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ABSTRACT 
In this paper, we describe a new approach for the real-time 
detection of denial of service computer attacks using time-
dependent deterministic finite automata. Current network-
based intrusion detection systems employ state-transition 
based methods as a primary mean to detecting system 
penetrations and misuse as well. However, we utilize the 
time intervals between certain event occurrences [as 
defined in our automaton] to improve the accuracy of 
detecting specific denial of service attacks. Unlike some 
other detection systems, our design also lends itself to a 
distributed detection architecture, permitting non-obtrusive 
attack signature updating and operating system portability. 
This paper discusses the implementation of our prototype 
along with results from its test evaluation using publicly 
available data.  
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1. INTRODUCTION 
Increasing attempts to compromise computer systems by 
methods ranging anywhere from masquerading as a 
privileged user to coordinating distributed attack probes 
across a network have led to increased research in intrusion 
detection. Traditionally, there have been two main classes 
of intrusion detection systems (IDS): host-based and 
network-based systems. A host-based IDS monitors the 

detailed activity of a particular host in real-time. The 
system call traces produced by an auditing mechanism such 
as the Solaris Basic Security Module (BSM) typically 
provides the IDS with the data needed to search for attack 
signatures [13]. When an analysis of the BSM data shows 
signs of an intrusion, the IDS alerts the system 
administrator of an attack. Proceeding host-based IDSes 
was the development of network-based IDSes. While some 
network-based IDSes focus on a single host, most typically 
monitor a network of computers and other devices (i.e. 
routers, gateways) that are subject to attacks. Subsequently, 
rather than using BSM data, network-based IDSes 
primarily use raw network packets to search for attack 
signatures throughout the network traffic. Our system is a 
network-based IDS. 

Network-based IDSes, as well as host-based systems, can 
be further classified by different methods of protection: 
anomaly detection and penetration identification. The 
former method attempts to differentiate “anomalous” 
activity from the established normal operating behavior of 
a system. Our IDS falls under the last category: penetration 
identification (often referred to as misuse detection). After 
we define the “signature” of attacks in terms of sequences 
of system events and traffic data, we can identify these 
attacks in real-time and attempt to prevent any further 
damage to the system. Furthermore, by knowing precisely 
which attack we have detected, we can possibly tailor 
defensive strategies and/or system alarms appropriately. 

 In the approach described in this paper, we choose to focus 
on detecting one type of network attack: denial of service 
(DoS). DoS attacks are attempts to flood a network or an 
individual host with unwanted traffic in order to totally 
overwhelm the resources of the system. As a result, the 
system looses the ability to handle legitimate 
traffic/requests, experiences a loss in available bandwidth, 
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and is overall unable to provide normal service to its users. 
In many cases, service is denied until the attacker’s address 
is discovered so that further requests from that source can 
be blocked. However, often the source address is spoofed 
so that the true origin of an attack becomes untraceable. A 
more difficult scenario is the distributed denial of service 
(DDoS) attack, in which multiple clients are used to 
simultaneously flood a computer system with requests. In 
this case, more resources on the targeted system could be in 
jeopardy and more clients need to be blocked to recover 
from an attack. As with other attacks, it is most effective to 
detect DoS (and DDoS) attacks as early as possible.  

In this paper, we will first explore some related IDS 
projects. Before entering a detailed discussion of the 
system’s architecture, we will explain our specialized 
automata-based approach to penetration identification. We 
will then conclude with an evaluation of some system test 
results and also explain pursuable areas of future 
development. 

2. RELATED WORKS 
Due to the increasing complexity of computer networks as 
well as the growing sophistication of network-based 
attacks, network-based intrusion detection has recently 
gained more attention from academic, military, and 
commercial sectors. Consequently, various IDSes have 
been implemented that address different aspects of network 
security and use different methods of detection. For 
example, some tools employ artificial neural networks, 
trained for misuse detection across a network [2]. Another 
system, GrIDS, constructs activity graphs from network 
traffic data to detect large-scale automated attacks in real-
time [11]. EMERALD uses a scalable distribution of 
surveillance monitors throughout a network to apply 
distributed event correlation models in detecting network 
intrusions [8]. 

