Conference,
Scottsdale, Arizona, December 1998.