Our system shares methodologies similar to those of a 
couple of other IDSes. For instance, Snort is a lightweight 
network-based IDS that utilizes a rules-based approach, 
along with network packet-sniffing and logging to perform 
content pattern matching and detect a variety of attacks [9]. 
In turn, we also use a rules-based approach in detecting 
attacks, but we apply it in the form of a deterministic finite 
automaton, which considers the actual sequence of rules 
needed to define a probable attack. Another comparable 
tool is NetSTAT. NetSTAT is an implementation of the 
STAT design which models an attack as a sequence of 
actions which progressively takes a computer from an 
initial normal state to a compromised state [4, 14]. 
NetSTAT applies that model to a networked environment 
by modeling both the guarded network and the attacks. In 
doing this, it determines which network events have to be 
monitored and where in the network they should be 
monitored. However, we bypass modeling the network and 

focus directly on the representation of various DoS attacks. 
We also consider the time intervals between system events 
when defining the transitions between a computer’s states. 

3. TIME- DEPENDENT DETERMINISTIC 
FINITE AUTOMATA APPROACH 

3.1 Time-Dependent Deterministic Finite 
Automata 
Conceptually, a deterministic finite automaton (DFA) is a 
computational model designed to represent an idealized 
computer. Just as a computer changes states of operation 
and produces some outputs given particular inputs, so does 
a DFA. Specifically, DFAs are designed to recognize 
member strings of a specified language. More formally, 
they recognize those languages belonging to the class of 
regular languages [10]. In our particular case, we want to 
recognize the language of DoS attacks (to be explained in 
section 4.2). DFAs carry two important properties. First, 
they embody a finite number of states. Second, they are 
deterministic, meaning that given a current state and an 
input, the automaton “transitions” to only one state (which 
could be the same state or a new one). 

DFAs are usually represented by state-transition diagrams. 
Circles represent the automaton’s different states and 
unidirectional arrows represent inputs that may allow 
transitions between different states. Typically, final states, 
in which the entirety of an input string is accepted, are 
double circled. Also, for every state, there must be an 
exiting transition for every character defined in the 
language’s alphabet. Figure 1 is an illustration of a simple 
DFA which accepts inputs of the alphabet {a, b} containing 
the string “aba”. In this example, q1 is the start state and q4 
is the final state. If the DFA is in state q1 and receives “a” 
as an input, then the DFA travels to state q2. If while in 
state q2 the DFA receives “b” as an input, then it travels to 
state q3. If an “a” is received while in q3, the DFA then 
travels to the final state and the input is accepted. An 
examination of figure 1 shows that any input disrupting the 
pattern “aba” sends the DFA back to its start state. While 
the DFA in figure 1 has only one final state, this is not a 
specification for DFAs in general. A DFA can have more 
than one final state. 

Figure 1. An example DFA. 



Figure 2. An example TDFA. 

A time-dependent deterministic finite automaton (TDFA) is 
very similar to the machine we just described. However, it 
considers more than just the sequence of inputs; a TDFA 
also considers the time intervals between inputs in 
recognizing members of a language. This becomes very 
beneficial in the use of automata to recognize DoS attack 
signatures since many DoS attacks are dependent upon the 
time intervals between arriving network packets. Figure 2 
shows an example TDFA. We can think of this machine as 
recognizing the pattern “a, b<5, a<5.” In other words, the 
“b” must occur within five seconds of the initial “a”, and 
the last “a” must occur within five seconds of the “b”. All 
transitions shown without the five second time restraint are 
default transitions. If the desired input does not occur 
within the specified time restraints, then the default 
transition sends the TDFA back to the appropriate state 
where it can continue monitoring for the required pattern. 
The same occurs for input symbols that do not match the 
required character (i.e., receiving a “b” when either “a<5” 
or “a” is expected). Notice that the transition from q1 to q2 
is a default transition even though it takes the TDFA closer 
to the final state. This is because this “a” is the first 
character in the pattern; it does not make sense for it to 
come within five seconds of some other input. 

3.2 DoS Attack Representation Using Time-
Dependent Deterministic Finite Automata 
The very nature of TDFA models makes it a logical choice 
in representing DoS attacks. DoS attacks can aptly be 
viewed as a characteristic series of network events or 
special packets that render a particular resource inoperable. 
Therefore, we use the transitional arcs of TDFAs to 
represent those characteristic attack events (or packets). 
TDFA states are used to represent incremental conditions 
of a system as it reaches a state of intrusion. The final 
state(s) of a TDFA then represent points of attack 
completion. 

4. SYSTEM ARCHITECTURE 
Now, we will discuss the full architecture of our system, 
including its prime functions and its various subsystems 
and their interactions. Before continuing, it would be useful 
to note that our system detects DoS attacks occurring in 

TCP, UDP and ICMP network traffic. These are all 
industry-standard network communication protocols [12]. 
The following are the key characteristics of our IDS: 

• Our system detects DoS attacks from both real-
time and historical data 

• It uses time-dependent deterministic finite 
automata to model and confirm attacks 

• It supports the updating of attack models without 
interruption to other system components 

Having the option between operating from real-time or 
historical data offers a couple of advantages for a site 
security officer (SSO). Real-time monitoring of network 
traffic provides the best level of protection because 
ongoing attacks may be prevented. However, with the 
addition of pre-recorded (historical) datasets, offline 
operation still allows the SSO to see if and when attacks 
might have occurred while the IDS was down for 
maintenance. Also, the SSO can use experimental datasets 
to test and tune the system for newer attacks. Next, while 
confirmation procedures will be discussed in greater detail 
later, it is important to further note the significance of time-
dependent deterministic finite automata in our system here. 
Earlier, we discussed how TDFAs serve as an appropriate 
model for DoS attacks. However, the additional benefit of 
TDFAs for site security officers is that they permit the 
storage of both an attack’s base signature and its 
variation(s) using only one model construct. A SSO can 
even use one TDFA model to represent multiple DoS 
attacks, as we do in our implementation. Additionally, 
using time-based information in attack signatures increases 
the accuracy of detecting DoS attacks. Last, the ability to 
update attack models without disturbing other system 
components prevents degradation to the system’s 
performance during detection. As will be discussed later, 
this feature also presents the opportunity for an agent-based 
distributed architecture. Also worthy of noting is our 
selected development language, Java v1.2. Due to Java’s 
platform independence, our program can easily be run on 
any operating system with a Java virtual machine installed. 

At present, four distinct components make up our system: 
(1) the data filtration unit, (2) the event token generator, (3) 
the TDFA transversal unit, and (4) the TDFA provider. 
External components with which our system interacts are a 
local area network (LAN), stored (historical) network 
traffic data, a client machine. The connectivity of the entire 
system is illustrated in figure 3. 

4.1 Data Filtration Unit 
Network packets carry a wealth of information (i.e. 
sequence number, header length, checksum, etc.), all of 
which are not needed for the purposes of all network-based 
IDSes. Since our focus is on DoS attacks, the packet data 



fields we are interested in are those pe rtaining to such 
things as source and destination addresses and also the 
various flag fields (i.e., SYN and ACK). The function of 
the data filtration unit (DFU) is to process relevant network 
packet information for subsequent components of the 
system (according to the flow of data).  

As seen in figure 3, network traffic data originates from 
either of two sources: a local area network (LAN) or a 
stored data source. We mentioned before how the Solaris 
BSM utility supplies audit data for host-based IDSes. 
However, the utility module we use is tcpdmp [5], which 
can provide a record of network activity for a particular 
machine in ASCII text form, delimited into various fields. 
The following are fields for which the DFU parses: 

• Packet type • Timestamp 

• Source IP address • SYN flag 

• Destination IP address • ACK flag 

• Destination port • Echo request 

• More fragments flag • Echo reply 

Live data originating from connected LAN devices are 
used in real-time detection while stored data, our second 
source of extraction, is used in offline mode. As opposed to 
the prior source, stored data usually resides in a log file and 
may or may not be in ASCII, but binary (non-text) form. 
Since the data filtration unit is designed to process packet 
information only in ASCII form, any binary information 
must first be converted to the proper format before it can be 
processed. The end product is a delimited ASCII text 
message which contains specific network event information 
(including TCP, UDP and ICMP packet data). 

4.2 Event Token Generator 
After network event data is processed by the DFU, the 
corresponding ASCII text (remaining in a delimited 
format) is sent to the event token generator (ETG). The 
ETG is then responsible for translating the DFU text 

messages, each representing a particular network event, 
into special tokens. We must note that there is not 
necessarily a “one-to-one” relationship between DFU 
messages and ETG tokens. It is quite possible that the 
information in one message will cause the ETG to generate 
a “sequence” of tokens. Together, all of these predefined 
tokens, each being a string of one or more ASCII 
characters, compose a language used by our system for 
recognizing DoS attacks. The efficiency of domain-
independent IDS languages has been shown with such 
languages as STATL [3] (used by both USTAT and 
NETSTAT), which partially serves as our motivation for 
using a proprietary language. Our other incentive is that it 
drives the operation of our detection engine: the TDFA 
transversal unit (to be explained later). 

 The following is a condensed explanation of how the ETG 
operates. Suppose that after reading the DFU text message, 
the ETG determines that the UDP destination port number 
of the packet is set to an echo port number (a condition 
indicative of a UDP Storm attack). Subsequently, the ETG 
generates the token “e” and sends it to the TDFA 
transversal unit, where it will be used for [UDP Storm] 
attack recognition. Table 1 highlights just a few of the 
tokens that compose the language for our system. 

4.3 TDFA Transversal Unit 
Most intrusion detection systems have some distinguishable 
core component primarily responsible for recognizing 

Token(s) Definition 
S Packet’s SYN flag is checked 
F Packet’s MF flag is checked 

J>5 Non-initial ACK packet; time interval 
between this and current packet is greater 
than 5 seconds 

& First ICMP echo reply packet to a particular 
destination [address and port] 

Table 1. Sample ETG tokens and their definitions.

Figure 3. Overview of system architecture. 



attacks. In our system, the TDFA transversal unit (TTU) acts 
as th e main attack detection engine. The TTU is what 
actually embodies the TDFA that represents the various DoS 
attacks to be detected.  

The relationship between the TTU and the previous module, 
the event token generator, is best thought of as that between a 
physician and patient. The EVT (patient) displays 
“symptoms” [on behalf of the guarded host] of probable DoS 
attacks. As discussed earlier, these symptoms materialize 
themselves as tokens. The intent of the TTU (physician) is to 
read the tokens and “diagnose” the host as being under, or 
not under a state of attack. It does this by using the EVT 
tokens as input characters to traverse the supplied TDFA. 
When the TTU finds that its TDFA has reached a final state, 
it will alert the site security officer that an attack (specified 
by its respective final state) has occurred. 

As we mentioned in section 3, it would be beneficial for a 
SSO to verify the effectiveness of the IDS using pre-recorded 
network traffic data containing traces of successful 
intrusions. Specifically, this entails verifying the correctness 
of the TDFA transversal unit. Table 2 lists seven DoS attacks 
we designed our TDFA to recognize. 

4.4 TDFA Provider 
We mentioned earlier in section 4 how our system supports 
the updating of TDFA attack models without interruption 
to the rest of the system. The TDFA provider is what 
makes this feature possible. When a site security officer 
(client) wants to replace the resident TDFA, it interacts 
with the TDFA provider in giving it a description of the 
new TDFA model. However, models such as those 
depicted in figures 1 and 2 are not required. A client has 
only to specify the attack “signature”, meaning only those 
states and transitions that lead directly to attack completion. 
All other transitions, such as those sending a TDFA back to 

its start state, would automatically be supplied by the 
TDFA provider. This is convenient for the client as he or 
she needs only to provide a simple, linear attack model. 
The TDFA provider then supplies the TDFA traversal unit 
with the user-defined TDFA description. The passing of a 
new attack model can occur without degradation to other 
components of the system because the TDFA provider 
interacts only with the TDFA transversal unit. It should be 
noted that at start-up time, the TDFA transversal unit does 
contain a default TDFA model, so detection is possible 
before interjection by the SSO. As will be described with 
more detail in section 6, this component allows the 
opportunity to develop a distributed modular architecture 
permitting a more automated approach to updating attack 
signatures. 

5. TEST RESULTS 
In keeping with the standard measure of most other 
intrusion detection systems, we used the datasets from the 
Defense Advanced Research Projects Agency (DARPA) 
Intrusion Detection Evaluation in testing our IDS. 
Specifically, we used the publicly available datasets from 
both the 1998 and 1999 evaluations [7]. 

In total, we used 8 tcpdump training data files: 5 from 1998 
and 3 from 1999. Currently, we have tested our system on 
5 of the 7 attacks we listed earlier. The results of the test 
are highlighted in table 3. The third column shows the 
timestamp of the packet finalizing the specified DoS attack, 
according to the DARPA dataset. The fourth column shows 
when our system recognized the specified attack. As is 
visible from the table, we were very accurate in detecting 
five various DoS attacks. However, in one dataset, 
1998_week6_fri, we did fail to detect the SYN Flood 
attack. The attack was successfully detected in most other 
datasets, although there was also a problem with the 
1998_week4_tues dataset. We falsely detected the SYN 

Table 2. DoS attacks sought for by our IDS. 
Name of attack Protocol used Effect 

Land TCP Operating system loops and eventually freezes 

SYN Flood TCP Legitimate service requests are denied as CPU resources become 
totally consumed;  operating system may crash or loop 

Ping Flood ICMP Network slows down; network connectivity may be disabled 

Process Table TCP Process table is completely filled with network server 
instantiations; new processes cannot be started 

Smurf ICMP Host floods both itself and intermediate network with ICMP echo 
replies 

Teardrop N/A Host may hang or crash 

UDP Storm UDP Legitimate service requests are denied as CPU resources become 
totally consumed; network may become congested 



Flood attack approximately three hours before it 
supposedly occurred—a “false positive”. In turn, this also 

presents a “false-negative” because we still failed to detect 
the attack at the correct time (just as with the 
1998_week6_fri dataset). 

6. CONCLUSION 
We were pleased with the results from our system evaluation. 
However, we are concerned about the lack of SYN flood 
attack detection in two of the 1998 datasets. We are 
considering the fact that the TDFA we used in modeling the 
attacks did not embody most variations of the attack 
signatures. Currently, we are studying the DARPA datasets 
in attempts to improve our TDFA model. We are also in the 
process of testing our system for the remaining attacks: 
process table and UDP storm. 

We also acknowledge that our IDS, being a misuse detection 
system, has a significant flaw: it can only detect attacks for 
which it knows a signature. Detecting malicious activity by 
way of signature pattern, however, has been a widely 
supported practice, such as in anti-virus utilities. 
Furthermore, it decreases the number of false-positives in the 
detection process, which is very important for performance. 

In general, network-based intrusion detection is still a 
relatively young field of study in computer science. As 
networks increasingly become more complex, the need for 
sophisticated security tools will rapidly grow in importance. 
While our IDS does not detect all malicious network 
penetrations, it does a great job detecting a significant subset 
of these attacks: denial of service. Evidently, from the test 
results, considering the time intervals between network 
events (in DoS attacks) is worthy of pursuit. We contribute to 
the network security field by offering a detection tool that is 
based off of the temporal characteristics of these attacks. Our 
IDS detects these attacks in an accurate and efficient manner 
and is compact enough to be coupled with other IDSes 

Figure 4. Overview of proposed modular architecture. 

Table 3. Test Results. 
Dataset Attack MIT 

Time 
TDFA 
Time 

SYN Flood 11:55:38 8:50:15 

Ping Flood 20:11:31 20:11:31 

1998_week4_tues 

Teardrop 23:15:08 23:15:08 

Teardrop 08:15:02 8:15:02 

Smurf 12:53:15 12:53:15 

1998_week5_mon 

Smurf 15:33:28 15:33:28 

SYN Flood 17:27:07 17:27:07 1998_week5_fri 

Smurf 18:00:15 18:00:17 

Ping Flood 13:04:56 13:04:56 1998_week6_tues 

Land 17:53:49 17:53:49 

Teardrop 08:32:12 8:32:12 

SYN Flood 09:31:52 NO 

1998_week6_fri 

Smurf 19:12:37 19:16:27 

Ping Flood 08:50:15 8:50:15 1999_week2_mon 

Land 15:57:15 15:57:15 

SYN Flood 11:04:16 11:04:16 1999_week2_thur 

Land 15:47:15 15:47:15 

Ping Flood 09:18:15 9:18:15 1999_week2_fri 

SYN Flood 11:20:15 11:20:15 



(perhaps even anomaly detection systems) to build a 
complete suite of general attack detection/prevention tools on 
multiple platforms. 

7. FUTURE WORKS 
We mentioned earlier the opportunities that the TDFA 
provider component can offer us in the area of distributed 
attack detection. Currently, this serves as the focus of our 
next area of further development pertaining to this system.  

Our application, as well as other intrusion detection systems, 
uses “sniffed” network traffic to determine significant 
intrusion events. However, sniffed data traditionally can only 
be obtained from a packet sniffer running on the same 
network as the monitored host machines. When the 
monitored hosts are in different networks, multiple sniffers 
are needed.  The growing degree of segmentation in 
networks has caused problems in many intrusion detection 
applications relying on network sniffed data [6]. To facilitate 
distributed detection, it is important to recall the modular 
framework of our application such as that portrayed in figure 
3. Modularity such as this would be necessary to distribute 
the functionality of our system. Our intent is to use the 
DOORS system (Distributed Online Object Repositories) in 
which our detection process would be encoded into mobile 
agents and sent to the network in need of monitoring [1]. 
Figure 4 illustrates the topology of such a network scheme. 
This figure is a portrayal of a large network, similar to the 
Internet, in which smaller LANs are connected by gateway 
and core routers. In this case, a host in each monitored 
network will be equipped to receive an agent containing our 
TDFA IDS. A site security officer will update the host 
running the IDS with a new TDFA structure when necessary 
by sending a new TDFA to the TDFA provider module 
shown in figure 3. This module would then immediately 
replace the TDFA structure used by the TDFA transversal 
unit to determine attacks. We believe this would effectively 
distribute the detection while providing a centralized 
management for continual TDFA updates. 
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